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Abstract

Copper, zinc and iron concentrations were determined in ‘‘aguardiente de Cocuy de Penca’’ (Cocuy de Penca

firewater), a spirituous beverage very popular in the North-Western region of Venezuela, by flame atomic absorption

spectrometry (FAAS). These elements were selected for their presence can be traced to the (illegal) manufacturing

process of the aforementioned beverages. Linear and quadratic discriminant analysis (QDA), and artificial neural

networks (ANNs) trained with the backpropagation algorithm were employed for estimating if such beverages can be

distinguished based on the concentrations of these elements in the final product, and whether it is possible to assess the

geographic location of the manufacturers (Lara or Falcón states) and the presence or absence of sugar in the end

product. A linear discriminant analysis (LDA) performed poorly, overall estimation and prediction rates being 51.7%

and 50.0%, respectively. A QDA showed a slightly better overall performance, yet unsatisfactory (estimation: 79.2%,

prediction: 72.5%). Various ANNs, comprising a linear function (L) in the input layer, a sigmoid function (S) in the

hidden layer(s) and a hyperbolic tangent function (T) in the output layer, were evaluated. Of the networks studied, the

(3L:5S:7S:4T) gave the highest estimation (overall: 96.5%) and prediction rates (overall: 97.0%), demonstrating the

superb performance of ANNs for classification purposes.
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1. Introduction

The assessment of trace elements in products for

human consumption (food and beverages) is of

utmost importance for a number of reasons.

Firstly, it is well known that they may be harmful,

and even lethal, above certain concentration levels

[1]. Therefore, very stringent regulations have been

issued in order to insure and preserve the con-
sumer’s well being. Secondly, and from the mar-

keting point of view, some elements may

determine, but also negatively affect the organo-

leptic characteristics and overall quality of a given

product. The latter goes in detriment of the

manufacturer; thus, great care must be placed on

quality control protocols so as to maintain the

quality of the product and its niche in the market.
Finally, and interestingly enough, certain chemical

components can serve as markers for identification

of the product’s geographic origin and authenti-

city. This plays an important role in preventing

illegal products to pass off as the authentic ones,

not only fooling the consumer, but then again,

affecting the manufacturer as well.

The observations stated in the preceding para-
graph are particularly evident when it comes to

worldwide popular beverages such as beer, wine,

coffee, etc. Effectively, a great deal of methods has

been developed for the determination of trace,

minor and major elements in such beverages [2�/7].

Assessment of these sample’s origins has been

mostly conducted through the application of

chemometric techniques, namely, partial least-
squares regression (PLSR) [8], principal compo-

nents analysis (PCA) [9�/13], linear discriminant

analysis (LDA) [11,14,15], k-nearest neighbor

(KNN) [10,11], etc.

Cocuy is a spirituous beverage, similar to the

worldwide famous tequila, which is very popular

in the North-Western region of Venezuela. It is

made by distillation of the plant Agave cocuy , aged
for 3 years, with a maximum addition of cane

alcohol of 70% v/v. The ‘‘aguardiente de Cocuy de

Penca’’ (Cocuy de Penca firewater) is, on the

contrary, an illegal beverage produced in clandes-

tine distilleries hidden in the forest away from

local authorities. Evidently, production of this

beverage is not under any quality control super-

vision by the regional government. As such, it is
supposed that concentration of some metals may

be above acceptable levels. Capote et al. deter-

mined the concentration of Cu, Fe and Zn in

homemade Cocuy beverages by total-reflection X-

ray fluorescence spectrometry (TXRFS) and flame

atomic absorption spectrometry (FAAS) [4]. These

authors found that, while iron and zinc levels were

below the maximum permissible levels in rum and
whiskey (there are no current Venezuelan legisla-

tion concerning metals concentrations in alcoholic

beverages such as Cocuy), copper levels where well

above them. The latter derives from the fact that

copper coils are employed in the manufacturing

process, thus part of the element is leached into the

final product. Paredes determined lead by FAAS

in Cocuy samples (N�/28) using an on-line pre-
concentration system [16]. This author found

concentration levels ranging from 12.6 to 370.0

mg l�1 Pb, with an average of 78.99/98.5 mg l�1

Pb. For comparison purposes, 7% of the samples

had lead concentrations exceeding maximum per-

missible levels set for wine in Europe (300 mg l�1),

11% were above those in Canada (200 mg l�1) and

25% violated the corresponding limit (100 mg l�1)
in the US.

The aim of the present work was the develop-

ment of a strategy for evaluating whether zinc,

copper and iron could be used to classify these

illegally-manufactured Cocuy firewaters according

to the geographic location of the manufacturers,

distributed along the Venezuelan states of Lara

and Falcón, and the presence or absence of sugar
in the final products. The selection of such

elements was based on a previous work [4]. As

these elements are directly related to the utilization

of copper coils, they may provide information on

the manufacturing process, and may be useful in

establishing a quality-control policy in the making

of such beverage. Artificial neural networks

(ANNs) will be used for such a goal, due to their
well-recognized capacity for pattern recognition

[17�/20]. LDA and quadratic discriminant analysis

(QDA) will be performed for comparison pur-

poses. The latter were selected on the basis that,

like ANNs trained with the backpropagation

algorithm, they also work on a supervised-training

fashion.

E.A. Hernández-Caraballo et al. / Talanta 60 (2003) 1259�/12671260



2. Theory

ANNs derive their names from their similarity

to their biological counterparts. They are pseudo-

parallel processing systems capable of ‘‘adaptable

learning’’, meaning that they can do so without the

formalisms and restrictions of computer program-

ming languages. The fundamental constituents of

the ANNs are called nodes or neurons. Fig. 1a
shows a basic representation of one of such units.

Each node performs a series of simple calculations.

Firstly, the input signals (Xi) are processed in the

‘‘body’’ of the neuron according to:

Neti�
X

i

wiXi (1)

where wi , the weights, are an analogy of the

biological synapses. Neti may take large positive

or negative values; therefore, it is further modified

in a second step. Various transfer functions (G )
have been proposed for this purpose, each of them

accomplishing different transformations. The uni-

polar sigmoid (Eq. (2)) and the hyperbolic tangent

are among these functions:

Gi� f (Neti)�Outi�
1

1 � exp[�(Neti � u)]
(2)

They are both monotonous, non-linear functions

which restrict the output of the neuron to between

0 and 1, or �/1 and 1, respectively. The term u is

known as the bias, and it represents a threshold

value above which the neuron is said to ‘‘fire’’, or
emit a signal. This kind of transfer function is what

makes ANNs particularly suitable for modeling

non-linear systems. The value Outi is thus

propagated to the neurons on to the following

layers.

Fig. 1. Diagram of (a) an artificial neuron; and, (b) an ANN with two (active) layers (see text for details).
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While a neuron is clearly an important part of
an ANN, is the linking among them*/the

‘‘networking’’*/which gives ANNs their outstand-

ing performance [21]. Fig. 1b shows a diagram of a

fully connected, ANN with two active layers. Each

black symbol represents an individual neuron

performing the operations described previously.

The input layer serves to distribute the data and

does not perform any calculation. The hidden
layers are known as such for they neither receive

nor transmit data directly from or to the user.

Finally, there is the output layer, which provides

the results of the network calculations. In this case,

data ‘‘flows’’ exclusively from the input to the

output layer. On the other hand, and for the

particular type of ANN employed in this work, the

adjustments of the weights are performed on the
opposite direction. This ‘‘backpropagation’’ pro-

cess means that the weights of the output layer are

modified first, followed by those on the layer

immediately preceding it, and so on [21,22].

‘‘Learning’’ consists of adjusting the weights so

that the error, that is the difference between the

neuron (or the network’s) output and the expected

value, is minimized (supervised learning). With
this regard, the mean squared error (MSE) may be

utilized [23]:

MSE�

�X
i

(di � oi)
2

n

�
(3)

in which di and oi represent the desired and

the actual network output values,

respectively, and n the number of input-

output pairs (patterns) used to training the net-

work.

3. Materials and methods

3.1. Equipment and software

A Perkin�/Elmer atomic absorption spectro-

meter, model 460, was used for all the determina-

tions. Perkin�/Elmer hollow cathode lamps for Zn,

Cu and Fe were used according to the manufac-

turer recommendations [24]. The Statistical Pack-

age for SOCIAL SCIENCES 7.0 (SPS Inc.) and
MINITAB 13.1 (Minitab Inc.) were used for

statistical analyses. ANNs were developed using

PROPAGATOR 1.0 (ARD Corporation) for

Windows [23]. The software generates a list of

weights after training is concluded. Those weights,

together with the appropriate transfer functions,

were processed by EXCEL XP (Microsoft Corp.),

running under WINDOWS ME (Microsoft
Corp.), to yield the network’s numerical output.

3.2. Reagents and samples

Titrisol† (Merck) stock solutions (1000 mg l�1)

were used for preparation of working standards.

Ethyl alcohol (98% v/v, Riedel de Haen) and a

40% ethyl alcohol solution from a local producer
were used for matrix matching.

Samples (N�/40) from different producers from

Lara and Falcón states (Venezuela) were collected

in glass bottles and stored at 4 8C until analysis.

Bottles were washed with nitric acid, and rinsed

with distilled, de-ionized water prior to sample

collection. Table 1 resumes the coding used to

identify the samples, the number of samples
collected from each region, the nature (with or

without sugar) and geographic origin.

3.3. Determination of zinc, copper and iron by

FAAS

The determination of Cu and Fe concentrations

in Cocuy samples was carried out following the
recommendations of the manufacturer [25]. The

method was also effectively implemented for the

determination of zinc [4]. Quantitation was made

against a matrix-matched calibration curve. When

necessary, the samples were diluted with 40%

alcohol in order to bring the concentration of a

given analyte within the corresponding linear

dynamic range. Concentration values for each
sample were estimated as the average of at least

three consecutive measurements.

3.4. Discriminant analysis

Linear and quadratic discriminant analyses were

performed using Zn, Cu and Fe standardized
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concentrations as input data, and the samples’

categories as outputs. Standardization was con-

ducted according to the following equation:

[Xij ]s�
Xij � �xj�

sj

(4)

where [Xij ]s and Xij correspond to the ith stan-

dardized and raw concentration of the jth element,

�Xj� and sj are the average concentration and

standard deviation of the jth element. Data was
split in two groups: i) 75% of the data was

randomly selected in order to develop the discri-

minant functions; and, ii) the remaining 25%

(prediction group) was used to validate the model.

3.5. Development of artificial neural networks

In the present work, the code (3:n :m :4) is used

to describe the topology of the neural networks;

where n and m represent the number of nodes in

the hidden layers. For sake of simplicity, the

transfer functions of the network’s layers are not
included in the code, as they were fixed for all

topologies evaluated.

Preliminary assays revealed that low MSEs were

attained when a learning rate of 0.01 and a

momentum factor of 0.5 were used. In order to

avoid a local minimum during training, the

adjustment of the network weights for a given

topology was conducted at least three times. In
each case, the initial weights were randomly

started (�/1.0 to 1.0).Table 2 shows the parameters

and characteristics of the ANNs under evaluation.

Normalized data, according to Eq. (5), was used as

inputs.

[Xij ]s�
Xij

X(max;j)

(5)

where [Xij ]N and Xij are the i th normalized and

raw concentrations for the jth element, respec-
tively, and X(max,j ) the maximum concentration for

the jth element. A group constituted by 75% of the

data was used for training the ANNs; whereas the

remaining 25% was employed for validation. A

sigmoid transfer function was implemented in the

hidden layers, and a hyperbolic tangent was

employed in the output layer. A code comprising

a combination of �/1 and �/1 was used for
definition of the corresponding categories (see

Table 1).

4. Results and discussions

4.1. Determination of Zn, Cu and Fe in Cocuy

samples by FAAS

Zinc, copper and iron were selected on the basis

of a previous work [4]. A more detailed elemental

characterization of these samples would have

Table 1

Classification and characteristics of the Cocuy samples

Code/category Number of samples Nature Origin Network’s output code

SP 12 Pure Municipio Sucre (Falcón) �/1 1 1 1

SS 10 With sugar Municipio Sucre (Falcón) 1 �/1 1 1

UP 12 Pure Municipio Urdaneta (Lara) 1 1 �/1 1

US 6 With sugar Municipio Urdaneta (Lara) 1 1 1 �/1

Table 2

Parameters and characteristics of the ANNs under evaluation

Parameter Characteristics

Input layer Number of nodes: 3

(Zn, Cu and Fe normalized concentrations)

Transfer function: lineal (L)

Hidden layers Number of layers: variable (1�/2)

Number of neurons: variable (1�/7)

Transfer function: sigmoid (S)

Output layer Number of neurons: 4 (Category)

Transfer function: hyperbolic tangent (HT)

Learning rate 0.01

Momentum 0.5

Training cycles Variable (104�/105)
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required a more complex methodology [16] or,

certainly, more sensitive techniques, which was

beyond the scope of this first approach. Work is

being currently conducted in this direction, and

will be the subject of a future publication.

Although other elements could be employed that

may relate the product with soil characteristics,

thus with the geographic origin of the raw

material, Zn, Cu and Fe may be useful in establish-

ing a relationship between the illegal products and

their manufacturing process. It is believed that, at

first, this may be helpful in the establishment of

quality-control policies.

Table 3 summarizes the concentrations of Zn,

Cu and Fe found in Cocuy samples from different

manufacturers from Falcón and Lara states.

Particular attention must be paid to the elevated

concentration of copper, which is evidently the

result of the leaching of the element from the

distillation coil. Although copper is an essential

element, its ingestion above certain levels may pose

a likely threat to human health [26]. The results

presented here confirm previous findings by Ca-

pote et al. [4].

A look at the concentration ranges presented in

Table 3 reveals an ample variability, not only

between the two states (Falcón and Lara), but

within states as well. Copper and zinc concentra-

tions represent a clear evidence of the latter, their

concentrations varying by as much as 1�/2 orders

of magnitude. Such variability is clear evidence of

the lack of quality control measures regulating the

manufacturing of such beverages. The latter will

exact an important influence in the classification

of such samples, as will be seen in the ensuing

sections.

4.2. Classification of Cocuy samples: discriminant

analysis

Discriminant analysis (DA) is a chemometric

technique whereby a set of functions (latent

variables), which are combinations of the original

(predictor) variables, are developed. The resulting

model seeks to cluster observations by maximizing

the between-group variance [27]. The dimension-

ality of the space can be reduced from a higher p -

dimensional space (number of initial descriptors)

to a smaller n -dimensional space (number of

resulting discriminant functions) by this means.

The latter has the benefit of permitting the

visualization of the latent variables in 2 or 3

dimensions for graphical classification. Two varia-

tions of DA can be differentiated, depending on

whether the latent variables are linear (LDA) or

quadratic (QDA) combinations of the predictor

variables. Irrespective of the model, correct appli-

cation of the DA technique relies on the predicting

variables having a multinormal distribution [27]. A

preliminary study of the raw data revealed that

frequency distributions showed high asymmetry.

Therefore, it was necessary to perform a transfor-

mation of such variables which would help in

smoothing their distributions so as to comply with

the requirements of the technique. The variables

were thus standardized according to the Eq. (4)

(see Section 3.4).

A LDA was first performed on the standardized

data set. Fig. 2 shows a scatter plot of the Cocuy

samples by means of the first two linear discrimi-

nant functions. Copper and iron have the highest

values in both discriminant functions, thus they

contribute the most to the separation of the

Table 3

Zn, Cu and Fe average concentrations and ranges found in Venezuelan spirituous beverages (Cocuy) from Lara and Falcón states

Category Concentration (mg l�1)a

Zn Cu Fe

SP 0.129/0.05 (0.03�/0.17) 28.039/27.99 (6.12�/85.69) 0.329/0.07 (0.27�/0.51)

SS 0.979/0.04 (0.89�/1.00) 31.369/0.67 (30.64�/33.13) 0.269/0.06 (0.18�/0.36)

UP 0.239/0.21 (0.02�/0.65) 14.639/14.69 (4.49�/58.46) 0.369/0.13 (0.20�/0.55)

US 0.139/0.02 (0.03�/0.38) 15.589/0.07 (7.82�/26.12) 0.339/0.01 (0.12�/0.59)

a Values correspond to the average9/S.D. Concentration ranges are shown in parenthesis.
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groups. It is clear that, with the exception of one

group (Category SS), all other groups present

similar characteristics leading to the superposition

of the corresponding categories. This is particu-

larly evident in the closeness of the groups’

centroids located in the lower right quadrant of

the plot. The latter is attributed to the fact that,

with the exception of group SS, the normalized

concentrations of zinc, copper and iron are very

similar among groups. The corresponding (nor-

malized) concentrations in group SS are higher

and statistically different to those of the remaining

groups, which clearly contributes to its better

separation by the first two discriminant functions.

The high overlap between the groups is reflected in

the low estimation and prediction percentages

summarized in Table 4. The overall classification

accuracy is approximately 50%, which is evidently

unsatisfactory.

Based on the fact that the high dispersion of the

raw data is certainly responsible for the inability of

the LDA model to provide adequate groups’

separation, it was deemed appropriate to attempt

the classification by means of a non-linear model.

The statistical packages used along this work have

a quadratic function which was used for this

purpose. Quite surprisingly, it did not seem

possible to plot the numerical outputs as in the

case of LDA. Nonetheless, the results (see Table 4)

indicate an improved performance of the corre-

sponding model. Again, Category SS can be

clearly separated from the rest of the groups, as

inferred from the 100% classification accuracy.

For the remaining groups, estimation and predic-

tion accuracies]/50% could be attained, with an

overall estimate of ca. 80% and 72%, respectively.

The results discussed in the preceding para-

graphs pinpoint to the groups been clearly non-

linearly separable. The function though, must be

more complex than a simple second-order poly-

nomial, as evidenced by the still unacceptable

estimation/prediction accuracy of the QDA model.

Such a function, or combination of functions,

cannot be determined a priori, thus impeding the

application of classical mathematical models, and

calling for a more effective alternative. ANNs are

well recognized for the ability to model highly

non-linear model, without the need of knowing

which function could actually perform the separa-

tion [22]. The ensuing section is devoted to the

Fig. 2. Linear discriminant plot for Cocuy samples: (2) SP;

(I) SS; (k) UP; and, (^) US. Black symbols correspond to the

groups’ centroids.

Table 4

Estimation and prediction accuracy of the LDA and QDA, and the (3:5:7:4) neural network on the determination of the category and

geographic provenance of Cocuy samples

Category LDA QDA ANN (3:5:7:4)

Estimation (%) Prediction (%) Estimation (%) Prediction (%) Estimation (%) Prediction (%)

SP 33.3 27.8 83.3 72.2 88.5 100.0

SS 100.0 100.0 100.0 100.0 100.0 100.0

UP 33.3 33.3 55.6 50.0 100.0 83.3

US 44.4 44.4 83.3 72.2 100.0 100.0

Overall 51.7 50.0 79.2 72.5 96.5 97.0
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evaluation of this alternative for the classification
of the Cocuy samples.

4.3. Classification of Cocuy samples: artificial

neural networks

Unlike many chemometric tools, data do not

have to comply with any specific distribution, e.g.

multivariate normal distribution, to be processed

by ANNs. However, in order to prevent the
networks from a priori giving more relevance to

some elements based on the magnitude of their

concentrations, as would be the case for copper,

normalized data was used instead of the raw data.

Standardized data was also evaluated for this

purpose, but it was found that normalization led

to ANNs showing a better classification perfor-

mance, as will be shown later on.
The selection of the ANNs for classification of

Cocuy samples was conducted considering the

reduction in the mean square error (MSE) for

various networks’ topologies. Fig. 3 shows the

trend in the MSE for the (3:5:7:4) ANN, which

was considered the best on this basis. Clearly, the

MSE experiences a monotonic reduction as the

network is trained eventually reaching a plateau.
Such a tendency is an indication of overtraining,

i.e. the network has adjusted the weights so as to

match the training set, thus reducing its predicting

capabilities. Training the network was thus

stopped after 4000 cycles, in order to avoid the

aforementioned problem.

Table 4 shows the performance of such ANN

for estimating the provenance and nature of Cocuy

samples. The superiority of this approach for

determining the origin and nature of such samples

is clear. The latter is certainly attributable to the

fact that not only are the observations not linearly

separable, but also because a more complex non-

linear function is needed for a correct clustering.

By adjusting the weights, ANNs are capable of

developing extremely complex functions, which

could be nearly impossible to emulate by most

mathematical methods. The longest development

time of ANNs may be considered a disadvantage

when compared with the immediateness with

which most chemometric tools are implemented.

However, once trained they are able to predict the

category to which the samples belong almost

instantaneously, thus compensating such a draw-

back.

5. Conclusions

LDA, QDA, and ANNs were evaluated for

classification of Cocuy de Penca firewater samples

based on their Zn, Fe and Cu concentrations.

ANNs clearly outperformed LDA and QDA,

showing an excellent overall predicting capability

(97% vs. 50% and 72%, respectively). The high

dispersion of the data, resulting from the lack of

quality control measures in the manufacturing of

such beverages, exacts a detrimental effect on the

classification powers of these chemometric tools.

This represents a clear example of the capabilities

of ANNs for developing complex mathematical

models for classification purposes, without the

inherent limitations of many chemometric techni-

ques. Further work is being conducted so as to

improve the classification of the various samples

taking into account other trace elements that may

provide additional information on the geographic

origin of these beverages.
Fig. 3. Training (m) and validation (k) MSE for a (3:5:7:4)

ANN.
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