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Abstract. The whole family of generalised soliton solutions of the Weyl class for Einstein’s 
equations in vacuum is considered. A classification scheme for the distinct types of metrics 
belonging to this family is given and emphasis is placed on the asymptotically flat solutions. 
The physical interpretation of the occurring parameters is also briefly considered. 

1. Introduction 

In the past years, a number of solution generation techniques have been developed to 
solve the vacuum Einstein field equations for spacetimes admitting two commuting 
non-null Killing fields. Solutions with an arbitrary number of parameters can be 
obtained by application of such techniques to simpler ‘seed’ solutions. The relations 
amongst the different known solution generation techniques have been given in some 
remarkable papers by Cosgrove (1980,1982). 

The Belinskii-Zakharov inverse scattering transformation (Belinskii and Zakharov 
1978,1980), also called the ‘soliton transformation’, is one of those techniques which 
has proved particularly useful for the explicit evaluation of new solutions from old 
ones. It has been shown (Cosgrove 1980) that it is equivalent to Backlund transform- 
ations (Harrison 1978, Neugebauer 1979). The soliton transformations are charac- 
terised by the so-called ‘pole trajectories’; that is, real or complex functions whose 
number determines the number of parameters of the new solution. There are two main 
contexts where this technique applies, namely the cosmological and the stationary and 
axisymmetric contexts. 

It should be noticed that the term ‘soliton’ as used in this paper is in fact a loose 
expression which bears no clear relation to solitons in fluid dynamics (Korteweg-de 
Vries equation) or in quantum mechanics (sine-Gordon equation). In such cases soliton 
solutions are solutions of non-linear one-dimensional time-dependent equations, they 
show some localisability and shape persistence and can be found by the so-called 
‘inverse scattering transform’. The use of the term ‘soliton solutions’ associated with 
the Belinskii-Zakharov ( BZ) technique stems from two main reasons. Firstly, there 
exists a certain formal relation between this technique and the inverse scattering 
transformation, although the BZ technique is not a true inverse scattering transformation 
since, for instance, the poles are not fixed numbers but functions. Secondly, it arises 

5 On leave from: Departament de Fisica, Universitat Illes Balears, E-07071 Palma de Mallorca, Spain. 

0264-9381/89/060845 + 12%02.50 @ 1989 IOP Publishing Ltd 845 



846 J Carot and E Verdaguer 

from certain localisability and shape persistence properties possessed by some of the 
solutions obtained with the BZ technique in time-dependent spacetimes (admitting two 
spacelike Killing vectors). By extension, the term ‘soliton solution’ is also used in the 
literature for the stationary case (spacetimes admitting one spacelike and one timelike 
commuting Killing field). Thus the Schwarzschild metric is a two-soliton solution. 
After all, there is only a simple change of variables to go from one case (cosmological 
context; two spacelike Killing vectors) to the other (stationary and axisymmetric 
context; one spacelike and one timelike Killing vector). 

In the cosmological case (both Killing vectors spacelike) Kitchingham (1984, 1986) 
has shown that a great number of known vacuum and stiff matter solutions can be 
systematically obtained by using the soliton transformation technique, either by itself 
or combined with some other transformations, from the anisotropic Kasner metric as 
seed solution. In the axisymmetric context, when one of the Killing vectors is timelike, 
some well known solutions such as the Kerr solution or the Kerr-NUT family of 
solutions are straightforwardly obtained from the Minkowski seed by using two real 
pole trajectories. When the Killing vectors are hypersurface orthogonal, the metric 
expressed in appropriate coordinates (e.g. Weyl coordinates) becomes diagonal; this 
implies that one of the Einstein equations, which is relevant for the soliton transform- 
ation, becomes linear. 

It is worth noticing that, although the importance of the BZ technique (or others 
related such as the Backlund transformations) is that it allows solutions to be found 
in a systematic way to a non-linear system of equations which appears when non- 
diagonal metrics are considered, diagonal ‘soliton’ solutions can be obtained from the 
non-diagonal ones by taking some of the parameters in the BZ transformation to be 
null; the relevant equation of the resulting system is then linear and its solutions are 
then the ‘soliton’ solutions of the linear equation under consideration (whose general 
solution is known a priori, since it is linear). One can then view these diagonal soliton 
solutions as a limit of the non-diagonal soliton solutions, and expect them to share 
some of the properties of the latter. 

The so!iton solutions to this equation can be easily generalised thanks to the linearity 
of such equations. The generalisation is twofold. Firstly, the integer parameter which 
gives the degeneracy of the pole trajectories is taken to be a real number. Secondly, 
the real parameters which define the pole trajectories are extended into the complex 
plane yielding then a complex function whose real and imaginary parts, when con- 
sidered separately, produce two independent real solutions (Ctspedes and Verdaguer 
1987). The new solutions so obtained are called ‘generalised soliton solutions’. 

In the cosmological context some well known solutions such as those of Wainwright 
et a1 (1979), the spatially inhomogeneous generalisations of the homogeneous Ellis 
and MacCallum (1969) cosmologies as well as the Carmeli and Charach (1980) pulse 
wave solutions, can be seen as generalised soliton solutions associated with the number 
of poles (Kitchingham 1984, Verdaguer 1985). Also new physically interesting solutions 
have been derived from the real and imaginary parts of complex poles in the cosmologi- 
cal context (CBspedes and Verdaguer 1987, Feinstein and Charach 1986, 1987) as well 
as in the cylindrically symmetric context (Garriga and Verdaguer 1987). 

The present paper constitutes an attempt of classification of all the generalised 
soliton solutions in the axisymmetric context (i.e. Weyl class). We have tried to follow 
a systematic approach to all the possible cases occurring; to this end, we have given 
the Ernst potentials of all the solutions considered, thus making the identification of 
known solutions much easier, since the Ernst potential has been traditionally used to 
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characterise stationary and axisymmetric solutions. Furthermore, the Ernst potential 
may be regarded as a complexified non-linear generalisation of the Newtonian potential 
(Kinnersley and Kelly 1974); thus helping the understanding of the physical meaning 
of the solutions. 

In the real pole trajectories case, the generalised soliton solutions associated with 
a number of such poles give rise to well known solutions such as the Voorhees-Zipoy 
family (Voorhees 1970) and their superpositions (Cosgrove 1980, Tomimatsu and Sat0 
1981), which include superpositions of Schwarzschild black holes (Alekseev and 
Belinskii 1981). The generalised soliton solutions arising from the real and imaginary 
parts of complex pole trajectories have not been considered previously in this context; 
here they are dealt with in a similar way to that followed in the cosmological (CCspedes 
and Verdaguer 1987, Feinstein and Charach 1986, 1987) and cylindrically symmetric 
cases (Garriga and Verdaguer 1987). 

The Levi-Civita (1919) metric is used throughout the paper as the seed metric; this 
metric can be interpreted as describing the gravitational field created by a massive line 
source and includes Minkowski flat spacetime as a special case. This metric is singular 
along the symmetry axis (except in the Minkowski flat spacetime case). 

The physically most interesting axisymmetric solutions are the asymptotically flat 
ones since they can represent the gravitational field due to a finite source. Usually, 
the soliton solutions share the singularities of the seed, therefore the most interesting 
solutions will be those obtained from the Minkowski seed. Furthermore, a soliton 
solution involving a single pole trajectory (one soliton) introduces a new singularity 
at z+m, but this singularity can be removed by the ‘destructive’ superposition of 
another ‘opposite’ pole (‘antisoliton’). The asymptotically flat solutions, such as the 
Schwarzschild solution, are therefore constructed from the Minkowskian seed with a 
pair of opposite pole trajectories. Note that the two opposite poles must have different 
‘origins’ on the symmetry axis, otherwise the seed solution is recovered; this, for 
instance, allows an interpretation of the Schwarzschild solution (in terms of Weyl 
coordinates) as the field due to a finite rod, whose mass and length are related to the 
soliton origins. 

The paper is organised as follows: in § 2 we recall explicitly the soliton solutions 
in terms of their Ernst potentials and classify the different types of solutions, that is 
one-soliton solutions and two-soliton (soliton-antisoliton) solutions in both real and 
complex pole trajectory cases, and also briefly describe the generalisations of these 
solutions. In § 3 we deal with the first generalised type or ‘generalised one-soliton 
solutions’, which constitute the generalisation of the one-soliton solution, and with 
superpositions of solutions of the same type. Although most of these solutions are 
not asymptotically flat, as usually happens in solitonic solutions with a single pole 
(Verdaguer 1982), it turns out that those arising from the imaginary part of the pole 
trajectories (in the case of complex poles) are asymptotically flat, provided that the 
seed is flat. An attempt at physical interpretation of the parameters of the transformation 
is given based on the asymptotic behaviour of the Ernst potentials of the solutions 
under consideration. The f coefficients (see (1)) have been given explicitly in all the 
solutions, that is, the one integration has been carried out explicitly, as it is typical of 
the BZ technique. This can help in the study of the properties of the solutions. The 
generalised two-soliton solutions (soliton-antisoliton pairs) and their superposition 
are described in § 4. For the Minkowski seed such solutions are asymptotically flat. 
Amongst them we find the Voorhees-Zipoy metrics which are related to the solutions 
arising from real pole trajectories or from the real part of the pole trajectories in the 
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case of complex poles. As before, a physical interpretation for the parameters of the 
transformation is provided and also the f coefficients of the metric are given explicitly. 
On the other hand, the solutions obtained from the imaginary part of complex poles 
are also asymptotically flat and show a very similar behaviour to those coming from 
the imaginary part but in the case of a single pole. Again, some consideration is given 
to the physical meaning of the parameters of the transformation. 

2. Axisymmetric soliton solutions 

In this section we recall those Weyl solutions (static axisymmetric vacuum solutions) 
of the Einstein equations which can be obtained as soliton solutions. We also put 
forward a classification scheme for these solutions which will be developed throughout 
the paper. 

Using Weyl coordinates, a general static axisymmetric vacuum solution of Einstein’s 
equations can be written as 

d s2=  f ( p ,  z)(dp2+dz2) +exp(-2U(p, z))p2 d+b2-exp(2U(p, z))  dt2 (1) 

U,*z+(l/P)U.,+ U,,, = o  (2) 

and the corresponding field equations are then (Kramer et al 1980): 

where K (p ,  z)  is defined to be: 

K = f In f + U. ( 3 b )  

The Ernst potential for such solutions is real and it is given by: 

(4) 
2u & = e  . 

Using the Levi-Civita solution as the seed (Levi-Civita 1919), the solitonic solutions 
of equation (1) can be written as (Belinskii and Zakharov 1979, Carr and Verdaguer 
1983): 

n 

U = f ( d + l ) l n p + f  ln(*p!*)/p)= Uo+Us  
i = l  

where d is the Levi-Civita parameter, A is an integration constant and the functions 
p.’(p, z )  are the so-called ‘pole trajectories’ defined by: 

p: = Ui - z*[( U i  - z)Z+p2]1’2 ( 6 )  

U, being arbitrary complex parameters (note p t / p  = - p / p J .  
Since equation (2) is linear the solutions ( 5 )  are easily generalised by regarding U 

as the superposition of different pole trajectories, the new solutions so obtained are 
called ‘generalised soliton solutions’. This will be done in the next section. In order 
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to see the general properties of these solutions, we shall restrict ourselves to the study 
of two different cases which summarise all the possibilities: 

(a) one-pole solutions (one-soliton solutions) and their superposition: 
( a l )  real pole trajectories ( ui E R) 
(a2) complex pole trajectories ( ui E e) ;  
(b l )  real pole trajectories (ui E R )  
(b2) complex pole trajectories ( u i  E C). 

(b) two-pole solutions (soliton-antisoliton solutions) and their superpositions: 

Note that the cases ui complex, either in (a) or (b), would lead to complex solutions 
to Einstein's field equations which have no physical meaning; however, we shall use 
them to construct true physical solutions. 

3. Generalised one-soliton solutions 

In this section we will study and classify the generalised one soliton solutions and 
their superposition. We shall assume throughout the Levi-Civita metric as the seed 
metric. 

3.1. Real pole trajectories (ui ER)  

We now take the parameters ui in (6) to be real. Since U satisfies the linear equation 
(2) we can generalise the soliton solutions given in ( 5 a )  as: 

U, = ph, In * ( p $ * ) / p )  = 1 $hi sinh-'[(u, - z ) / p ]  
i = l  i = l  

(7) 

where the real parameters hi play the role of the degeneracy of the ith pole when they 
are integers. 

We can now integrate ( 3 )  to give explicitly the coefficientf(p, z )  appearing in (1). 
This is easily found from ( 5 b )  by taking the limit of hi 'degenerate' poles and choosing 
a suitable constant of integration A :  

where zi = ui - z and g = Zf=, hi. 
The Ernst potential is then given by: 

S 

E =pd+l  n ( *p . ' /p )" .  (9) 
i = l  

In order to physically understand these solutions we can consider just the one pole 
case, namely s = 1; this solution is singular along the symmetry axis p = 0 unless d = -1 
(Minkowski seed) and at z + CO (Verdaguer 1982); however, the singularity at z+  03 is 
not present in the particular case h: = d2+3 ,  thus for d = -1 and h: = 4 the one-soliton 
metric is asymptotically flat. We note that this restriction shows up in the cosmological 
case, leading there to the Ellis and MacCallum (1969) spatially homogeneous solutions 
(Kitchingham 1984, Verdaguer 1985). 
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3.2. Complex pole trajectories (ui E C) 

Let us now consider complex poles, i.e. 

U .  I 1  = z?-iwi (10) 

with zp and wi real arbitrary parameters and let us write the pole trajectories pi(p, z) 
as: 

p i  = J;;; p exp(i yi) 

p f - 2 ( u i  - z)pi - p 2 =  0 

as they are solutions of the second-order equation 

by plugging (1 1) into (12) and considering its complex conjugate, after some calcula- 
tions we can come to 

sin y, = - 2 w i f i / p ( u i  + 1) cos yi = 2z,fi/p(u, - 1) (13) 

and taking into account sin2 yi +cos2 yi = 1 we get 

(14) 
4 4(wf+zf )  8( W :  - z:) 4( w f + z:, 

uj - U? + - 2  U:- Ui+l = o  ) P 2  P 2  

which possesses two real solutions and two complex ones. The real solutions are 

U: = Li * (L: - 1 y 2  ( U ;  = (ut>-'> (15) 

Note that in the real limit ( w ,  + 0) we recover the solutions in the case of real pole 
trajectories: 

L,( w ,  + 0) = 1 + 2(z,/p)2 

U < ( W l +  0) = {(Zl/P)*t[(Zl/P)2+ 111/212 = (PU:/P>'. 

p2 >> Zf  

Zf  >> p2 

These functions have the following limits: 

U ; =  1 -2)z,I/p 

U; = p2/4zf 

From (1 1) we have: 

Recalling now ( S a )  and that U satisfies a linear equation, we can regard (18) as 
furnishing two independent real solutions, one corresponding to the real part and the 
other one to the imaginary part of (18); these are the generalised soliton solutions with 
complex poles: 
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where the arbitrary real parameters hi have again been introduced. The corresponding 
Ernst potentials are: 

Let us now consider both classes of solutions separately. 

Class I:  these solutions clearly exhibit a behaviour similar to that of the generalised 
real pole solutions since, as has been pointed out, in the real limit ( wi + 0) both families 
of solutions coincide. They are singular along the symmetry axis p = 0 and not 
asymptotically flat, excepting the special case of a single pole with h: = d2+3.  The 
corresponding function f ( p ,  z) can be found either from (56) or, more directly, by 
performing the appropriate changes from Garriga and Verdaguer (1987) 

f ( 1 )  = A p ( d 2 - l - g 2 ) / 2  f i n  a h r ( z h r + d + g ) 1 2  (1 - a,)-hf/2Hl-hS/4 
1=l 

(23) 
8 zizjuiaj 

i > j  

where 
H i s ( l - ~ i ) ~ + 1 6 w : a f p - ~ ( l  -ai) -2 . 

For a single pole and when wi # 0, it is possible to define a set of new coordinates so 
that ui takes a much simpler expression than the one in terms of Weyl coordinates 
given in (15). We define the new coordinates as: 

p = wi cosh(2aiffi) sin I$ 

zi wi sinh(2aiffi) cos ii 
where ai are arbitrary real parameters. In these new coordinates ai reads now: 

+ I + C O S  ei 
1 - COS ei ai =- a; = (at)- ' .  

Note also that in this case the line element dp2+dz2 transforms itself into: 

dp2+dzZ = wf(sinh2(2aiki) + cos2 ii){4af d k f +  dê :} 

still keeping its diagonal form. 
To see the geometrical meaning of these coordinates, we can consider their 

behaviour at large distances; assuming (at large distances) a relationship between Weyl 
and spherical coordinates of the type: 

p = r sin 0 

zi - z =  zi = r cos e 

tan Oi - p/zi 

0 

the new coordinates behave then as 
A 

exp(4aiffi) - (1/wi)(p2+zf)  
i.e. Gi behaves as a spherical angular coordinate and ki - In r. 
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Class 11: these are the solutions arising from the imaginary part of (18). Their behaviour 
is quite different from that of those previously considered (class I). In the real limit 
wi+O we get y:+O which does not produce any new solution. The function f ( p ,  z) 
corresponding to this case can be found by the same procedure as in the former case 
(Garriga and Verdaguer 1987): 

I’J 

X ((22;- w T -  p2)2+4~T~T}h1(h1+1)’4 I P (28) ((+, + l ) - h : / Z ~ - h ~ ( h < + 2 ) , 4  -h’ 

with A; given by: 

A: = (U, + a,)( 1 - U:) (  1 - r , ) ’p2  - 8 ~ , ~ ( ~ , z ,  ( ~ r ,  + 1)( U, + 1) + w,w,( 1 - V,)( 1 - oj)}. (29) 

In the case of a single pole, we can use again the coordinates introduced in (25) 
in order to simplify the expression of y I ,  we then have 

y: = cos-’{+tanh(2aI~,)} y;= .n+ y:. (30) 

To physically understand these solutions (Kinnersley and Kelley 1974), we again 
take the single-pole case and asymptotically expand its associated Ernst potential 
( E  = exp(2 y: ) )  in a power series of r-I. Then, at large distances we have 

where we have assumed the same relationship between both Weyl and spherical 
coordinates as in (27). 

The last expression shows that these solutions are asymptotically flat, provided the 
seed is (this can also be seen directly from the expression for y , ) .  However, no classical 
interpretation is possible here, since even at the first order in r-l an angular dependence 
appears. For this reason, one cannot interpret the real parameters wk as related to the 
mass of the object creating the gravitational field, in spite of their occurrence at first 
order. 

4. Generalised two-soliton solutions 

In this section we shall consider the generalised soliton solutions obtained by the 
superposition of soliton-antisoliton pairs. As before, we shall deal separately with the 
real pole trajectory case and the complex pole trajectory one. It will be shown that 
the divergences at infinity appearing in some of the previous cases are no longer present 
now as a consequence of the combination soliton-antisoliton. The solutions so obtained 
are therefore asymptotically flat and can be expanded, at large distances, in a power 
series of r - ’  which eventually will allow us to figure out the physical meaning of the 
different parameters appearing in these solutions. 

4.1. Real pole trajectories (U, E R )  

We shall now consider pairs of (real) pole trajectories (p,’, P U . , + ~ )  (i.e. soliton-anti- 
soliton) with the coefficients hk occurring in ( 5 a ,  b )  satisfying A,,, = - h r .  For the 
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superposition of s such pairs of poles we have, from (5a): 
S 

us=$ h i { l n ( - p i / p ) - l n ( - p ~ + , / p ) }  
i = l  

where use has been made of the equality p z / p  = - (p i /p ) - ’ .  
The Ernst potential is then, assuming the Levi-Civita metric as the seed, 

& = p  d + l  fi (Iki_)h’  
i = l  pj+l 

(33) 

These solutions, characterised by their Ernst potentials (33), can be written in more 
familiar forms by changing Weyl coordinates to prolate spheroidal or to Boyer- 
Lindquist coordinates. 

Using prolate spheroidal coordinates xi, yi ,  defined by 

p 2 = a f ( x f - 1 ) ( 1 - y f )  z - zj = aixiy, (34) 

uj = zi + aj uj+, = zj -aj (35) 

where ai is (Tomimatsu and Sato 1981) 

the Ernst potential (33) can be written as: 

This family of solutions includes that of Voorhees-Zipoy (Voorhees 1970) (s = 1, i.e. 
2 poles, d = -1  and h, = 8)  which in its turn includes the Schwarzschild solution as a 
special case ( 8  = h,  = 1) (Kramer et a1 1980). Note that while Voorhees-Zipoy metrics 
generally have an Abelian symmetry group G2, the Schwarzschild metric has a larger 
symmetry group G,. For s > 1, h, = 1; we get a superposition of Schwarzschild black 
holes along the z axis. 

Using Boyer-Lindquist coordinates (Belinskii and Zakharov 1980), 

p = [r,(rl -2m,)]”* sin e, (37) 

m, = f ( ~ , + ~  -U,) 2, =+(U,+, + U,) (38) 

E = -pd+’ n ( 1  - 2m~/r1 ) ’~ .  

z - 2, = (r, - m,) cos e, 
with m, and 2, defined as 

the Ernst potential (33) takes now the form: 
S 

(39) 
I = ,  

To see the physical meaning of these solutions and their asymptotic behaviour, we 
consider the case s = 1 (a single pair of poles) and as in the previous cases expand 
the solitonic part of the Ernst potential (now p;/p;+,  = ~ - * p ; p ” : ~ )  in a power series 
of r-I (the same relation between Weyl and spherical coordinates at large distances 
as in (27) will be assumed here); we then have: 

(40) -2 - + 
P PI PI+, = 1 -4mf(1 /r l )+o(1 /r? )  

which displays clearly the asymptotic flatness of the solution (provided the seed is 
flat) and also shows that, at first order, we recover the Schwarzschild solution for a 
mass 2m,. 
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4.2. Complex poles (U, E C) 

As in the previous section, we now take complex pole parameters U, = zp - iw, (zp, w, E R) 
and write the complex pole trajectories as p l  = A l p  exp(iy,) with U: and y: given 
by (13) and (15) respectively. Recalling now (18), we shall deal separately with the 
solutions arising from the real and the imaginary parts of the complex pole trajectories, 
i.e. class I (19) and class I1 (20) solutions, taking now, in each case, the superposition 
of two solutions of the same class but different signs (soliton-antisoliton pair) and 
with the pole 'degeneracies' hk satisfying h,+, = -h,  as before. We then have, for s 
pairs of poles: 

Note that class I1 solutions admit two different possibilities of combination of the two 
y functions, both leading-as we shall see later on-to asymptotically flat solutions. 
One could think of a third possibility for the combination of the y functions, namely 
y ;  - y;,, but taking (30) into account, it is easy to see that it coincides with (42). 

We shall now consider each class separately, paying special attention to their 
asymptotic behaviour as this provides a physical interpretation of the parameters w,. 

We shall use either Weyl coordinates or those introduced in ( 2 5 )  which seem to 
be especially well adapted to this case. When considering asymptotic behaviour, we 
shall use Boyer-Lindquist coordinates (37); that is, for each pair of poles: 

p = [ r , ( r ,  -2m,)]1'2sin 6, z - i, = ( r I  - m,)  cos e, (43 a 1 

2z = $(ZP+ Z?+'). (43b) 

(43c) 

(43d) 

with m, and i, now defined as: 
1 0  0 m, =dz, - z , + d  

At large distances, these coordinates become simply 

p = r, sin 8, z - iI = r, cos e, 
and then 

z ,  = m, - r, cos 6, z,+' = -(m, + r, cos 0,). 

Class I: taking now (41) into account and assuming the Levi-Civita metric as seed, 
the Ernst potential corresponding to the superposition of s pairs of poles ( U ; ,  a:+') 
in the above described way, is 

This expression reduces to (33)  when w, 0 and includes therefore a superposition of 
Schwarzschild black holes when d = - 1  and h, = 1 .  In order to see the physical meaning 
of the parameters m, and w, appearing in these solutions, let us restrict ourselves to 
the case of a single pair of poles (soliton-antisoliton) and expand cr;a:+, at large 
distances in a power series of r;' according to its definition (43c). We then get 

1 -4mIr;'+{8mf+(wf+,-w~) cos e}r ;*+.  . . . (45a) 
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This expression shows the asymptotic flatness of the solution (for a flat seed). 
We can also see that, for first order in r;' ,  it coincides with (40), reproducing the 
Schwarzschild potential for a mass 2m, as should be expected (note that there is no 
dependence on wk for first order). The second order contains the parameters wk in a 
way that suggests they are related to the dipolar moment; in particular, if we shift the 
origin of distances an amount 2m, (i.e. r, = r : - 2 m , )  then the term 8mf  appearing in 
the second order of the expansion in terms of r;' cancels out with another term 
appearing when the expansion is performed with respect to the new variable r i - ' ,  
being then: 

u;a:+, -- 1 - 4m,r:-' + ( wTtl - wf) cos e r:-* + . . . (456) 
and therefore wf+, - w? is exactly the dipolar moment. For further references about 
higher degree multipoles see, for instance, Cosgrove (1980) and Hoenselaers (1976). 

In the coordinates S I ,  k,+,, in, introduced in (25) (note that these coordinates 
S k ,  are adapted to a single pole while r, ,  8, were adapted to a pair of poles), the 
product a;u:+, can be written as: 

cos ei -cos e,,, 
(1 +COS -COS eic1) a;u:+, = 1 + 2 - 

which again shows the asymptotic flatness of the solution (assuming a flat seed). 

Class 11: this class of solutions arises from the superposition of two Yk functions and, 
as was previously pointed out, there are two different possibilities of combination, 
both of them leading to asymptotically flat solutions (assuming a flat seed). From (42) 
and taking the Levi-Civita metric as the seed, the Ernst potential corresponding to the 
superposition of s pairs of poles is 

E = pdt'  exp( hi( y: * y:+])). 
i = l  

(47) 

Again, note that when wi + 0 no new solutions are obtained, since in this case y: + 0, 
and therefore we reobtain the seed metric. 

The asymptotic flatness of these solutions follows immediately from (47) together 
with the expression (30) for the Yk functions. 

As in the previous cases, and in order to see in some detail the asymptotic behaviour 
of these solutions and discuss the physical interpretation of the parameters wk, we 
shall take a single pair of poles y: * and expand the corresponding Ernst potential 
(Kinnersley and Kelley 1979) in a power series of r;' at large distances; assuming for 
ri and 8, the expression given in (43), we have 

As we can straightforwardly see, these solutions do not reproduce the Schwarzschild 
potential at first order, they are therefore clearly different from those of class I. There 
are two possible different solutions, depending on the choice of sign we make in the 
former expression, and both are asymptotically flat. However, the same remarks as in 
the case of a single pole (31) apply here, in the sense that no classical interpretation 
is possible here because of the angular dependence at first order and, therefore, no 
clear interpretation of the parameters wk in terms of the mass of the object creating 
the gravitational field is possible either, despite the fact that they appear at first order. 
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Note that, according to the preceding comments, these soliton-antisoliton class I1 
solutions are very closely related to the one-soliton class I1 solutions, both verifying 
analogous properties and exhibiting similar behaviours. This is completely different 
from what happens with soliton-antisoliton and one-soliton class I solutions; the first 
being formed by destructive superposition of two of the latter and each displaying 
very different behaviour; in particular, the one-soliton class I solutions diverge at 
infinity (except in a very particular case), while the soliton-antisoliton ones are 
asymptotically flat (provided that the seed metric is flat). 
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