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Abstract

Using a toy model Lagrangian we investigate the formation of vor-
tices in first order phase transitions. The evolution and interactions
of vacuum bubbles are also studied using both analytical approxima-
tions and a numerical simulation of scalar field dynamics. A long lived
bubble wall bound state is discovered and its existence is justified by
using a simplified potential for the bubble wall interaction. The condi-
tions that need to be satisfied for vortex formation by bubble collisions
are also studied with particular emphasis placed on geometrical con-
siderations. These conditions are then implemented in a Monte Carlo
simulation for the study of the probability of defect formation. It is
shown that the probability of vortex formation by collision of rela-
tivistically expanding bubbles gets reduced by about 10% due to the
above mentioned geometric effects.
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1 Introduction

Symmetry breaking phase transitions in the early universe can give rise to
topologically stable localized energy concentrations known as topological de-
fects (for recent reviews see Refs. [, 2, 3] ). These defects can be points
(monopoles), lines (cosmic strings) or surfaces (domain walls) depending on
the homotopy of the vacuum manifold of the broken phase [4].

In general when a symmetry group G is spontaneously broken to a smaller
group H, defects can form if the resulting vacuum manifold M = G/H has
non-trivial homotopy. Cosmic strings (vortices in two space dimensions) form
when the first homotopy group of M is non-trivial i.e. m (M) # 1.

Consider for example the Lagrangian density describing the dynamics of
a complex scalar field ® = & + i,

1 * O
L= 58,@ o'd — V(|®) (1)

where V/(|®|) is minimized for |®| = o # 0 (e.g. V(®) = 3(|®|* —0?)?). The
set of potential minima of V(|®|) (& = ge') has the topology of a circle S*.
In a cosmological setup, according to the Kibble mechanism [§], there will be
(by causality) field configurations that span the whole vacuum manifold as
we go around a large circle in physical space (i.e. asymptotically ® — oe®
where 6 is the azimuthal angle in physical space). Such configurations will
inevitably form [§] (but see Ref. [7] for potential loopholes in the gauge
case), with probability about i [8], when causally disconnected domains of
the universe merge as the causal horizon expands. The asymptotic behavior
® — o€ implies by continuity of ® that there will be a point inside the
large circle where ® = 0. This point (and its neighborhood) being outside
of the vacuum manifold will be associated with topologically trapped energy
density. This configuration is the topologically stable vortex [g]. Extended
to three dimensions this object becomes a line defect, the cosmic string.

In the above simplified Lagrangian (1) no gauge fields are involved and
the broken symmetry is a U(1) global symmetry leading to the formation of
global vortices. The price to pay for considering a simple U(1) global rather
than a U(1) gauge symmetry [J] is that the total energy of an isolated global
vortex diverges logarithmically. This however is not a problem in systems
where a physical cutoff scale is built in, like multivortex systems where the
cutoff scale is the intervortex separation, or cosmological setups where the
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cutoff is the horizon scale. For simplicity in what follows we will consider
sytems with global rather than gauge symmetry breaking.

The above picture of string formation when regions of the size of the
horizon at the phase transition become causally connected, is characteristic of
systems undergoing a second order phase transition ([10], see [11] for a recent
discussion). In systems undergoing first order phase transitions, vortices can
form by the merging of expanding vacuum bubbles with scalar field phases
such that the whole vacuum manifold is covered after the bubble collision and
phase interpolationt;. Consider for example an area AA of a two dimensional
system undergoing a first order phase transition during a time interval AT
There are three basic conditions that need to be satisfied for a vortex to form
within the area AA during the time AT

1. The nucleation of at least three bubbles must take place during AT.

2. The nucleated bubbles must have phases such that geodesic interpola-
tion leads to complete coverage of the vacuum manifold S*.

3. The initial geometric configuration of the three nucleated bubbles must
be such that the collision of all three bubbles occurs before the phase
interpolation process can spoil the previous condition.

Thus, the probability for a vortex to form within AA during the time interval
AT may be written as

Piot(AA, AT) = B*Pypase(B)S(B.v) (2)

where B = T AA}):‘}) AT is the probability for a true vacuum bubble of area
Apyp to form within AA during time AT, P,p.(B) is the probability that
a geodesic interpolation of the bubble phases completely covers the vacuum
manifold. The dependence on the probability B exists because Pppase(B) is
larger for clustered defects and therefore it increases with B. The suppression
factor S(B,v) depends on bubble formation probability and the bubble wall
expansion velocity v, and is the probability that the initial configuration of
bubbles will be such that the third condition is satisfied.

The factor Pypese(B) has been calculated in previous studies and found

to be between 0.25 and 0.42 depending on the number of clustered vortices.

'Subcritical bubbles [[[2] can also play a minor role in vortex formation [[[3] but those
effects are ignored within our approximation



One of the main goals of this work is to find the suppression factor S(B,v) for
relativistically expanding bubbles (v ~ 1). The case when bubbles expand
in the presence of plasma [14] (v < 1) is significantly more complicated [15]
and will be included in a separate publication[1]].

In the next section we derive and solve numerically (and analytically in
the thin bubble wall limit) the instanton equations for bubble formation.
We use a simple scalar field potential with vacuum manifold S* describing a
first order phase transition. The obtained scalar field configurations are then
evolved by using a numerical simulation based on a second order accurate
leapfrog algorithm [i17]. We first focus on the bubble interactions and study
their dependence on the phase difference between the two bubbles, both
numerically and in the context of a simple analytic model. After justifying
analytically the numerically observed existence of long lived states of repelling
walls in the limit of large phase difference, we show that no metastable states
exist in the model considered. Thus all colliding bubbles eventually merge
and the existence of metastable embedded walls need not be a consideration
for studying vortex formation. The formation of relativistic phase waves after
bubble collisions is also seen in our simulations, confirming expectations from
previous studies.

In section 3, we focus on the probability of vortex formation during three
bubble collisions. We first briefly discuss the factor Pprqse(B) and show how
can its dependence on the vacuum decay rate I', which has been ignored
in most previous studies, be used to explain previous numerical results[13]
that seemed puzzling at the time of their derivation. We then focus on the
geometric suppression factor S(B,v ~ 1) and first derive the geometrical
conditions under which the vortex formation is suppressed. These conditions
are then tested by using dynamical simulations of three bubble collisions, and
a Monte Carlo simulation is constructed based on these conditions to obtain
the dependence of the suppression factor S on the mean interbubble distance
and therefore on the bubble formation probability B. Finally, in section 4
we conclude and briefly discuss extensions of this work that are currently in
progress



2 Bubble evolution and interactions

Consider a complex scalar field ® = |®|e™®, in a (2+1)-dimensional space-
time, whose dynamics is determined by the Lagrangian (i) and a symmetry-
breaking potential

2
v =20y~ Soop 3)
with € > 0 (Fig. 1).

The false vacuum (¢ = 0) of the potential (3) decays via bubble nucle-
ation to the true vacuuum (|®| = on=03(3+ e+ /(3 +¢€)? — 8)). The two
dimensional field configurations of the bubbles nucleated during this first
order phase transition can be obtained [1§] (see also [1Y] for a review) by

solving the Euclidean field equations

0 200 V(D))
o7 oo T a9 @)

with p* = |Z]? + 7%, 7 being euclidean time. The initial configuration of
the field after tunneling has therefore an O(3) symmetry. This symmetry of
the initial bubbles will become O(2+1) symmetry in Minkowski spacetime,
where p? = |7|? — t%. Solutions satisfy the boundary conditions

0
¢ —0as p— oo and 8—¢—>0 as p—0 (5)
p
Analytic solutions to (4) can be found in the so-called thin wall approxima-
tion, i.e. for € < 1, when the energy difference between the minima is much
smaller than the height of the potential barrier. For the potential (3), the
thin-wall solution is of the form [20)]

Vo )1 (©)

o
o =2]1- VA% (-
|D| 2[ tanh( 5 (p—R,)

where R, = 1/(v/Aoe) is the bubble’s initial radius, found by minimizing the
total energy.

In the general, or thick-wall case, solutions to (4) with the boundary
conditions (%) can be obtained numerically using a relaxation technique [i17].
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An arbitrary constant phase is then asigned in the interior of each bubble
and the resulting configurations are evolved by solving the dynamical field
equations

. 1
—Vip=—— 7
) 9 (7)
where the dimensionless variables
p=®/c, T=Xm, and t=tm (8)

with m = v/Ao, were used. For this part of the code, a second order leapfrog
scheme [17] was implemented on a 400x400 lattice, using as a reference the
algorithm of Ref. [G]. Energy was conserved in all simulations to within 5%
for the evolution timescales.

Defining the bubble walls as p = R,, we see that the O(3+1) symmetry
forces the bubbles to expand, approaching the speed of light on a timescale
determined by the initial radius R, (|Tpuw|®> = R% + t?). Because of Lorentz
contraction, thick-wall bubbles rapidly become thin-walled ones. As a con-
sequence, interactions between bubbles occur almost always in the thin-wall
regime, but we have kept thick-wall bubbles as initial conditions for our sim-
ulations for generality. For the figures presented, we have used € = 0.8 unless
specified otherwise.

It is evident from the simulations that the two-bubble interactions are
strongly influenced by the difference between the field phases. Walls of bub-
bles with phase differences Aa ~ 7 tend to repell each other at short dis-
tances, thus delaying the time of merging of the walls. As bubbles approach,
this causes the walls to separate and come in contact again, producing an
oscillating false-vacuum wall, as can be seen in Fig. 2. This domain wall
eventually decays, its lifetime depending on the phase difference. The effect
is clearly observed when Aa < 0.97. For phase differences of Aa ~ 7, we
have found lifetimes of 10, (in the dimensionless units of Eq. (8)). Points in
the wall located in the line joining the bubble’s center oscillate with a period
T ~ 4 (e =0.8). Notice that this oscillatory state occurs before the bubbles
merge, and is not to be confused with the oscillations of the field’s magni-
tude that occur during bubble merging and after the phase interpolation has
occured, as reported in [21] and [24]. The origin of the effect in this case is
the balance between the repulsive force originating from the phase difference
between colliding bubbles and the attractive force of the scalar field poten-
tial. On the other hand, in the oscillations discussed in Refs. [21] and [22]
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only the attractive potential force is relevant since the phase difference on
opposite sides of the oscillating false vacuum is zero.

To better understand the numerically observed long lived oscillating states
we consider the problem in the planar approximation and write the equations
of motion of bubble walls located at © = ££(¢) as

- ow
08 = o (9)

where ¢ is the mass per unit area of the wall, and W the static interaction
energy between the walls, per unit area. Writing the field as ¢ = |¢|e™®, we
have (primes denoting derivatives with respect to the spatial coordinate)

W:/_idxl“ﬂ/) + 12 ;o/) +V(9) (10)

As a first approximation, consider V(¢), |¢| and |¢|" as constants in the region
between the bubble walls and o/ = A«a/2¢. The force between the walls will
" 6f2(Aa)?
. . ol* (A

F~=V(p) - (|¢')*+ T (11)
where ¢ and ¢’ are close but not excactly equal to zero. That is, the difference
in phases produces a repulsive term dominating at short distances. This
simple picture can be improved by considering the total field configuration
as a sum of two bubble configurations, ¢ = |@|e’®, with |¢| approximated by
the sum of two thin-wall bubbles

9 = 2 [1+tcmh (xT_ﬁﬂ +7 [1—tanh (”2%)1 (12)

and o = Aa/2¢. The resulting potential energy W is plotted in Fig. 3 for
different values of A« and ¢, as a function of £&. Reducing € has the effect
of reducing the false vacuum potential energy, allowing the repulsive term to
dominate at greater distances. The effect of increasing A« is that of displac-
ing the minimum of the potential to higher values of £&. The approximation
is expected to be valid only for € < 1 i.e. before the bubbles begin to merge.
Our simulations have shown that the gradient is actually locally time depen-
dent and the initially binding potential of Fig. 3 eventually gets dominated
by the attractive terms as the phase gradient decreases locally.
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The existence of these oscillatory states leads naturally to the question of
existence of “embbedded” meta-stable domain walls for this potential. Such
domain walls would be static solutions to the field equations

"n__ 2 8_‘/
o'~ @l = o
o/’—i—|%||¢|'o/ ~ 0 (13)

with boundary conditions ¢ — 0 as ¢ — 0; ¢ — on for x — oco. A simple
asymptotic analysis suffices to prove that there is no solution to (13) satis-
fying the boundary conditions. As z — 0, we can always write |¢| = Cypa?,
a = C,2°. However, inserting this in (13) we obtain
A e, - (14)
2 « 4
So the asymptotic form of the equations is not satisfied for a real coefficient
C,, and therefore the solution with the required boundary conditions does
not exist. Thus the only possible domain wall occurs for Aa = w, where the
situation is analogous to that of a real field. Then Eqgs. (13) become

n_ OV

with the boundary conditions ¢ = 4+on at *+ — *oo, and ¢ = 0 at x = 0.
The solutions are the domain walls in this potential. For € nonzero, we can
see that its existence is guaranteed by noting, as usual, that the problem is
analogous to that of a particle moving in the potential —V'(¢), with the field
representing the particle’s position and the spatial coordinate interpreted
as a time coordinate. The “particle” is energetically allowed to start from
r = 4on at t = —oco , and arrive at x = —on at t = +o00. This is not the
case when € = 0, and then only solitons that go from x = +on to x = 0 are
possible. But as we have seen, even in the case where this domain wall does
exist, the asymptotic analysis above means that it is unstable under small
variations of A« (a static solution does not exist for Ao # 7). As discussed
above this was also verified by our simulations.

After the two bubbles merge, the situation is the one already studied
numerically in [21] and analytically in [22]. A phase wave is generated in

(15)
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the contact point, and expands inside the bubbles with the speed of light,
interpolating between the original phases. The field magnitude oscillates in
the region of contact, with amplitude that depends in the phase difference,
this time being inversely proportional: a greater phase difference will result
in a more energetic phase wave, that carries away the wall’s energy more
efficiently thus dissipating the vaccum oscillations rapidly. These oscillations
however do not affect the phase interpolation: the phase waves are produced
as soon as the interiors of the bubbles come into contact, and escape at light
speed.

3 Vortex Formation

We turn now to discuss the probability of vortex formation in a three-bubble
collision. As noted in the introduction, the probability of forming three bub-
bles in an area AA within a period of time AT is B3. In order to form
a vortex, the phase of these three bubbles must be distributed so that the
interpolation following collision leads to complete coverage of the vacuum
manifold (condition(2)). The probability for this to happen can be esti-
mated as follows [§]: Consider a triangular lattice in a 2d physical space and
asign a random phase to each point on the lattice. The question is What s
the probability that a vortex lies within a given triangle? The mean phase
difference of two neighbouring lattice points of a triangle is clearly 27 /4.
In order that a vortex forms in that triangle, the whole vacuum manifold
must be covered by interpolating the phases of the three lattice points and
therefore the phase of the third lattice point of the triangle must lie on the
opposite part of the phase circle. Thus, on the average, the phase of the third
lattice point should be in a range of 27 /4. This will happen with probability
1/4. Thus, the probability for forming an isolated vortex in physical space
is 1/4. In realistic cases however vortices do not form isolated but in vortex
antivortex clusters especially when the vacuum decay rate is high. A very
relevant question therefore is: What is the probability for forming a vortex in
a vortex antivorter cluster?. The probability py_ for forming an antivortex
next to an already formed vortex is larger than the probability for forming
an isolated vortex. The reason is that the mean phase difference between
neighboring lattice points in a vortex surrounding triangle is not 27 /4 but
27 /3 and therefore to form an antivortex next to a vortex we only need that



the fourth lattice point be in a phase range 27/3. So py— = 1/3. Thus, the
probability for having ¢ antivortices around a vortex is

p=(f)eera-poyp (16)

and the probability per defect in clusters of four or larger is pi/ * = 0.43 which
is significantly larger than the naively obtained result of 0.25.

This effect of clustering explains the result found in Ref. [13], where a
simulation of the vortex formation process is done by placing random-phase
bubbles in a 2-dimensional lattice, and allowing them to evolve and collide.
The author finds a probability of vortex and antivortex formation of 0.42
(10 vortices and antivortices formed after the nucleation of 23 closely packed
bubbles), instead of the expected 0.25, and atributes his result to unknown
dynamical effects. However, if we notice that the chosen rate of nucleation
produces a highly packed system, and calculate the probability using (18),
we obtain 0.43, in agreement with the simulations.

The dynamical delay of merging due to the phase repulsive potential,
discussed in the previous section, does not affect vortex formation. The phase
interpolation will occur eventually, and the crucial factor is not the time it
takes, but the spatial range over wich the bubbles overlap, wich determines
the spatial sectors where phases will interpolate. A phase repulsion (which in
any case occurs for Aa extremely close to 7, an unlikely situation if the phases
are required to be distributed in the vacuum manifold as in condition (1) of
the Introduction), can only delay the interpolation event. In the formation
of vortices, it is only important to know if (not when) the phases of each of
the three bubble pairs will geodesically interpolate.

In addition, for the case of bubbles with relativistic velocities (i.e., when
the effects of the plasma are negligible), we have both the bubble walls and
the phases propagating at v ~ 1. This means that the phase waves can never
reach the bubble walls leading to a single new bubble with interpolated phase,
before the third bubble has time to reach the two collided ones.

Thus, in the absence of plasma, the important ingredient needed to find
the probability of vortex formation is the initial geometric distribution and
nucleation times of the colliding bubbles. In the case when the effects of
plasma are ignored (v =~ 1) simulations show (Fig. 4) that we can picture the
bubbles as circles, even when the merging has occurred, the phase wavefront
continuing the circle formed by the walls.



For a vortex to form, then, it is easy to see that condition (3) of section 1 is
satisfied iff the three expanding circles have at least one common intersection
point. Thus, for example, the extreme case of three bubbles of the same size
(i.e., nucleated at the same time), but with centers located along a straight
line, will not form a vortex. If we allow for different nucleation times, bubbles
will interact having different sizes, and then even non-aligned configurations
will not lead to a vortex (Fig. 5). Notice that in contrast to what has been
stated in previous studies [22] it is in general not possible to select a frame
where all bubbles nucleate at the same time. The condition of simultaneity of
three events is that there is a space-like planar surface that goes through these
events. This is not always possible (consider for example the special case of
three events on a straight line i.e. effectively in one spatial dimension). Even
if it was possible to select a frame of simultaneity for three events in 2 + 1
dimensions it would not be appropriate to do so in a Monte Carlo simulation
as this artificial selection of a frame would introduce a bias in the measured
probabilities. We therefore have used different times for the nucleation of
each bubble.

The equation of motion for the bubble walls is dictated by the initial
configuration, as stated in the previous section, so that the radius of a bubble
nucleated at time ¢ = At; will be r;(t)? = R24(t—At;)?, the subindex i going
from 1 to 3. Given the positions (z;, y;) and nucleation times of three bubbles,
one has only to solve the system of three equations for the intersection point
and time

(= 2:)* + (y —yi)* = R; + (t — At,)? (17)

A vortex forms if the solution to the system is real, positive and finite.

As a test for this condition, we have checked using the numerical simula-
tion described in section 2 the formation of vortices and predicted formation
times for several configurations. The geometrical condition of circle intersec-
tion was found to be accurate in all cases, confirming the hypothesis that
dynamical effects can be ignored in the case of relativistically expanding
bubbles.

Having tested the geometric model with dynamical simulations, a sup-
pression factor for vortex formation can now be found using a Monte Carlo
simulation. Random position and nucleation times were assigned for bubbles
inside an area AA = (\R,/2)? and configurations were subject to the re-
quirement that bubbles do not form in an overlapping state. After rescaling
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the considered area such that R, = 1, we constructed 500 randomly chosen
three-bubble geometrical configurations. The system (17) was solved in each
case and the number of cases with no triple intersection was counted. We
defined the ratio of the number of cases where triple intersection occured
over the total number of cases as the suppression factor for vortex formation.
This is the factor S(B,v ~ 1) of Eq. 2. A plot of S vs A ~ B is shown in
Fig. 6.

Clearly the geometric suppression factor is less important for high nucle-
ation rate (small \) but it is not negligible for low nucleation rates.

4 Conclusion

We have studied the basic conditions that are needed for vortex formation by
the merging of vacuum bubbles nucleated during first order phase transitions.
There are three such conditions which include the existence of three colliding
vacuum bubbles, the complete coverage of the vacuum manifold by geodesic
interpolation of the bubble phases, and the existence of a triple collision point
for the merging of the three circles that describe the relativistic expansion of
the bubbles. The probability that each condition is satisfied was obtained and
the result was compared with previous studies. In particular the existence of
a triple collision point during the evolution of three colliding bubbles occurs
with probability approximatelly 92% for low vacuum decay rate. Such a
suppression of defect formation rate is not expected to modify in any major
way cosmological models based on cosmic strings.

We have considered the case of relativistically expanding bubbles and
have therefore neglected the friction effects of plasma particles surrounding
the expanding vacuum bubbles. Such particles, being massless in the false
vacuum but massive in the true vacuum (inside the bubble), are expected to
scatter on the bubble walls and decelerate them to non-relativistic velocities.
In models where the effects of plasma are important enough to lead to slowly
expanding bubbles, our analysis gives only an upper bound to the geometric
suppression factor S(B,v) which is expected to rapidly drop as the bubble
wall velocity v decreases. Indeed, for small bubble wall velocity v, the in-
terpolating phase front propagating always relativistically inside the bubbles
after the first collision, is more efficient in equilibrating the phases to the
interpolated value before the third bubble reaches the bubbles that collided
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first. Thus the formation of the vortex can be avoided much more efficiently.
The study of the dependence of S on v in the presence of plasma requires the
detailed numerical simulation of the effects of the plasma, and the construc-
tion of a generalized geometrical model and Monte Carlo simulation based
on these effects. That work is currently in progress[il3].
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