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Covariant Duality Symmetric Actions
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Abstract

A manifestly Lorentz and diffeomorphism invariant form for the abelian gauge

field action with local duality symmetry of Schwarz and Sen is given. Some of

the underlying symmetries of the covariant action are further considered. The

Noether conserved charge under continuous local duality rotations is found.

The covariant couplings with gravity and the axidilaton field are discussed.
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The equations of motion of the four dimensional low energy effective field theory for the

bosonic sector of the heterotic string, which can be obtained from dimensional reduction of

N = 1 supergravity theory coupled to gauge fields in ten dimensions [1], are invariant under

the SL(2, R) non linear duality transformations of the massless fields involved. This has been

used to find new interesting black hole solutions carrying both electric and magnetic charges

in string theory [2]. Actually, SL(2, Z) a subgroup of SL(2, R), has been conjectured to be an

exact symmetry of the full string theory [3]. This duality symmetry, called S-duality, which

also inverts the coupling constant, together with the ”target space duality” or T-duality,

have brought out new perspectives to the understanding of non perturbative features in

string theory.

Recently, Schwarz and Sen [4] have developed a method which permits to achieve

SL(2, R) duality symmetry at the level of the action by introducing extra auxiliary gauge

fields. However, in their formulation, explicit Lorentz and general coordinate invariances are

missing. It is only after eliminating the auxiliary fields through their equations of motion

that the usual transformation rules for the remaining fields in a specific gauge are recovered.

In this paper we will consider the manifestly Lorentz, gauge and diffeomorphism invariant

generalizations of the local duality symmetric actions of Schwarz and Sen for abelian fields.

Furthermore, some of the underlying symmetries of the proposed actions are discussed and

the connection with previous works is established.

The simplest model of a duality symmetric action presented in Ref. [4], deals with an

appealing generalization of the Maxwell electromagnetic theory in which two abelian gauge

fields Aα
m (α = 1, 2) are considered. Let us briefly discuss the main ideas. The non-covariant

action proposed by Schwarz and Sen is

ISS = −1

2

∫
d4x(BiαLαβEβ

i +BiαBα
i ), (1)

where

Eα
i = F α

oi = ∂oA
α
i − ∂iAα

o , Biα =
1

2
εijkF α

jk = εijk∂jA
α
k , (2)
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and

L =

 0 1

−1 0

 , (3)

which has the following properties

detL = 1, LT = L−1, SLST = L, (4)

where S is a SL(2, R) matrix. The action is invariant under the following gauge transfor-

mations

δAα
0 = Ψα, δAα

i = ∂iΛ
α (5)

and the discrete duality transformations

Aα
m→ LαβAβ

m. (6)

At the classical level, equivalence with the usual Maxwell action in the temporal gauge

Aα
0 = 0 follows after elimination of the fields A2

i using their equations of motion. The

duality transformation Eq. (6) reduces, on shell, to the well known transformation ~E →
~B and ~B → − ~E. It is worth recalling that the fields Aα

0 do not play the usual role of

Lagrange multipliers and that the Gauss law constraint is consequence of ∂iBαi = 0. This

equivalence holds also at the quantum level as has been shown in Ref. [5], where the canonical

quantization procedure reveals the presence of second class constraints which may lead to

serious problems in supergravity models.

In the following we will consider the action

I = −1

2

∫
d4x (un FαmnΦα

mpu
p + ΛαmpΦα

mp), (7)

where

Φα
mp ≡ Fαmp + LαβF β

pm, (8)

u is an otherwise arbitrary vector field that satisfies
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umu
m = −1, (9)

F and F are the gauge invariant field strengths and their duals

F α
mn = ∂mA

α
n − ∂nAα

m, Fαmn =
1

2
εmnpqF α

pq, (10)

and Λ is an auxiliary antisymmetric field. Note that Φ is a self-dual tensor, i.e.,

Φα
mn ≡

1

2
εmnpqLαβΦβpq (11)

and hence Λ is an anti self-dual tensor

Λα
mn ≡ −

1

2
εmnpqLαβΛβpq. (12)

Our conventions are ηmn = diag(−1, 1, 1, 1), εijk = ε0ijk and ε0123 = 1. Clearly, the action

Eq.(7) is Lorentz and gauge invariant and manifestly invariant under the duality transfor-

mations provided Λ transforms as follows:

Λα
mn → LαβΛβ

mn. (13)

The equations of motion obtained from the action Eq.(7) are:

δ

δAα
m

I = 0 ⇒ Gαm ≡ εmnpq∂p[unu
rΦα

qr − Λα
nq] = 0, (14)

δ

δun
I = 0 ⇒ Hn ≡ FαmnΦαmpup + FαmpΦαmnup = 0, (15)

and

δ

δΛα
mn

I = 0 ⇒ Φα
mn = 0. (16)

Note that ∂mΦαmn = 0 implies ∂mF αmn = 0 which are just the Maxwell equations for the Aα

fields. One can show that Λ = 0 on-shell, i.e. is a non-dynamical variable. After eliminating

one of the two abelian gauge fields (for example A2) with the use of Eq. (16) and taking

into account that unupF1mnF 2
pm = −unupF2mnF 1

pm up to a total divergence we obtain the

gauge invariant Maxwell covariant action I = −1
4

∫
d4xF 1

mnF
1mn for the other gauge field.
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Contact with the non-covariant formulation of Schwarz and Sen can be made as follows.

Our action has an additional gauge symmetry:

δum = εm(x), δΛα
mn = −1

2
[εr(x)Fαmrun − urFαmrεn(x)− (m↔ n)], (17)

while the vector fields Aα
m are inert under these transformations. This symmetry allows one

to fix the vector field u to a constant vector, e.g. um = −δ0
m. With this choice the action of

Schwarz and Sen is obtained.

The action Eq. (7) is not only invariant under the discrete duality transformations;

actually, it is invariant under the continuous duality rotations

Aαm→ DαβAβm, (18)

where D is a SO(2, R) matrix

D =

 cosω sinω

−sinω cosω

 , (19)

which implies the existence of conserved currents. If we consider the infinitesimal duality

rotations

δAα
m = δωLαβAβ

m, (20)

the Noether conserved current associated to this invariance is

jm = −1

2
FαmnAα

n, (21)

which satisfies ∂mjm = 0 on shell.This current is not gauge invariant, but it changes under

gauge transformations by the divergence of an antisymmetric tensor. The corresponding

conserved generator is

G = −1

4

∫
d3xεijkF α

jkA
α
i , (22)

which can be rewritten as
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G =
∫
d3xAα

i LαβΠβi, (23)

where Πβi = −1
2
LαβBiα are the canonical conjugate momenta. The integrand in Eq. (22)

is just the sum of two abelian Chern-Simons 3-form and G as given by this equation is

gauge invariant. Note that, in spite of the topological nature of the Chern-Simons forms,

the generator Eq. (22) is a genuine Noether charge. Hence the Chern-Simons 3-forms

constructed out with the fiels Aα
i are the generators of the continuous duality rotations, i.e.,

δAα
i = δω{G,Aα

i }. At this stage, Eq. (16) can be used to eliminate A2
m from Eq. (22) to

obtain

G =
1

2

∫
d3x(− ~A · ∇ × ~A+ ~E · ∇−2∇× ~E), (24)

which turns out to be the generator of the non-local duality transformations in the usual

canonical Maxwell theory [6].

Starting out with the covariant action the coupling with gravity keeping the duality

invariance is now straighforward. Following the minimal coupling prescription we have

Ic = −1

2

∫
d4x
√
−g (unFαmnΦβ

pmg
pquq + gmngpqΛα

mpΦ
α
nq), (25)

where now

Fαmn =
1

2
√−gε

mnpqF α
pq. (26)

This action is manifestly invariant under general coordinate transformations and manifestly

gauge and duality rotations invariant. It is also invariant under conformal transformations

gmn → Ω2gmn, F α
mn,→ F α

mn, Λα
mn → Λα

mn (27)

provided

um → Ωum. (28)

The constraint imposed by Λ turns out to be the same as in Eq. (16). This can be used to

eliminate the field A2
m and the covariant Maxwell action in curved space-time is obtained.
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Furthermore, a traceless on shell energy-momentum tensor can be derived through the usual

definition Tmn ≡ 2√−g
δIc
δgmn

, in agreement with the conformal invariance of the action. ¿From

this and after eliminating the fieldA2
m using Eq. (16), the Maxwell energy-momentum tensor

is obtained. For um = −nδ0
m it follows from Eq. (9) that n2 = (−g00)−1 and contact with

the usual ADM slicing of the manifold [7] is made. In this way, the local duality invariant

action of Schwarz and Sen in curved-space [4]is recovered.

Finally, let us introduce the complex scalar axidilaton field λ ≡ λ1 + iλ2, which combines

two entities of stringy nature: the dilaton λ2 = exp{−2φ} and the axion λ1 = ψ defined

through the equations of motion of the antisymmetric two-form Bmn in four dimensions.

Introducing the symmetric SL(2, R) matrix [4]

M =
1

λ2

 1 λ1

λ1 |λ|2

 , (29)

the covariant action for the coupling between the axidilaton and the gauge fields Aα
m in a

curved space is

Ica = −1
2

∫
d4x
√−g [unFαmn(LαβF β

pm + (LTML)αβFβmp)gpquq

+gmngpqΛα
mp(LαβF β

nq + (LTML)αβFβqn)],
(30)

which is invariant under the SL(2, R) transformations

M→ wMwT , Aα
m → (w)αβA

β
m. (31)

In fact, after eliminating the field A2
m through the corresponding duality condition which

arise from the constraint imposed by Λ

F2mn = λ2F
1nm + λ1F1mn, (32)

the result is

Ica = −1

4

∫
d4x
√
−g F 1

mn(λ2F
1mn + λ1F1mn), (33)

which exhibits the standard coupling of the axidilaton field with an abelian gauge field in a

curved space.
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Summarizing, introducing auxiliary fields, we have seen that local duality transforma-

tions in the sense of Schwarz and Sen can be implemented in a manifestly Lorentz invariant

way as a symmetry of the action, the field Λ playing the role of a multiplier whose associ-

ated constraint turns out to be the covariant duality condition. The equivalence with the

covariant Maxwell theory follows after solving this constraint in order to eliminate one of

the gauge fields from the original action. The connection with the non-covariant approach is

also established as a result of an additional symmetry which permits to fix u appropriately.

The generator for the continuous duality transformations was found to be given in terms of

Chern-Simons 3-forms. From the proposed covariant action, the coupling with gravity was

obtained in a straighforward way. In addition, the presence of the axidilaton field coupled

with the abelian gauge fields in a curved space was considered.

We kindly thank Hector Rago, Umberto Percoco and Alvaro Restuccia for fruitful discus-

sions and constant interest in this work. This paper is dedicated to the memory of Professor

Carlos Aragone.
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