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Close to the edge: hierarchy in a double braneworld
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We show that the hierarchy between the Planck and the weak scales can follow from the tendency
of gravitons and fermions to localize at different edges of a thick double wall embedded in an AdS5

spacetime without reflection symmetry. This double wall is a stable BPS thick-wall solution with two
sub-walls located at its edges; fermions are coupled to the scalar field through Yukawa interactions,
but the lack of reflection symmetry forces them to be localized in one of the sub-walls. We show that
the graviton zero-mode wavefunction is suppressed in the fermion edge by an exponential function
of the distance between the sub-walls, and that the massive modes decouple so that Newtonian
gravity is recuperated.

PACS numbers: 04.20.-q, 11.27.+d 04.50.+h

I. INTRODUCTION

The idea of confining our four-dimensional Universe
inside a topological defect embedded in a higher dimen-
sional spacetime dates at least as far back as the sugges-
tion of Rubakov and Shaposhnikov [1] (see also [2]) that
we could be living inside a domain wall. They showed
that fermions (of one chirality) can be confined to the wall
by their Yukawa interactions with the scalar field. Do-
main walls are vacuum configurations that are topolog-
ically protected and thus stable, but their gravitational
interactions cannot be ignored. This became evident af-
ter the work of Randall and Sundrum [3], in which they
showed that the five-dimensional metric produced by an
infinitely thin brane is enough to ensure that Newtonian
gravity is reproduced on the brane.

Actually, the RS brane does not even have to be a
true domain wall, in the sense that no scalar field is
needed for the effect. One just has to ensure that the
bulk spacetime is Anti-De Sitter (AdS), and on the brane
the four-dimensional cosmological constant is set to zero.
The natural question is then whether fermions can also
benefit from this effect, allowing us to live in a domain
wall just because of its self-gravitation. The answer is
on the negative, as shown in [4] fermion modes behave
exactly opposite as the gravitons, the warp factor forc-
ing them to escape from the wall into the bulk. If one
wants matter to be confined to the wall, it is neces-
sary to combine Rubakov-Shaposhnikov with Randall-
Sundrum, i.e., to consider a real domain wall, made
up of the vacuum expectation value of a scalar field
that breaks a discrete symmetry, take into account its
gravitational self-interactions, and make it couple to the
fermions. This amounts to solve the five-dimensional
coupled Einstein-Klein-Gordon system for an adequate
potential, and many such solutions can be found in the
literature. Among them, BPS walls, those where the
four-dimensional cosmological constant is set to zero,
are the most appealing “thick brane” generalizations of
the Randall-Sundrum scenario. BPS solutions to the
Einstein-Klein-Gordon system can be found by means of

an auxiliary function of the scalar field, the fake super-
potential of the first-order formalism of [5, 6, 7].

The fact that fermion zero mode localization requires
exactly the inverse warp factor as graviton zero mode lo-
calization, is used in this paper to provide a rationale for
the large hierarchy between the Planck and weak scales
in some particular thick wall solutions. These solutions
are a straightforward generalization of the simplest BPS
wall which represents a smoothing of the scenario of [3],
found by Gremm [8]. The generalization produces an
asymmetric double wall system: a BPS wall with a sub-
structure consisting of two sub-wall located at its edges,
but with different bulk cosmological constants on both
sides. As a consequence of the asymmetry, fermions cou-
pled to the scalar field are forced by the warp factor to
localize on one of the sub-walls, the fermion sub-wall.
On the other hand, the graviton zero-mode wavefunction
is suppressed in the fermion sub-wall by an exponential
function of the wall’s thickness, i.e. the distance between
the sub-walls, and gravitons localize in the opposite sub-
wall, the Planck sub-wall. This allows one to provide a
large hierarchy between the effective Planck masses on
both sub-walls, as proposed by Randall and Sundrum in
their earlier work [11] but with no orbifold geometries
and no negative tension branes.

Attempts to achieve suppressed mass scales with two
positive tension branes, the so-called Lykken-Randall
scenario [12], are found in the literature [13]. To our
knowledge, however, all of them require some form of ra-
dion field in order to stabilize the extra dimension [14].
In our case, the stability of the two wall system stems
from their topological properties, they are just a special
kind of BPS walls. The fact that no compactification of
the bulk coordinate is required allows us to reproduce
Newtonian gravity on the walls as in [3], while keeping a
large mass hierarchy as in [11]. Moreover, the fermions
are not arbitrarily assumed to be located in a different
wall as the gravitons, they do so as a consequence of
spacetime being warped. In contrast with the scenario of
[12], the fermion sub-wall is not a “probe” brane, and it
has a non-negligible tension.
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The paper is organized as follows. In the next Sec-
tion we give an overview of the mechanism that provides
stable, asymmetric double walls from a known BPS so-
lution, and how fermions get localized on the brane with
larger Planck mass. The following section is dedicated
to explicitly construct these solutions from the simplest
known BPS wall of [8], to find the graviton and fermion
zero modes, and to calculate the Newtonian potential.

II. DOUBLE WALLS AND HIERARCHY

The so-called BPS double walls are solutions to the
5-dimensional Einstein-scalar field set of equations that
satisfy the BPS condition. As such, for the line element
written in “proper length” coordinates

ds2 = e2A(ξ)ηµνdx
µdxν + dξ2 (1)

they can be generated from a “fake superpotential”W (φ)
[5, 6, 7] by solving the BPS equations for the scalar field,
warp factor and scalar potential

φ′ = 3
dW

dφ

A′ = −W

V (φ) =
3

2

[

3

(

dW

dφ

)2

− 4W 2

]

(2)

where prime denotes derivative with respect to the bulk
coordinate ξ. For W (φ) given by

W (φ) = α[sin(φ/φ0)]
2−1/s, (3)

with α and φ0 real constants, solutions to (2) were found
in [9] representing a family of double branes parametrized
by an odd integer s > 1 that interpolate between AdS5

spacetimes. For s = 1, this is just the brane of Ref. [8],
i.e. a regularization of the infinitely-thin RS brane, but
for s > 1 the wall splits in two in a well defined sense: the
energy density has two maxima as can be seen in Fig. 1.
The fact that exponentiating the superpotential for a sin-
gle wall gives rise to double systems was also used in [10]
to construct BPS double walls. The topological charge is
given by the asymptotic values of the superpotential

QT = W (+∞) −W (−∞) = 2α (4)

and is independent of s, i.e., it is the same as in the single
wall.

We have then a stable wall with two sub-walls, in which
the thickness of the sub-walls goes to zero as s → ∞,
while the separation between them remains fixed. The
spacetime far away of the wall is AdS5 with the same cos-
mological constant (Λ±) on both sides, while the space-
time in between the sub-branes is nearly flat, i.e.

Λ± = −6α2, Λin = 0 (5)

The gravitational zero modes are calculated as usual

ψg
0 = Ng e

2A(ξ) (6)

with Ng a normalization factor. Because the spacetime
between the two sub-branes is nearly flat, the zero modes
are not peaked at ξ = 0, but instead distribute smoothly
over the whole system [15], as seen in Fig. 1. A similar
behavior has been found for other BPS double branes
[10].

Fermion modes of a given chirality can also be local-
ized, by adding as usual a Yukawa coupling λ with the
scalar field [4]. One obtains

ψf
0 (ξ) ∼ e−2A(ξ)e−λ

∫

φ(ξ)dξ (7)

The fermion zero modes for the system considered have
been calculated in [16], and can be seen in Fig. 1. Details
of the calculation are given in the next section, but the
general behavior will suffice for the time being.

Now, suppose the superpotential is shifted by a posi-
tive constant

W̃ = W + β (8)

According to (2), we will have the same solution for the
scalar field. Furthermore, since for the double wall (2,3),
the extrema of V (φ) are the same ones ofW (φ), it follows

that the extrema of the new scalar potential Ṽ (φ) are
the same ones of V (φ), namely φ = 0 and φ = ±πφ0/2.
Hence, the two sub-walls are situated at the same place
as before. Notice that the topological charge is the same.
However, the cosmological constants are now different at
the two sides of the double wall and the spacetime in
between the sub-walls is no longer flat, one has

Λ− = −6(α− β)2, Λ+ = −6(α+ β)2, Λin = −6β2

(9)
Accordingly, the new warp factor is from (2)

Ã(ξ) = A(ξ) − βξ (10)

As long as we keep β < α, the gravitational zero modes
remain localized, but now they are exponentially sup-
pressed for ξ > 0

ψ̃g
0 ∼ ψg

0 e
−2βξ (11)

so that the graviton zero-mode function gets shifted to-
wards the region with a smaller cosmological constant,
i.e. with Λ−.

Fermion modes behave in exactly the opposite way,
they are now

ψ̃f
0 ∼ ψf

0 e
2βξ (12)

so that they are shifted towards the larger cosmological
constant region, i.e. with Λ+. In other words, the gravi-
tons are localized on the sub-brane situated at ξ−, hence-
forth the Planck brane, while the fermion zero modes do
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FIG. 1: Energy density (continuous), gravitational zero
mode (dashed) and fermion zero mode (dotted) for the double
branes with α > 0, β = 0, δ = 4, s = 11, λ = 4α, and arbitrary
normalization.
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FIG. 2: Energy density (continuous), gravitational zero
mode (dashed) and fermion zero mode (dotted) for the dou-
ble branes with α > 0, β = 0.8α, δ = 4, s = 11, λ = 4α, and
arbitrary normalization.

the opposite, they live in the opposite sub-brane around
ξ+, the weak brane. The situation is depicted in Fig. 2.

The Planck masses in the Planck brane, MPlanck
Pl , and

in the weak brane, MWeak
Pl , are approximately related by

MPlanck
Pl = MWeak

Pl e−2β∆ (13)

with ∆ the inter-sub-brane separation. Since ∆ here is a
coordinate-dependent quantity, Eq.(13) should be made
precise by calculating and comparing the gravitational
potential on both sub-branes, which we do in the next
section.

As the thickness of the sub-branes approaches zero,
this solution amounts to having a thick domain wall with
two infinitely-thin sub-branes, the Planck brane and the
weak brane, situated at different edges (in the transverse
direction) of the wall. Clearly, the crucial role here is
played by the double-brane solution, for which BPS sta-
bility arguments apply [6].

III. EXPLICIT SOLUTIONS

A. Double branes

Solutions to the system (2) with un-shifted superpo-
tential (3) (i.e. reflection symmetry) have been found

in [9] by switching to the so-called “gauge” coordinates,
where the metric is written as

ds2 = e2A(y)ηµνdx
µdxν + e2H(y)dy2 (14)

The field equations can be integrated to give

H(y) = −
1

2s
ln

[

1 +
(αy

δ

)2s
]

, A(y) = δH(y)

V (φ) = 3α2[sin(φ/φ0)]
2−2/s

[

2s+ 4δ − 1

2δ
cos2(φ/φ0) − 2

]

φ(y) = φ0 arctan
(αy

δ

)s

, φ0 =

√

3δ(2s− 1)

s
(15)

The parameter δ gives the thickness of the wall. For
s = 1, this is just the brane of Ref. [8] and it can be
rigorously shown that the distributional limit δ → 0 gives
the RS spacetime [17]. But for non-zero δ and s > 1, the
energy density has two maxima, as can be seen in Fig. 1.
Other double wall systems have been found in [10] and
[18].

These walls have been studied in detail in a series of
papers, their thin wall limit δ → 0 in [9], localization of
gravity in [15] and of chiral fermion modes in [16]. For
δ = 1, there is a normalizable zero mode and a continu-
ous of massive states that asymptote to plane waves as
y → ±∞. This continuum of modes decouple, in the
sense that they generate small corrections to the New-
tonian potential of the wall, at scales larger than the
fundamental length-scale of the system, α−1.

Let us consider the double domain wall (14, 15) for
s ≫ 1. The separation between the sub-branes, i.e. the
distance between the maxima of the energy density, is
given by

∆ = 2
δ

α

(

s− 1

s+ 2δ

)1/2s

(16)

which behaves as 2δ/α for s≫ 1, while their thickness γ
is approximately given by

γ ∼
1

α

δ

s
ln
(s

δ

)

+O(s−2) (17)

from which follows that γ ∼ 0 for s ≫ 1. Note that
the double wall is lost in the δ → 0 limit [9], as expected
from the fact that the distributional geometry δ → 0 may
be identified with the asymptotic behavior (i.e. far away
from the wall) of the domain wall spacetime [19].

Following [17], the distributional limit s → ∞ of the
Einstein tensor is found to be

lim
s→∞

(Ga
b + Λga

b) =

−3α [δ(y − y+) + δ(y − y−)]
(

∂adtb + ∂b
xidxi

b

)

(18)

with Λ given by

−
Λ

6
=

{

α2, |y| > δ/α

0, |y| < δ/α
(19)
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Hence for s≫ 1 we have two infinitely thin walls located
at y+ = δ/α and y− = −δ/α, with tensions σ+ = σ− =
3α > 0. On the other hand, we find that the limit s→ ∞
of the metric tensor gives the line element

ds2 =











(

δ
αy

)2δ

(−dt2 + dxidxi) +
(

δ
αy

)2

dy2 , |y| > δ/α

−dt2 + dxidxi + dy2 , |y| < δ/α
(20)

and the distributional Einstein tensor (18) turns out to
be the Einstein tensor of the limit metric (20).

B. Asymmetric double branes

Now, shifting the superpotential as in (8) results in a
solution with

H̃(y) = H(y)

Ã(y) = A(y) − βyF(y)

Ṽ (φ) = V (φ) − 6β[β + 2α(sin(φ/φ0))
2−1/s]

φ̃(y) = φ(y) (21)

where F(y) ≡ 2F1[1/2s, 1/2s, 1+1/2s,−(αy/δ)2s] is the
hypergeometric function. For |αy/δ| ≤ 1, i.e. inside
the double brane, and large s, 2F1 ∼ 1 is a very good
approximation, although we have used the exact solution
whenever performing numerical integrations.

The equation for the gravitational zero modes is found
as usual. In the axial gauge hµy = 0, writing the
transverse-traceless part of the metric perturbations hµν

as

hµν = eip·xeH/2ψµν (22)

one obtains
(

−
d2

dy2
+ U(y)

)

ψµν = m2e−2Ã+2Hψµν (23)

with

U(y) = e−2Ã+H/2(e2Ã−H/2)′′ (24)

As usual, in order to get a Schrödinger-like equation, one
must change to conformal coordinates. However, from
(23) we see that the zero mode is normalizable

ψg
0 ∼ e2Ã−H/2 (25)

and since U → 0 at |y| → ∞, there is no gap between
the massless and the massive modes. This can be seen
by writing U in terms of W

U(y) = eH/2(e−H/2)′′ − e2H



6

(

dW̃

dφ

)2

− 4W̃ 2



 (26)

Clearly, shifting W by a constant does not change the
asymptotic behavior of U and the massive modes are

therefore expected to decouple [20]. The zero mode, in
proper length coordinates, is shown in Fig. 2. It follows
that the graviton zero mode gets localized on the sub-
wall located at the edge of the wall close to the region
of smaller AdS5 curvature, thus defining the Planck sub-
wall. A similar localization of the graviton zero mode
on a rather different asymmetric double wall system was
found in [18].

C. Adding fermions

Fermion confinement in the double walls (14,15) was
studied in [16]. In these coordinates, 5-dimensional
spinors coupled to the scalar field by a Yukawa term of
the form

λψ̄ψ φ (27)

give confined chiral fermion modes on the wall

ψf
0 ∼ e−2Ã(y)e−λ

∫

φ(y)eH(y)dy (28)

for sufficiently large λ. It was found in [16] that in general
thin walls require large Yukawa couplings, which in the
asymmetric case are bounded from below by the largest
cosmological constant, in order to confine fermions. For
the double-brane system (21), however, the Yukawa cou-
pling depends also on δ and we get

λ >
2
√

|Λ+|

3π

s
√

δ(s− 1/2)
(29)

Therefore, the Yukawa coupling can be kept at reasonable
values if the thickness of the sub-branes γ is decreased
(recall that γ → 0 for s ≫ 1) while the separation be-
tween them (the brane thickness ∼ δ/α) is increased.

The equation for the fermion zero modes was inte-
grated numerically, and results are given in Fig. 2. As
argued above, the fermion zero modes get located in the
opposite sub-wall to the Planck sub-wall, thus defining
the weak brane.

D. Newtonian potential

In order to have an effective four dimensional gravity
on the weak sub-wall, we should demonstrate that the
massive graviton modes decouple. Before presenting the
results for the double wall system, it is instructive to
consider the case s = 1, a single wall without reflection
symmetry, with different cosmological constants Λ+ and
Λ− on both sides. A similar case was studied in [15] in
the limit of a very small asymmetry. In the general case,
the massive modes in the small m/

√

Λ− approximation
are given by

ψm = κ
m5/2

Λ
5/4
−

[

6m2

Λ−

+

(
√

Λ+

Λ−

− 1

)]−1

(30)
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with κ of order one for any value of the parameters. In
the reflection-symmetric case Λ− = Λ+, this modes give
the well-known contributions to the Newtonian potential
between masses separated by a 4-D distance r propor-
tional to 1/r3. However, in the asymmetric brane the
modes behave as m5/2, and their contributions are pro-
portional to 1/r7, the equivalent of having 6 extra com-
pact dimensions. We expect that the double asymmetric
walls exhibit a similar behavior.

To calculate the contribution of the massless and mas-
sive modes to the Newtonian potential, we switch to con-
formal coordinates

ds2 = e2A(z)
(

−dt2 + dxidxi + dz2
)

(31)

and consider the s → ∞ limit, i.e. the infinitely thin
sub-wall idealization of (21). This limit is not as straight-
forward as (20) for the symmetric case (15), due to the
presence of the hypergeometric function in the warp fac-
tor. However, it can be approximated by

eA(z) =











[

e+βδ/α + (α+ β)(z − z+)
]−1

, z+ < z

[coshβδ/α+ βz]
−1
, z− < z < z+

[

e−βδ/α − (α− β)(z − z−)
]−1

, z < z−
(32)

with z± = ±β−1 sinhβδ/α, 0 < β < α and δ > 0. For
β → 0 we obtain (20), the limit s→ ∞ of the symmetric
double wall (14, 15), written in conformal coordinates.

The Einstein tensor of (31, 32) is given by

Ga
b + Λga

b = −
(

∂adtb + ∂b
xidxi

b

)

[σ+ δ(z − z+) + σ− δ(z − z−)] (33)

with Λ given in each region by (9) and where the sub-
brane tensions are σ+ = 3αe+βδ/α and σ− = 3αe−βδ/α.

Notice that although this resembles the two positive ten-
sion three-branes scenario of [12], in our case the two
branes separate AdS5 slices with different cosmological
constants. Furthermore, the weak brane is not a so-
called “probe” brane since its tension is not small (in
fact, in proper length coordinates both sub-wall tensions
are equal).

Now, writing the transverse-traceless part of the metric
perturbations hµν as

hµν(x, z) = eip·xeA(z)/2ψg
µν(z) (34)

with hµz = 0, one finds that the gravitational modes ψg
µν

satisfy the Schrödinger equation

(

−
d2

dz2
+ VQM

)

ψg
µν(z) = m2ψg

µν(z) (35)

where

VQM =
(

e3A(z)/2
)′′

e−3A(z)/2 (36)

For m2 = 0 the solution is

ψg
0(z) = Ng

0 e
3A(z)/2 (37)

with

Ng
0 =

[

e2βδ/α

2(α− β)
+

e−2βδ/α

2(α+ β)
+

1

β
sinh(2βδ/α)

]−1/2

(38)
The massive modes of (35) are given by

ψg
m(z) = Ng

m



























(k−1
+ + |z − z+|)

1/2
[

Y2(m(k−1
+ + |z − z+|)) + C+J2(m(k−1

+ + |z − z+|))
]

, z+ < z

(k−1
0 + z)1/2

[

AY2(m(k−1
0 + z)) +B J2(m(k−1

0 + z))
]

, z− < z < z+

(k−1
− + |z − z−|)

1/2
[

Y2(m(k−1
− + |z − z−|)) + C−J2(m(k−1

− + |z − z−|))
]

, z < z−

(39)

where Y2 and J2 are the Bessel functions of order two,
k± = (α ± β) exp{∓βδ/α}, k0 = β[cosh(βδ/α)]−1 and
C+, C−, A,B are constants determined by the matching
conditions.

The contribution of the massive modes to the New-
tonian potential can be now calculated by expanding
around masses smaller than the smaller scale of the sys-
tem, which is of order βe−βδ/α (notice that the symmetric
case β = 0 has to be treated separately). The normal-
ized wave functions for the massive modes in the weak

and Planck branes are found to be

ψg
m(z+) =

κ+

4

[

β

5

(

1 −
β2

α2

)]1/2
( m

αe−βδ/α

)5/2

(40)

ψg
m(z−) =

κ−
4

[

β

5

(

1 −
β2

α2

)]1/2
( m

αe−βδ/α

)5/2

e3βδ/2α

(41)
to leading order in e−βδ/α, were κ± are functions of α and
β of order unity. Here, in order to obtain the correct nor-
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malization constant for the wave function of the massive
modes, we have used two regulator branes with positions
at ±zr with zr > |z±| and taking the limit zr → ∞ at
the end of the calculation, extending to our two brane
system, as close as possible, the single brane treatment
of [21]. We can see that the modes behave as m5/2, as
in the single asymmetric brane, and therefore for r < rc
the Newtonian potential behaves as in a scenario with six
extra dimensions.

The Newtonian potential in the weak brane is

V+(r) =
GWm1m2

r

[

1 + κ2
+

(rc
r

)6
]

(42)

and in the Planck brane

V−(r) =
GPm1m2

r

[

1 + κ2
−

(rc
r

)6
]

(43)

to leading order in e−βδ/α, where rc = α−1 exp (5βδ/3α)
and the four-dimensional gravitational constants are
given by

GW
N = G5(N

g
0 )2e−3βδ/α, GP

N = G5(N
g
0 )2e3βδ/α (44)

The ratio of the Planck masses on both branes is then

MWeak
Pl /MPlanck

Pl = e3βδ/α (45)

and we can now refine our result (13). For MPlanck
Pl of

order TeV, we would get a Planck mass in the weak brane
of order 1019 GeV by setting

β

α
δ ≃ 12 (46)

IV. SUMMARY AND OUTLOOK

We have shown that the large hierarchy between the
Planck and the weak scales can be attributed to the ten-
dency of gravitons and fermions to localize at different
edges of an asymmetric double domain wall. The embed-
ding in a five dimensional Anti-de Sitter geometry which
is not reflection symmetric determines which sub-brane
is the weak brane and which one is the Planck brane.

Fermions of one chirality are localized by their Yukawa
interactions with the scalar field, but the warped metric
forces them to live in a different wall than the gravitons,
without need for additional assumptions. By calculat-
ing the massive mode contributions in this system, we
have shown that Newtonian gravity is recuperated in the
sub-wall where the matter is located.

The double-wall systems are straightforward general-
izations of single, reflection symmetric BPS walls, and
while here we have considered the case of the simplest
one, the confinement of graviton and fermion zero modes
on different sub-walls of the system is presumably generic
to other double solutions without reflection symmetry.
The generalization consists simply in taking a power of
the fake superpotential, and then adding a constant to
it. Since the double asymmetric walls are also BPS and
therefore have a topological charge (which is in fact the
same as the original wall), stability is guaranteed, and no
additional fields or stabilization mechanism are required.

While we believe this to be an interesting effect, many
questions would have to be answered before attempting
to use it as a solution to the hierarchy problem. For ex-
ample, a mechanism for confinement of the gauge fields
would be required, in particular, one that makes use of
the fermionic fields to achieve localization such as in [22]
would be well-suited, since then gauge fields will be con-
fined to the matter wall. Scalar fields are also a problem,
since the asymmetry drives them to the graviton’s wall,
their modes being proportional to the warp factor. An
adequate coupling with the wall’s scalar field could help.
We hope to address this issues in a future publication.
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