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Abstract
Spacetimes which are conformal to 2 + 2 reducible spacetimes are considered.
We classify them according to their conformal algebra, giving in each case
explicit expressions for the metric and conformal Killing vectors, and providing
physically meaningful examples.

PACS numbers: 0420, 0240

1. Introduction

The solution of the field equations in general relativity is much simplified by assuming the
existence of symmetries in the spacetime geometry. Knowledge of these symmetries is
also useful in classifying spacetimes by the structure of the Lie algebra generated by these
symmetries. The study of isometries and homotheties, and of the spacetimes admitting these
symmetries is virtually complete. However, this is not true of conformals despite considerable
interest in these symmetries in recent years. Our current interest is in the study of conformal
symmetries in a special, but important, class of spacetimes, namely conformally reducible
spacetimes (i.e., spacetimes conformal to reducible spacetimes).

Reducible (also called decomposable) spacetimes can be characterized by the existence of
certain covariantly constant tensor fields. Thus, a spacetime admitting a nowhere vanishing,
non-null covariantly constant vector field is said to be 1 + 3 reducible, its manifold structure
then being that of a product of a one-dimensional manifold and a three-dimensional manifold,
and the line element simply the sum of the two line elements of the factor manifolds (product
of metrics). On the other hand, if a rank-2 symmetric, covariantly constant tensor field is
admitted, the spacetime is called 2 + 2 reducible and it can be seen that, again, the manifold
is the product of two (two-dimensional) manifolds and the line element is the sum of the line
elements defined on the factor manifolds [1]. Alternatively, a spacetime is reducible if its
holonomy group is non-degenerately reducible (see for instance [2] and references therein).
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From a geometrical point of view, the structure of reducible spacetimes is rather simple and,
at the same time, interesting.

In the case of 2 + 2 reducible spacetimes, the Ricci tensor is easily seen to be of the
Segre type {(1, 1)(11)} or its degeneracy, so these spacetimes are not very interesting from a
physical point of view (no perfect fluids, null Einstein–Maxwell or pure radiation solutions
exist, and the only non-null Einstein–Maxwell solution of this type is Bertotti–Robinson
[1]). However, spacetimes conformally related to those do not have such a restriction so
that they can, in principle, represent situations of physical interest and yet have a geometric
structure which is relatively easy to investigate since their properties are, to a large extent,
a consequence of those of the underlying reducible spacetime; hence their potential interest.
We also note that all spherical, plane and hyperbolic symmetric spacetimes are conformally
reducible 2 + 2 spacetimes [3]. In fact they are a special type of spacetimes known as warped
spacetimes [4].

In this paper we concentrate on the study of the conformally reducible 2 + 2 spacetimes
mostly from the point of view of their conformal Lie algebra but, in so doing, we also review
and classify 2 + 2 reducible spacetimes. Conformally reducible 1 + 3 spacetimes will be the
subject of a subsequent paper.

The paper is structured as follows. In section 2, the basic geometric features, such as
invariant characterization, symmetries admitted, etc are dealt with. A number of results on
Killing vectors and homothetic vectors in two-dimensional spaces with a metric of arbitrary
signature are proved. Most of these results are well known and references can be found
in the literature, whereas others are not; in any case we have collected them together with
their proofs for the sake of completeness. Finally, a classification scheme for both reducible
and conformally reducible spacetimes has been put forward based on the dimension of their
conformal algebras.

Section 3 studies the fixed points of both homothetic and Killing vectors in two-
dimensional spaces, deriving normal forms for both the line element and the generator of
the symmetry (Killing or homothetic vector) in a neighbourhood containing the fixed point.

In section 4, conformally flat spacetimes of this class are dealt with, giving normal forms
for the possible line elements and for the 15 conformal Killing vectors generating the conformal
group of these spacetimes; this is done using different coordinate gauges.

In section 5, attention is given to non-conformally flat spacetimes of this class and the
classification put forward in section 2 is implemented there. Again, normal forms for the
line elements and the corresponding generators of the conformal algebra are given in all
cases (often in more than one coordinate gauge). All the information has been collected and
summarized in two tables for the sake of conciseness.

Finally, in section 6, some examples of perfect fluid and vacuum spacetimes are presented
and references are made to others that already exist in the literature. Besides the explicit
examples, a thorough study of the general case for perfect fluids is also provided (the only
limiting assumption being that the velocity of the fluid is tangent to one of the two factor
submanifolds).

2. Conformally reducible 2 + 2 spacetimes

A spacetime (M, g) is said to be 2 + 2 conformally reducible if there exists a coordinate chart
{xa} such that the line element takes the form

ds2 = exp(2µ(xa))
(
dσ 2

1 + dσ 2
2

)
, (1)
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where

dσ 2
1 = gαβ(x

γ ) dxα dxβ α, β, . . . = 0, 1, (2)

dσ 2
2 = gAB(x

C) dxA dxB A,B, . . . = 2, 3, (3)

with dσ 2
1 of signature zero and dσ 2

2 of signature +2. That is, (M, g) is conformally related to a
2 + 2 reducible (locally decomposable) spacetime, say (M, ĝ) whose associated line element,
from now on, shall be written as

d�2 = dσ 2
1 + dσ 2

2 . (4)

The above decomposition effectively says that M has (locally) the product manifold
structure, say M = V1 × V2; V1 and V2 are the factor submanifolds coordinated respectively
by {xα} and {xA} and endowed with two-dimensional metrics, say h1 and h2 (associated line
elements dσ 2

1 and dσ 2
2

)
, ĝ then being ĝ = h1 ⊕ h2. In the remainder of this paper, and

whenever needed, we shall refer to those as the 2-spaces (V1, h1) and (V2, h2).
A 2 + 2 reducible spacetime (M, ĝ) is of the Petrov type D or O, and therefore any

conformally related spacetime will also be of one of those types. Further, 2 + 2 reducible
spacetimes can be invariantly characterized by the existence of two null recurrent vector
fields, say l̂a and k̂a , such that l̂a k̂a = −1, which can always be scaled in such a way that the
recurrence vector is parallel to one of them, say l̂a (see for instance [5]), i.e.,

l̂a/b = αl̂a l̂b, k̂a/b = −αk̂a l̂b, (5)

where a ‘slash’ denotes the covariant derivative with respect to the connection associated with
ĝ, and α is some real function of the coordinates associated with the integral distribution
spanned by l̂a and k̂a (xα in the above notation). This invariant characterization of (M, ĝ)
in turn provides an invariant characterization of (M, g). To see this, define the following
vector fields in (M, g): la ≡ e−µl̂a and ka ≡ e−µk̂a ; clearly they are both null and satisfy
laka = −1. Computing their covariant derivatives in (M, g) (see for instance [1] for the
relationship between the connections associated with g and ĝ), one obtains

la;b = α e−µlalb − µ,alb + (µ,clc)gab, ka;b = −α e−µkalb − µ,akb + (µ,ckc)gab, (6)

so that la and ka are geodesic (although not affinely parametrized), shearfree and hypersurface
orthogonal. Thus we have shown

Theorem 1. Let (M, g) be a spacetime. If there exists a functionµ : M → R and null vectors
la and ka (laka = −1) satisfying (6), then (M, g) is conformally related to a 2 + 2 reducible
spacetime with conformal factor exp(2µ).

Likewise, most of the properties regarding the symmetries of (M, g) can be deduced from
those of (M, ĝ), providing a classification scheme for this class of spacetimes. Thus, consider
the reducible spacetime (M, ĝ) with line element given by (4), Coley and Tupper [6] showed
that (M, ĝ) cannot admit a proper CKV unless it is conformally flat (CF), in which case dσ 2

1
and dσ 2

2 must be of constant curvature k1, k2, respectively, with k1 + k2 = 0. Thus, by the
Defrise–Carter theorem [7], the CKV (proper or otherwise) of a non-CF spacetime (M, g)
correspond to the Killing vectors (KV) or homothetic vectors (HV) of (M, ĝ); i.e., we need to
find only the KV and HV of the reducible spacetime (4) in order to find the conformal Killing
vectors (CKV) of spacetime (1). Also, it is known that if (M, ĝ) is not CF, then its KV are
just the KV of the 2-spaces with metrics dσ 2

1 and dσ 2
2 , i.e., if ζ a = (ζ 0, ζ 1) is a KV of dσ 2

1 ,
then ξa = (ζ 0, ζ 1, 0, 0) is a KV of (M, ĝ), etc. Also (M, ĝ) will admit a HV iff each of dσ 2

1
and dσ 2

2 admit a HV, i.e. if κa = (κ0, κ1) and λa = (λ2, λ3) are HV of the 2-spaces (adjusted
to the same numerical values of the respective homothetic scalars), then ηa = (κ0, κ1, λ2, λ3)

is a HV of (M, ĝ) with the same value for its homothetic scalar [9, 6].
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The following theorems summarize some results concerning two-dimensional spaces and
their isometries and homotheties:

Theorem 2. Let V be a 2-space with metric h of arbitrary signature; the following statements
can then be made regarding its isometries and generating KV.

(1) A 2-space of constant curvature admits the maximum number of three KV.
(2) No 2-space can admit only two KV, i.e., if it admits two KV it admits a third KV and is

then of constant curvature.
(3) A 2-space which is not of constant curvature may admit one non-null KV only. Then,

provided that the KV �ξ has no fixed points, coordinates may be chosen so that the metric
is diagonal and independent of one coordinate, and the KV is in the direction of that
coordinate, i.e., ξa = δai , for some i, and the metric reads

dσ 2 = exp(2g(xj ))(ε1(dxi)2 + ε2(dxj )2), (7)

where g(xj ) is an arbitrary function of xj and ε1and ε2 are either +1 or one is +1 and the
other is −1, depending on the signature of V .

(4) A 2-space admitting one null KV is necessarily of constant zero curvature.

Proof. Statements (1) and (2) above are well known, and we refer the reader to [1], where
standard forms for both the metric and KV of 2-spaces of constant curvature can be found.

As for statement (3), consider the line element associated with h written as

dσ 2 = 
−2(ε d(x1)2 + d(x2)2), ε = ±1; (8)

Killing’s equations imply for �ξ
ξ1
,1 = ξ2

,2, ξ1
,2 = −εξ2

,1. (9)

In order for coordinates x1′ = α(x1, x2) and x2′ = β(x1, x2) to exist satisfying �ξ = ∂1′ and
h1′2′ = 0 (ha′b′ then being diagonal) it must be that

α,1ξ
1 + α,2ξ2 = 1, (10)

β,1ξ
1 + β,2ξ

2 = 0, (11)

εα,1β,1 + α,2β,2 = 0, (12)

and from the elementary theory of partial differential equations, it readily follows that the
above system always has a solution3.

In order to prove statement (4) above, let �ξ be a null KV in a two-dimensional spacetime,
and consider Killing’s equations written as ξa;b = Fab, Fab = −Fba ; the bivector Fab is
then necessarily zero or timelike simple, but since �ξ is null, it follows ξaFab = 0, hence
Fab cannot be timelike and is therefore zero. One can then set up a null diad �l, �n such that
hab = lanb + nalb(i.e., la la = nana = 0, lana = 1) where �ξ = �l, hence la;b = 0 and then
na;b = 0 also, from where it immediately follows that V must be flat.

It is worth noticing that, since Fab = 0, it follows that �ξ cannot have any fixed point; i.e.,
a point p at which �ξ(p) = 0 since otherwise �ξ = 0 at every point p ∈ V . �

Theorem 3. Let V be a 2-space with metric h of arbitrary signature; the following statements
can then be made regarding its (proper) HV.

(1) A 2-space of constant curvature admits a HV iff it is of curvature zero.
3 Notice that the above equations imply α,1 = εFξ1 and also α,2 = Fξ2, with F = (ε(ξ1)2 + (ξ2)2)−1 and it is then
immediately seen that the condition α,12 = α,21 is identically satisfied. Similar remarks also apply to function β.



Conformally reducible 2 + 2 spacetimes 4145

(2) A 2-space which is not of constant curvature may admit one non-null HV, �η, in which case,
provided that the HV has no fixed points, coordinates may be chosen such that ηa = δai
for some i, and the metric is of the form

dσ 2 = exp(2ψxi) exp(2g(xj ))(ε1(dxi)2 + ε2(dxj )2), (13)

where ψ = constant is the homothetic scalar, g(xj ) is an arbitrary function of xj , and
ε1 and ε2 are either +1 or one is +1 and the other is −1.

(3) A two-dimensional spacetime admitting a null HV is necessarily of constant zero curvature.
(4) If a 2-space admits a (proper) HV and a KV, then it is either of zero constant curvature,

and the KV and HV commute, or they do not commute and the line element can be written
as

dσ 2 = (x2)2(ψ−1)(ε d(x1)2 + d(x2)2), ε = ±1, (14)

the HV then being �η = x1∂1 + x2∂2 and the KV �ξ = ∂1 .

Proof. Statement (1) follows from the fact that, for any HV �η with homothetic constant ψ ,
one has that L�ηR = −2ψR, R being the Ricci scalar; thus if R is constant, the above equation
implies that it must in fact be zero (provided the ψ �= 0, i.e., �η is a proper HV); the converse
(i.e., a 2-space of zero constant curvature admits a proper HV) holds trivially for considering the
canonical form of the metric for one such space; that is, dσ 2 = [ε d(x1)2 + d(x2)2], ε = ±1,
it is then immediately seen that the vector field �η = ψ(x1∂1 + x2∂2) is a proper HV with
homothetic constant ψ . The proof of statement (2) runs much along the same lines as
that of statement (3) in theorem 2, that is, one shows that coordinates always exist such
that �η is aligned with one of them (i.e., ηa

′ = δa
′
i′ for some i ′) and the metric is diagonal;

imposing the homothetic equation L�ηh = 2ψh written in those coordinates and taking into
account the remaining freedom in the definition of the other coordinate xj

′
, yields the desired

result.
Statement (3) can be proved either by coordinate methods, as in the previous case, or

using an approach similar to that in the proof of statement (4) in theorem 2. Thus, consider
the homothetic equation ηa;b = ψhab + Fab, where Fab = −Fba is the homothetic bivector; it
follows (see for instance [8]) that

Fab;c = Rabcdη
d . (15)

Since �η is null, it satisfies ηaηa;b = 0 and therefore Fabηb = ψηa and one can then set up
a null diad {�l, �n} with �η = �l such that hab = lanb + nalb and Fab = ψ(lanb − nalb). From
la;b = ψhab +Fab and taking into account the above diad forms for hab and Fab, it follows that
na;b = −2ψnanb. A direct computation shows that Fab;c = 0, and therefore, on account of
(15) and the expression for the Riemann tensor of a two-space (Rabcd = R/2(hachbd−hadhbc))
it follows R = 0.

In order to prove statement (4) above, suppose that the KV �ξ is aligned with, say x1, so
that (7) holds and one has �ξ = ∂1 and dσ 2 = exp(2g(x2))[ε d(x1)2 + d(x2)2]. There exist
then two inequivalent Lie algebra structures for the homothetic algebra spanned by �ξ and the
proper HV �η, namely4

[�ξ, �η] = 0, [�ξ, �η] = a�ξ, (16)

where a( �= 0) is a constant (which can be set equal to 1 by rescaling conveniently �η). In the
first case, �η = η1(x2)∂1 + η2(x2)∂2 and imposing the homothetic equations on the above line
element (and rescaling coordinates conveniently), it readily follows

dσ 2 = e(2ψx
2)[ε d(x1)2 + d(x2)2], �η = ∂2, �ξ = ∂1,

4 The Lie bracket of a KV and a proper HV must necessarily be a KV.
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and the two-space is then of curvature zero. In the second case, �η = (ax1 +F(x2))∂1 +η2(x2)∂2

and, following the same procedure as in the previous case, one gets, after some trivial rescaling
of the coordinates,

dσ 2 = (x2)2m[ε d(x1)2 + d(x2)2], �η = x1∂1 + x2∂2, �ξ = ∂1,

the homothetic constant being ψ = m + 1.
Exchanging the coordinates x1 and x2 above, one gets another line element (and its

corresponding Lie algebra of homotheties) thus completing the list of all possible metrics and
homothetic vectors in this case. �

When dealing with 2-spaces of zero signature (such as those with line element dσ 2
1 )

it is sometimes useful to use null coordinates, say u and v, so that the line element takes
the form

dσ 2
1 = −2G(u, v) du dv, (17)

where G is a function of its arguments. The next theorem contains the analogues of theorems
2 and 3 specialized to this case:

Theorem 4. Let V be a 2-space with metric h of zero signature, and suppose that null
coordinates u, v are chosen so that the line element takes the form (17). The following
statements can then be made regarding its KV and (proper) HV.

(1) (V , h) is of constant curvature k if and only if it admits the maximum of three KV, in which
case the metric and KV read, for k = ±1 ( �=0),

dσ 2
1 = −4

du dv

k(u + v)2
, �ξ1 = u2∂u − v2∂v, �ξ2 = u∂u + v∂v, �ξ3 = ∂u − ∂v

(18)

and, for k = 0,

dσ 2
1 = −2 du dv, �ξ1 = ∂u, �ξ2 = ∂v, �ξ3 = u∂u − v∂v. (19)

In this case (k = 0) it also admits the proper HV

�η = u∂u + v∂v, (20)

with homothetic constant ψ = 1.
(2) (V , h) may admit one KV �ξ and one (proper) HV �η with homothetic constant ψ = m + 1

(with m �= −1, else V is of constant zero curvature), and one then has in the chosen
coordinates

dσ 2
1 = −2(u + v)2m du dv, �ξ = ∂u − ∂v, �η = u∂u + v∂v. (21)

(3) (V , h) admits one KV only, then the line element and the KV read

dσ 2
1 = −2G(u + v) du dv, �ξ = ∂u − ∂v, (22)

where G(u + v) is any function of u + v excluding the one appearing in (18).
(4) (V , h) may admit just one proper HV, �η, with homothetic constant ψ , then,

dσ 2
1 = −2 e−ψ(u−v) e2g(u+v) du dv, �η = ∂u − ∂v, (23)

where g(u + v) is an arbitrary function.
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Proof. The proofs of statements (2), (3) and (4) above are rather straightforward and run
much along the same lines as those of the corresponding statements in the previous theorems,
therefore, we shall omit them. As for statement (1), consider the line element (17); it will be
of constant curvature ±λ2 if and only if

R0101 = −G,uv +G−1G,uG,v = ∓λ2G2,

that is,

(lnG),uv = ±λ2G. (24)

This is Liouville’s equation, the solution of which, for k �= 0, is

G = 2U,u(u)V,v(v)

k(U(u) + V (v))2
, (25)

where U,V are arbitrary functions of u and v, respectively. In this case the 2-space metric
becomes

dσ 2
1 = −4

U,u(u)V,v(v)

(±λ2)(U(u) + V (v))2
du dv, (26)

i.e.,

dσ 2
1 = −4

dU dV

(±λ2)(U + V )2
, (27)

which corresponds to (17) with G = 2(±λ2)−1(U + V )−2. Henceforth, we shall revert to
using lower case letters for the coordinates.

When λ2 = 0, the above equation leads toG(u, v) = P(u)Q(v) and a trivial redefinition
of the coordinates u and v leads to the flat 2-space:

dσ 2
1 = −2 du dv. (28)

�
The cases when the KV or the HV have fixed points, will be treated in section 3.

Taking into account these results, we see that, if (M, ĝ) is not CF (or flat), the possible
symmetries are

(1) 6 KV, which occurs if each of dσ 2
1 , dσ 2

2 are of constant curvature k1, k2 with k1 + k2 �= 0,
i.e., each 2-space admits the maximum 3 KV;

(2) 4 KV and 1 HV, whenever one of the 2-spaces is of constant zero curvature (thus also
admitting a HV) and the other admitting one HV and one KV;

(3) 4 KV, which occurs when one 2-space is of constant curvature and the other admits one
KV only;

(4) 3 KV and 1 HV, which occurs when one 2-space is of constant zero curvature and the
other is not of constant curvature but admits a HV and no KV;

(5) 3 KV, when one of the 2-spaces is of constant curvature and the other has neither KV
nor HV;

(6) 2 KV and 1 HV, occurring when both 2-spaces admit one KV and one HV each;
(7) 2 KV, which occurs when each 2-space admits one KV only;
(8) 1 KV and 1 HV, whenever one of the 2-spaces admits a KV and both of them a HV;
(9) 1 KV, which occurs when only one 2-space admits a KV;

(10) 1 HV, which occurs when each 2-space admits a HV and no KV;
(11) neither of 2-space admits any KV or HV.

Notice that in the first five cases, at least one of the two 2-spaces is of constant curvature;
this corresponds to the well-known cases of spherical, plane or hyperbolic symmetries.

The case in which the 2 + 2 reducible spacetime (M, ĝ) is CF (or flat) will be dealt with
separately in section 4, where some new (non-standard) coordinate systems will be introduced
and their utility discussed.
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3. Isometries and homotheties with fixed points in 2-spaces

Given a one-parameter Lie group of transformations {ϕt} acting on a manifold M, any point
p ∈ M such that ϕt(p) = p, ∀t is called a fixed point of the transformation group. Denoting
by �ξ the infinitesimal generator of that group in any coordinate chart, it is easy to see that the
set of fixed points coincides precisely with the set of zeros of �ξ , i.e. p ∈ M is a fixed point
under the transformation group {ϕt} iff �ξ(p) = 0. A thorough discussion of the properties and
structure of the sets of fixed points of these and other more general types of transformations,
can be found in [8], [10] and also [11].

In this section we are only concerned with fixed points of isometries and homotheties on
two-dimensional manifolds V , endowed with a positive definite or a Lorentz metric h. We
refer the reader to [12], and references cited therein, for a detailed discussion of this case while
we next present a summary of the basic facts concerning this problem.

Consider a HV �ξ with a fixed point p ∈ V . The homothetic equation can be written
as ξa;b = ψhab + Fab, where ψ is the homothetic constant (zero if �ξ is a KV), and the
bivector Fab satisfies [8] equation (15), i.e., Fab;c = Rabcdξ

d . It then follows that, at
p, ξa(p) = Fab;c(p) = 0 in any coordinate chart; if �ξ is a KV, then Fab(p) �= 0 necessarily.
Furthermore, at the fixed point p, the differential map ϕt∗ is a map of TpV onto itself which can
be seen to be ϕt∗ = exp(tA), A being a matrix whose elements are Aab = ξa ;b(p) = ξa ,b(p)

(see, for instance, [13]); furthermore, it follows that

χ ◦ ϕt∗ = ϕt ◦ χ, (29)

where χ is the exponential diffeomorphism from some open neighbourhood of �0 ∈ TpV

to some open neighbourhood U of p ∈ V .5 As a consequence, in the resulting normal
exponential coordinate system in U, the integral curves of the HV, xa(t), satisfy ẋa = Aabx

b;
i.e., ξa = Aabx

b hence the components of the HV, in this particular coordinate system, are
linear functions of the coordinates. This allows one to find coordinate expressions for both
the HV �ξ and the metric h in the neighbourhood U of p as well as to study the structure of the
fixed point set in U, for it is easy to see from (29) that such a set is a submanifold of V (which
can be shown to be totally geodesic [11]) of dimension two-rank A. In the case of a KV, since
Aab = Fab it follows that the dimension of the fixed point set is 0, hence the fixed point is
necessarily isolated. For a HV, Aab = ψδab + Fab, and the dimension can then be 0 (isolated
fixed point) or 1, in which case it is part of a null geodesic [8, 12] (and in particular this can
only happen when h is a Lorentz metric). One can now classify the different possibilities
according to the signature of the metric and the canonical type of the matrixA or, equivalently,
the nature of the fixed point p from the point of view of the dynamical systems theory. The
following situations may then arise (see [8, 12]).

(1) h is positive definite and �ξ is a proper HV. The fixed point p is then necessarily isolated
and asymptotically stable, and V is flat in some neighbourhood of p, thus corresponding
to one of the cases treated later.

(2) h is positive definite and �ξ is a KV. Again, p is necessarily isolated, a centre in fact, its
orbits being closed periodic curves.

(3) h is a Lorentz metric and �ξ is a proper HV. The homothetic bivector is then necessarily
timelike and three different cases may arise, depending on its eigenvalues:

(a) p is isolated and asymptotically stable; it then follows that V is flat in some
neighbourhood of p;

5 This result and the previous one on ϕt∗ at a fixed point, hold for affine collineations of which, both HV and KV are
particular cases.
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(b) p is part of a null geodesic of zeros of �ξ . It can then be shown that V must again be
flat in some neighbourhood of p;

(c) p is isolated and is a saddle point of the autonomous plane system ẋa = Aabx
b.

(4) h is a Lorentz metric and �ξ is a KV.

Cases 1, (3a) and (3b) above are trivial in the sense that they correspond to flat 2-space.
Case (2) corresponds to axial symmetry, and one can show (see [14] and references cited
therein for a discussion on axial symmetry in the context of GR) that coordinates {x, y} exist
such that the KV takes the form �ξ = y∂x − x∂y and p is then the origin (0, 0). Alternatively,
‘polar’ coordinates {ρ, φ} can be introduced such that �ξ = ∂φ , φ ∈ [0, 2π) and the metric then
takes the form dσ 2 = dρ2 +A(ρ)2 dφ2, but one should carefully note that one such coordinate
chart does not cover the fixed point p (see [14] for details).

As for case (3c), from ξa = Aabx
b together with the condition that p is a saddle point

of the above autonomous plane system (this means that the matrix Aab has two non-zero
real eigenvalues of different sign), it follows that coordinates x0, x1 exist in that exponential
neighbourhood such that the HV takes the form

�ξ = ψ((1 + α)x0∂0 + (1 − α)x1∂1), |α| > 1, (30)

and the line element is then

dσ 2 = A(dx0)2 + 2B dx0 dx1 + C(dx1)2, (31)

with

A = F

(
(x0)1/(1+α)

(x1)1/(1−α)

)
(x0)

2α
(1+α) (x1)

2α
(1−α) , (32)

B = B

(
(x0)1/(1+α)

(x1)1/(1−α)

)
, (33)

C = G

(
(x0)1/(1+α)

(x1)1/(1−α)

)
(x0)−2α/(1+α)(x1)−2α/(1−α). (34)

It is then easy to see that the coordinate changes preserving the form (30) of the HV, and
therefore the above expression of the metric, are

x0′ = K

(
(x0)1/(1+α)

(x1)1/(1−α)

)
(x0)

1
2 (x1)

1+α
2(1−α) , x1′ = L

(
(x0)1/(1+α)

(x1)1/(1−α)

)
(x0)

1−α
2(1+α) (x1)

1
2 ; (35)

but no such coordinate change exists, with a non-vanishing Jacobian on a neighbourhood of
the fixed point that transforms some metric coefficient to zero.

In the case (4) above (�ξ a KV, h a Lorentz metric and the fixed point is then isolated and,
again, turns out to be a saddle point), similar arguments to those above show that coordinates
x0, x1 exist in a neighbourhood of the fixed point p such that the KV 6 and the line element
read, respectively,

�ξ = x0∂0 − x1∂1, (36)

ds2 = x1

x0
A(x0x1)(dx0)2 + 2B(x0x1) dx0 dx1 +

x0

x1
C(x0x1)(dx1)2, (37)

6 Alternatively, another set of coordinates exists on U, say t, x such that �ξ = x∂t + t∂x , i.e., �ξ is the familiar generator
of a boost in the x direction.
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whereA, B and C are arbitrary functions of their arguments. The coordinate changes preserving
the above forms of �ξ and the metric are

x0′ = K(x0x1)

(
x0

x1

) 1
2

, x1′ = L(x0x1)

(
x1

x0

) 1
2

. (38)

In this case though, it is not difficult to see that one can always, by means of one such change (of
a nowhere-vanishing Jacobian in the neighbourhood of p), set h0′0′ = h1′1′ = 0 and therefore
the line element reads (dropping primes for convenience)

ds2 = 2B(x0x1) dx0 dx1. (39)

The above considerations on fixed points lead to the following ‘curious’ example.
Consider a reducible spacetime with line element of the form (4) where dσ 2

1 is of
constant curvature (and therefore possesses 3 KV) and dσ 2

2 is axially symmetric, i.e.,
dσ 2

2 = dρ2 +A(ρ)2 dφ2 and admits (for an arbitrary A(ρ)) just one KV, namely �ξ = ∂φ . The
whole spacetime then admits 4 KV which act everywhere on three-dimensional orbits, except
at points with ρ = 0 (x = y = 0 in Cartesian-like coordinates) which form a two-dimensional
surface. Thus we have an example of a G4 of isometries acting on a two-dimensional orbit.
This does not contradict Fubini’s theorem (see [1]) as it would seem at first sight7.

4. Spherical, plane and hyperbolic symmetric CF spacetimes

We first consider the cases in which dσ 2
2 is of constant curvature, i.e., the spacetime is

spherically symmetric, plane symmetric or hyperbolic symmetric. MacCallum [15] has shown
that, given the general spherically symmetric metric,

d�2 = −e2ν(t,r) dt2 + e2ω(t,r) dr2 + Y 2(t, r)(dθ2 + sin2 θ dφ2), (40)

if Y,aY ,a �= 0, one can always introduce isotropic coordinates such that Y = r eω(t,r). Precisely
the same argument applies in the cases of plane and hyperbolic symmetry. It follows that, when
Y,a is neither null nor zero, the reducible spacetime (M, ĝ) with dσ 2

2 of constant curvature can
be written in the form

d�2 = −e2(ν−ω)r−2 dt2 + r−2 dr2 + d
2, (41)

where ν = ν(t, r), ω = ω(t, r) and

d
2 = dy2 + η2(y, k) dz2, (42)

with

η(y, k) =



sin y if k = +1 (spherical symmetry)
1 if k = 0 (plane symmetry)
sinh y if k = −1 (hyperbolic symmetry).

(43)

The original spherically,plane or hyperbolic symmetric spacetime metric is then recovered
from (41) by multiplying it by the conformal factor r2 e2ω.

Notice that the above choice of η(y, k) is not the standard one for k = 0 (as it appears,
for instance, in [1], i.e., η(y, 0) = y), but it is easy to see that both are related by a trivial
coordinate change.

The constant curvature k2 of d
2 (i.e. dσ 2
2 ) is equal to k and so (M, ĝ) will be CF if

dσ 2
1 = −e2(ν−ω)r−2 dt2 + r−2 dr2 (44)

7 The authors are very grateful to Professor G S Hall for enlightening discussions over this point.
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has constant curvature k1 = −k. If dσ 2
1 is of constant curvature k1 �= −k, then dσ 2

1 admits
3 KV to add to the 3 KV of dσ 2

2 .
Before proceeding, let us comment on the use of isotropic coordinates. If one uses

standard coordinates as in (40), the condition for dσ 2
1 to be of constant curvature contains

derivatives of ν, ω and Y with respect to t and with respect to r [3] and is impossible to solve.
On the other hand, in isotropic coordinates, the condition contains r derivatives only and is
easy to integrate. One could, of course, use the very simple expressions for constant curvature
2-spaces, as in Petrov [16], but the isotropic coordinates are more useful in discussing perfect
fluid and other physical spacetimes, as will be shown later.

If Y ,aY,a = 0, then either Y ,a is a null vector or Y = constant. If Y ,a is a null vector, the
corresponding metric can be written in the following form:

d�2 = −2G(u, v) du dv + u2 d
2, (45)

where u, v are null coordinates. If Y,a = 0, the metric takes the form

d�2 = −2G(u, v) du dv + d
2. (46)

In the first case, a redefinition of the function G(u, v) given by G(u, v) → u2G(u, v) shows
that in either case the underlying reducible spacetime (M, ĝ) is of the above form (46), i.e.,

d�2 = −2G(u, v) du dv + d
2.

This situation will be discussed in section 4.4.
The 2-space dσ 2

1 given by (44) has constant curvature k1 iff the following condition holds:

ν,rr − ω,rr − (ν,r − ω,r )
2 − 1

r
(ν,r − ω,r ) +

k1 + 1

r2
= 0. (47)

Putting U = e(ν−ω), equation (47) becomes

r2U,rr − rU,r + (k1 + 1)U = 0. (48)

If k1 = −k2, then

U = e(ν−ω) = a(t)r1−k + b(t)r1+k. (49)

If k1 = 0, then

U = e(ν−ω) = r[a(t) + b(t) ln r]. (50)

If k1 = k2, then

U = e(ν−ω) = r[a(t) cos(k ln r) + b(t) sin(k ln r)]. (51)

In each case the coordinate t can be chosen so that b(t) = 1 unless b(t) = 0 in which case
a(t) can be incorporated into the definition of t and the metric then becomes static. It follows
that conformally flat 2 + 2 reducible spacetimes have metrics of the following forms:

d�2 = −r−2[a(t) + r2]2 dt2 + r−2 dr2 + dθ2 + sin2 θ dφ2 (52)

for spherical symmetry (i.e. k1 = −1, k = 1),

d�2 = −[a(t) + ln r]2 dt2 + r−2 dr2 + dy2 + dz2 (53)

for plane symmetry (i.e. k1 = 0),

d�2 = −[a(t) cos(ln r) + sin(ln r)]2 dt2 + r−2 dr2 + dθ2 + sinh2 θ dφ2 (54)

for hyperbolic symmetry (i.e. k1 = +1, k = 1).
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4.1. Spherically symmetric CF spacetimes

In this case the metric is given by equation (52). Solving the CKV equations leads to

ξ0 = r2[a(t) + r2]−2{sin θ(At sin φ − Bt cosφ)− Ct cos θ} +D + 1
2 [a(t) + r2]−1Dtt ,

ξ1 = r2 sin θ(−Ar sin φ + Br cosφ) + r2Cr cos θ − rDt ,
(55)

ξ2 = cos θ(A sinφ − B cosφ) + C sin θ + a1 sinφ + a2 cosφ,

ξ3 = cosec θ(A cosφ + B sin φ) + cot θ(a1 cosφ − a2 sin φ) + a3,

where A,B,C are functions of t, and r is given by

A,B,C = mi(t)r + ni(t)r
−1, (i = 1, 2, 3) (56)

with
...
mi + 4aṁi + 2ȧmi = 0, (57)

ni = − 1
2 m̈i − ami. (58)

The functionD(t) also satisfies equation (57), i.e.,
...
Di + 4aḊi + 2ȧDi = 0. (59)

Note that equations (57) and (59) can be partially integrated to give

mim̈i − 1
2 ṁ

2
i + 2am2

i = αi, (60)

DD̈ − 1
2Ḋ

2 + 2aD2 = α4, (61)

where αi, α4 are constants.
The constants a1, a2, a3 give rise to the three spherical KV. The conformal scalar ψ is

given by

ψ = −A sin θ sin φ + B sin θ cosφ + C cos θ, (62)

so the solutions for A,B,C (i.e., for mi), give rise to nine constants representing the nine
proper CKV while the three constants arising from equation (59), equivalently (61) lead
to three further KV. Restoring the conformal factor r2 e2ω will, in general, transform these
three KV into three proper CKV, thus giving the twelve CKV and three KV of a general CF
spherical spacetime.

4.2. Plane symmetric CF spacetimes

We use the coordinate transformation x = ln r to change metric (53) into the form

d�2 = −[a(t) + x]2 dt2 + dx2 + dy2 + dz2, (63)

which is, in fact, a flat spacetime metric. Solving the CKV equations leads to

ξ0 = (a + x)−1 [
1
2 (α1 et − α2 e−t )(y2 + z2) + (γ1 et − γ2 e−t + ḟ )y + (δ1 et − δ2 e−t + ġ)z

+ 1
2a

2(α1 et − α2 e−t )− (ε1 et − ε2 e−t + ḣ)
]

+ 1
2 (α1 et − α2 e−t )(a + x)−

∫
ȧ(α1 et − α2 e−t ) dt + ω1,

ξ1 = − 1
2 (α1 et + α2 e−t )(y2 + z2 − x2)− 2(β1y + β2z)x − (γ1 et + γ2 e−t + f )y − (δ1 et

+ δ2 e−t + g)z + ε1 et + ε2 e−t + x
∫
a(α1 et − α2 e−t ) dt + ω2x + h, (64)
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ξ2 = β1(x
2 − y2 + z2)− 2β2yz− β3z + (α1 et + α2 e−t )xy + (γ1 et + γ2 e−t + f )x

+ y
∫
a(α1 et − α2 e−t ) dt +

∫
a(γ1 et − γ2 e−t + ḟ ) dt + ω2y + ω3,

ξ3 = β2(x
2 + y2 − z2)− 2β1yz + β3y + (α1 et + α2 e−t )xz + (δ1 et + δ2 e−t + g)x

+ z
∫
a(α1 et − α2 e−t ) dt +

∫
a(δ1 et − δ2 e−t + ġ) dt + ω2z + ω4,

ψ = (α1 et + α2 e−t )x +
∫
a(α1 et − α2 e−t ) dt − 2β1y − 2β2z + ω2, (65)

where α1, α2, β1, β2, β3, γ1, γ2, δ1, δ2, ε1, ε2, ω1, ω2, ω3, ω4 are 15 arbitrary constants and
f, g, h are functions of t only satisfying

f̈ − f + 2β1a = 0 (f = 0 if β1 = 0), (66)

g̈ − g + 2β2a = 0 (g = 0 if β2 = 0), (67)

ḧ− h = ȧ

∫
a(α1 et + α2 e−t ) dt + a

∫
ȧ(α1 et + α2 e−t ) dt + ȧω1 − aω2, (68)

with h = 0 if α1, α2, ω1, ω2 are all zero.
Note that ω2 corresponds to a HV, α1, α2, β1, β2 correspond to SCKV and the others

correspond to the ten KV of flat spacetime. Restoring the conformal factor r2 e2ω, i.e. e2(x+ω),
gives rise to twelve CKV in general plus the three plane symmetric KV, which are the conformal
symmetries of a general CF plane symmetric spacetime in isotropic coordinates.

4.3. Hyperbolic symmetric CF spacetimes

The coordinate transformation x = ln r and a re-labelling of the coordinates changes the
metric (54) into the form

d�2 = −[a(t) cosx + sin x]2 dt2 + dx2 + dy2 + sinh2 y dz2. (69)

Solving the CKV equations leads to

ξ0 = (a cos x + sin x)−2[sinh y(At sin z− Bt cos z)− cosh yCt ]

+F − (a−1Ft )t cos x(a cos x + sin x)−1,

ξ1 = sinh y(−Ax sin z + Bx cos z) + Cx cosh y + a−1Ft , (70)

ξ2 = cosh y(A sin z− B cos z)− C sinh y + a1 cos z + a2 sin z,

ξ3 = cosech y(A cos z + B sin z) + coth y(−a1 sin z + a2 cos z) + a3;
ψ = A sinh y sin z− B sinh y cos z− C cosh y, (71)

where A,B,C are functions of t and x given by

A,B,C = mi(t) cos x + ni(t) sin x (i = 1, 2, 3) (72)

with

a
...
ni − ȧn̈i − a(1 + a2)ṅi + ȧni = 0, (73)

ami = n̈i − ni. (74)

The function F(t) satisfies the third-order equation

(a−1Ḟ )¨ − (a + a−1)Ḟ − ȧF = 0. (75)

Equations (73) and (74) give rise to nine constants corresponding to nine CKV. The three
constants in the solution of equation (75) lead to three KV and these twelve symmetries are,
in general, twelve proper CKV when the conformal factor r2 e2ω (i.e. e2(x+ω)) is restored. The
remaining three constants a1, a2, a3 correspond to the KV of hyperbolic symmetry.
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4.4. Spherically, plane and hyperbolic symmetric CF spacetimes in null coordinates

We now consider the case of the metric (46) in which the 2-space dσ 2
1 is of constant curvature

k1 = ±1 or 0. If k1 = 0 the flat metric (19) applies and the plane symmetric 2 + 2 spacetime
is just Minkowski spacetime expressed in null coordinates. The KV, HV and CKV of
this are easily obtained from the standard Minkowski symmetries by a simple coordinate
transformation. We will thus confine our attention to the spherical and hyperbolic cases.

For the case of spherical symmetry, the metric of the CF 2 + 2 reducible spacetime is (see
theorem 4 and equations (42) and (43))

d�2 = 4(u + v)−2 du dv + dθ2 + sin2 θ dφ2, (76)

and solving the CKV equations yields

ξ0 = 1
2 [(α1u

2 − 2α2u− α3) sin θ sinφ + (β1u
2 − 2β2u− β3) sin θ cosφ

+ (γ1u
2 − 2γ2u− γ3) cos θ ] − ε1u

2 + ε2u− ε3,

ξ1 = 1
2 [(α1v

2 − 2α2v − α3) sin θ sin φ + (β1v
2 − 2β2v − β3) sin θ cosφ

+ (γ1v
2 − 2γ2v − γ3) cos θ ] + ε1v

2 + ε2v + ε3,
(77)

ξ2 = (u + v)−1[−(α1uv + α2(u− v) + α3) cos θ sinφ − (β1uv + β2(u− v) + β3) cos θ cosφ

+ (γ1uv + γ2(u− v) + γ3) sin θ ] + δ1 cosφ + δ2 sin φ,

ξ3 = (u + v)−1[−(α1uv + α2(u− v) + α3) cosec θ cosφ − (β1uv

+ β2(u− v) + β3) cosec θ sin φ] − δ1 cot θ sin φ + δ2 cot θ cosφ + δ3.

The constants α1, βi, γi (i = 1, 2, 3) give rise to the nine proper CKV while the six KV
are given by the constants εi and δi . The conformal scalar is given by

ψ = (u + v)−1[(α1uv + α2(u− v) + α3) sin θ sin φ + (β1uv + β2(u− v) + β3) sin θ cosφ

+ (γ1uv + γ2(u− v) + γ3) cos θ ]. (78)

Also from theorem 4 and equations (42) and (43) it follows that the line element of the
CF 2 + 2 reducible spacetime in the case of hyperbolic symmetry is

d�2 = −4(u + v)−2 du dv + dy2 + sinh2 y dz2, (79)

and the CKV components are

ξ0 = 1
2 [(α1u

2 − 2α2u− α3) sinh y sin z + (β1u
2 − 2β2u− β3) sinh y cos z

+ (γ1u
2 − 2γ2u− γ3) cosh y] − ε1u

2 + ε2u− ε3,

ξ1 = 1
2 [(α1v

2 − 2α2v − α3) sinh y sin z + (β1v
2 − 2β2v − β3) sinh y cos z

+ (γ1v
2 − 2γ2v − γ3) cosh y] + ε1v

2 + ε2v + ε3,
(80)

ξ2 = (u + v)−1[−(α1uv + α2(u− v) + α3) cosh y sin z − (β1uv + β2(u− v) + β3) cosh y cos z

+ (γ1uv + γ2(u− v) + γ3) sinh y] + δ1 cos z + δ2 sin z,

ξ3 = (u + v)−1[−(α1uv + α2(u− v) + α3) cosech y cos z− (β1uv

+ β2(u− v) + β3) cosech y sin z] − δ1 coth y sin z + δ2 coth y cos z + δ3.

As in the previous case the nine proper CKV correspond to αi, βi, γi while the six KV
correspond to εi, δi (i = 1, 2, 3). The conformal scalar is given in this case by

ψ = (u + v)−1[(α1uv + α2(u− v) + α3) sinh y sin z + (β1uv + β2(u− v) + β3) sinh y cos z

+ (γ1uv + γ2(u− v) + γ3) cosh y]. (81)



Conformally reducible 2 + 2 spacetimes 4155

5. Non-CF spacetimes

In this section we deal with non-CF 2 + 2 reducible spacetimes. We refer the reader to the list
of eleven cases which appears at the end of section 2 for the various possibilities regarding the
symmetries of (M, ĝ).

The forms of the metrics h1 and h2 (or equivalently their associated line elements dσ 2
1 and

dσ 2
2 ) and those of the symmetries (HV and KV) that the 2-spaces (V1, h1) and (V2, h2) admit

can be gathered from the results in theorems 2, 3 and 4 (see also section 4 for issues regarding
non-standard coordinate choices). We list them for the sake of clarity and summarize the
various possibilities for (M, ĝ) in a table later in this section.

The possibilities for the Lorentz 2-space (V1, h1) are as follows.

• (V1, h1) admits 3 KV �ξA (A = 1, 2, 3) and one HV �η with homothetic constant ψ �= 0.
(i.e., is of constant zero curvature).

dσ 2
1 = −dt2 + dx2, �ξ1 = ∂t , �ξ2 = ∂x, �ξ3 = x∂t + t∂x, (82)

�η = ψ(t∂t + x∂x). (83)

Other useful coordinate gauges are

dσ 2
1 = −2 du dv, �ξ1 = ∂u, �ξ2 = ∂v, �ξ3 = u∂v − v∂u, (84)

�η = ψ(u∂u + v∂v), (85)

dσ 2
1 = −[a(t) + x]2 dt2 + dx2,

(86)�ξA = [−(a + x)−1(ε1 et − ε2 e−t + ḣ) + ω1]∂t + [ε1 et + ε2 e−t + h]∂x,

�η = (−(a + x)−1ḟ )∂t + (ψx + f )∂x, (87)

where ε1, ε2, ω1 are constants, and h(t) and f (t) satisfy

ḧ− h = ȧω1, f̈ − f = −aψ (88)

and h = 0 if ȧω1 = 0.
• (V1, h1) admits 3 KV �ξA (A = 1, 2, 3) and no HV (i.e. non-zero constant curvature
k = ±1).

dσ 2
1 = −η(x, k)2 dt2 + dx2, η(x, k) = sin x, sinh x for k = +1,−1.

(89)�ξ1 = cosh t∂x − η′η−1 sinh t∂t , �ξ2 = ∂t , �ξ3 = −sinh t∂x + η′η−1 cosh t∂t .

Other useful coordinate gauges are

dσ 2
1 = −4

du dv

k(u + v)2
, �ξ1 = u2∂u − v2∂v, �ξ2 =u∂u + v∂v, �ξ3 = ∂u − ∂v,

(90)

dσ 2
1 = −[a(t)r−λ + rλ]2 dt2 + r−2 dr2, constant curvature −λ2( �=−1),

(91)
�ξ =

[
λD +

D̈

2λ
(a(t) + r2λ)−1

]
∂t − Ḋr∂r ,

where the functionD(t) satisfies the third-order equation
...
D + 4λ2aḊ + 2λ2ȧD = 0, (92)

the three constants of integration giving then three independent KV.

dσ 2
1 = −[a(t) cosλx + sin λx]2 dt2 + dx2 constant curvature +λ2( �=1).

(93)�ξ = [F − λ−2(a−1Ḟ )˙cos λx(a cosλx + sin λx)−1]∂t + λ−1a−1Ḟ ∂x
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where F(t) satisfies the third-order equation

λ−2(a−1Ḟ )¨ − (a + a−1)Ḟ − ȧF = 0, (94)

and again, the three constants of integration give rise to three independent KV.
• (V1, h1) admits one KV �ξ and one HV �η (with homothetic constant ψ):

dσ 2
1 = x2ψ(−dt2 + dx2), �ξ = ∂t , (95)

�η = t∂t + x∂x, (96)

or

dσ 2
1 = t2ψ(−dt2 + dx2), �ξ = ∂x, (97)

�η = t∂t + x∂x. (98)

• (V1, h1) admits one HV �η and no KV:

dσ 2
1 = exp(2ψt) exp(2g(x))(−dt2 + dx2), �η = ∂t ,

or

dσ 2
1 = exp(2ψx) exp(2g(t))(−dt2 + dx2), �η = ∂x. (99)

• (V1, h1) admits one KV �ξ and no HV:

dσ 2
1 = exp(2g(x))(−dt2 + dx2), �ξ = ∂t ,

or

dσ 2
1 = exp(2g(t))(−dt2 + dx2), �ξ = ∂x. (100)

• (V1, h1) admits no KV and no HV:

dσ 2
1 = 
2(t, x)(−dt2 + dx2), equivalently dσ 2

1 = −A2(t, x) dt2 + B2(t, x) dx2,

(101)

where 
,A,B are arbitrary functions of their arguments.

The possibilities for (V2, h2), the Riemannian 2-space, are

• (V2, h2) admits 3 KV �ξA (A = 1, 2, 3) and 1 HV �η with homothetic constant ψ �= 0
(i.e. it is of constant zero curvature).

dσ 2
2 = dy2 + dz2, �ξ1 = ∂y, �ξ2 = ∂z, �ξ3 = z∂y − y∂z, (102)

�η = ψ(y∂y + z∂z). (103)

• (V2, h2) admits 3 KV �ξA (A = 1, 2, 3) and no HV (i.e. non-zero constant curvature
k = ±1).

dσ 2
2 = dθ2 + η(θ, k)2 dφ2, η(θ, k) = sin θ, sinh θ for k = +1,−1.

(104)�ξ1 = cosφ∂θ − η′η−1 sin φ∂φ, �ξ2 = ∂φ, �ξ3 = −sin φ∂θ + η′η−1 cosφ∂φ.

• (V2, h2) admits one KV �ξ and one HV �η (with homothetic constant ψ):

dσ 2
2 = z2ψ(dy2 + dz2), �ξ = ∂y, (105)

�η = y∂y + z∂z. (106)

• (V2, h2) admits one HV �η and no KV:

dσ 2
2 = e2ψz e2g(y)(dy2 + dz2), �η = ∂z. (107)
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Table 1. The numbers in the table refer to the the equations in the text. Whenever different
coordinate gauges exist, this is indicated in square brackets. Further, the entries in the column
labelled KV are to be understood as the KV appearing in the corresponding equations in the text
(i.e. the KV of (V1, h1) and those of (V2, h2), see section 2 for details); whereas the entries in
the column HV (whenever non-void) mean that the HV in (M, ĝ) is the sum of those existing in
(V1, h1) and (V2, h2) their homothetic constants being the same (again, see section 2 for details).

Case dσ 2
1 dσ 2

2 KV HV

6 KV (89) [or (90), (91)] (104) (89) [or (90), (91)] and (104) –
(82) [or (84), (86)] (104) (82) [or (84), (86)] and (104) –
(89) [or (90), (91)] (102) (89) [or (90), (91)] and (102) –

4 KV (82) [or (84), (86)] (105) (82) [or (84), (86)] and (105) (82) [or (84), (86)] + (105)
1 HV (95) (102) (95) and (102) (95) + (102)

4 KV (89) [or (90), (91)] (108) (89) [or (90), (91)] and (108) –
(100) (104) (100) and (104) –
(82) [or (84), (86)] (108) (82) [or (84), (86)] and (108) –
(89) [or (90), (91)] (105) (89) [or (90), (91)] and (105) –
(95) [or (97)] (104) (95) [or (97)] and (104) –
(100) (102) (100) and (102) –

3 KV (82) [or (84), (86)] (107) (82) [or (84), (86)] and (107) (82) [or (84), (86)] + (107)
1 HV (99) (102) (99) and (102) (99) + (102)

3 KV (89) [or (90), (91)] (109) (89) [or (90), (91)] and (109) –
(101) (104) (101) and (104) –
(82) [or (84), (86)] (109) (82) [or (84), (86)] and (109) –
(101) (102) (101) and (102) –

2 KV (95) (105) (95) and (105) (95) + (105)
1 HV

2 KV (100) (108) (100) and (108) –
(95) [or (97)] (108) (95) [or (97)] and (108) –
(100) (105) (100) and (105) –

1 KV (95) (107) (95) and (107) (95) + (107)
1 HV (99) (105) (99) and (105) (99) + (105)

1 KV (100) (109) (100) and (109) –
(99) (107) (99) and (107) –

1 HV (99) (107) – (99) + (107)
(95) [or (97)] (109) (95) [or (97)] and (109) –
(101) (105) (101) and (105) –

0 KV (101) (109) – –
0 HV

• (V2, h2) admits one KV �ξ and no HV:

dσ 2
2 = e2g(y)(dy2 + dz2), �ξ = ∂z. (108)

• (V2, h2) admits no KV and no HV:

dσ 2
2 = 
2(y, z)(dy2 + dz2), equivalently dσ 2

2 = C2(y, z) dy2 +D2(y, z) dz2),

(109)

where 
,C,D are arbitrary functions of their arguments.

Bearing all this in mind,we summarize all the possibilities for the 2+ 2 reducible spacetime
(M, ĝ) in table 1.
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Table 2. The columns list the curvatures of each 2-space as ±λ2, 0 for dσ 2
1 and ±ω2, 0 for dσ 2

2 ,
where λω �= 0, for the cases when each 2-space is of constant curvature but the spacetime is not
CF, corresponding to the six KV case of table 1.

Case Curvature dσ 2
1 Curvature dσ 2

2

(i) −λ2 ω2 �= λ2

(ii) 0 ω2

(iii) λ2 ω2

(iv) −λ2 0
(v) λ2 0
(vi) −λ2 −ω2

(vii) 0 −ω2

(viii) λ2 −ω2 �= −λ2

The cases, in which both 2-spaces are of constant curvature but the spacetime is not CF,
correspond to the first entry in table 1, that is, (M, ĝ) admits six KV, three from each 2-space.
Now, if (M, ĝ) is not conformally flat, the sum of the curvatures of the two 2-spaces cannot
be zero (see section 2 and also [6] for details). Denoting these constant curvatures (whenever
non-zero) as ±λ2 and ±ω2, the possible cases are listed in table 2.

Note that, without loss of generality we can take one of λ,ω to be unity (but, in general,
not both). We choose ω = 1.

6. Examples

In this section we shall provide examples of physically significant spacetimes which are
2 + 2 conformally reducible. We shall concentrate specifically in vacuum and perfect fluid
solutions and will follow the conventions established in section 2; thus, ĝ and g will
designate the metrics of the reducible and the conformally reducible spacetimes, respectively
(associated line elements d�2 and ds2), and the coordinates will be labelled xa = t, x, y, z,
(a, b, . . . = 0, 1, 2, 3), xα = {t, x} (α, β, . . . = 0, 1) and xA = {y, z} (A,B, . . . = 2, 3).

We shall look for perfect fluid spacetimes which are conformally 2 + 2 reducible according
to the definition given in section 3. In so doing, vacuum will be regarded as a special (limit)
case of those, whenever ρ = p = 0.

The line element of (M, g) will be written, for convenience, as

ds2 = ω−2(xα, xA)
[
−L2

0(x
α) dt2 + L2

1(x
α) dx2 + e2P (xA)(dy2 + dz2)

]
≡ ω−2 d�2, (110)

and we shall restrict ourselves to the case in which the four-velocity of the fluid, �u, is tangent
to the t, x plane.

Noting now the Einstein tensors associated with the metrics g and ĝ as G and Ĝ,
respectively, we will have, in an arbitrary coordinate chart [1],

Gab = Ĝab + 2ω−1ωa/b − Sĝab, S ≡ 2ω−1 (
ωc/c − 3

2ω
−1ωcωc

)
, (111)

where a slash denotes covariant derivative relative to the metric ĝ and all the contractions
appearing in the above equation have been performed with ĝ.

We next choose a null tetrad in (M, ĝ), say {l̂a, n̂a, ŷa, ẑa} (with l̂a n̂a = ŷa ŷa = ẑa ẑa = 1
and all the other inner products zero), adapted to the 2 + 2 structure; i.e., l̂a, n̂a are defined on
the t, x 2-space and ŷa, ẑa on the two-dimensional submanifold coordinated by y, z; we thus
have

Ĝab = − 1
2R2(x

A)(l̂an̂b + n̂a l̂b)− 1
2R1(x

α)(ŷaŷb + ẑa ẑb). (112)



Conformally reducible 2 + 2 spacetimes 4159

The Field equations specialized to a perfect fluid imply

Gab = (ρ + p)uaub + pgab, (113)

where

ua = 1√
2
ω−1(l̂a − n̂a), (114)

on account of the previous hypothesis regarding the fluid velocity. Also notice that the freedom
we still have in choosing the coordinates t, x preserving the form (110) of the metric (and
hence the freedom in choosing the null vectors l̂a, n̂a) allows us to write, without loss of
generality,

�u = ω

L0
∂t . (115)

From (111)–(114) we get

2ω−1ωa/b = [
1
2 (p − ρ)ω−2 + S + 1

2R2(x
A)

]
(l̂an̂b + n̂a l̂b) + 1

2 (p + ρ)ω−2(l̂a l̂b + n̂an̂b)

+
[
pω−2 + S + 1

2R1(x
α)

]
(ŷaŷb + ẑa ẑb); (116)

from where it follows, on account of the block-diagonal form of Ĝab, that

ω(xα, xA) = ω1(x
α) + ω2(x

A); (117)

substituting this back into (111) and taking into account (112–115) we get, in the coordinates
in which (110) is written,

ω1t/x = ω2y/z = 0, (118)
1
2R2 + 2ω−1L−2

0 ω1t/t + S = ρω−2, (119)

− 1
2R2 + 2ω−1L−2

1 ω1x/x − S = pω−2, (120)

− 1
2R1 + 2ω−1 e−2Pω2y/y − S = pω−2, (121)

− 1
2R1 + 2ω−1 e−2Pω2z/z − S = pω−2; (122)

from (120, 121) it follows

− 1
2R2 + 2ω−1L−2

1 ω1x/x = − 1
2R1 + 2ω−1 e−2Pω2y/y . (123)

There are now various different cases to be considered:

(1) neither R1 nor R2 is constant; i.e., none of the two 2-spaces is of constant curvature;
(2) R2 is constant;
(3) R1 is constant;
(4) both R1 and R2 are constant.

Let us deal with each case separately.
(1) Both R1 and R2 are non-constant. Consider (123) and take derivatives first with

respect to xα and then with respect to xA; we get

(∂AR2)(∂αω1)− (∂Aω2)(∂αR1) = 0,

that is,

ω1 = kR1 + k1 and ω2 = kR1 + k2,

where k �= 0, k1 and k2 are constants. Note that k1 or k2 (but not both) can be set equal to zero
without loss of generality, thus we shall write, from now on,

ω = k(R1 + R2) + k′, (124)



4160 J Carot and B O J Tupper

with k, k′ constants (k �= 0). Substituting this back into (123), dividing through by k and
setting c ≡ k′/k we get

R2
1 + cR1 +

4

L2
1

R1x/x = R2
2 + cR2 + 4 e−2PR2y/y = N, N = constant. (125)

Now, the above equations together with

R1t/x = R2y/z = 0 and R2y/y = R2z/z, (126)

which come from (118), (121) and (122), yield a system of differential equations for R1 and
R2, which once integrated provides, on account of (124), an expression forω and then, through
(119) and (120), give expressions for the density ρ and the pressure p of the fluid.

(2) R2 is constant. Putting now R2 = k2 in (123) and differentiating as in the previous
case with respect to xα and xA we easily get

R1,αω2,A = 0, (127)

that is, either R1 = constant (thus falling into case (4) above) or else ω2 = constant. We shall
assume the latter (the possibility R1 = constant will be left until case (4) is dealt with). If
ω2 = constant it follows that the conformal factor depends only on the co-ordinates ofM1 and
the resulting spacetime is then warped (class B) [4]; further, (M2, h2) is of constant curvature,
thus all of the spherically symmetric, plane symmetric and hyperbolic symmetric perfect fluid
solutions existing in the literature fall into this class. Other examples of class B warped perfect
fluid spacetimes can be found in [4] and also in [17].

(3) R1 is constant. Now put R1 = k1 in (123). Proceeding as before, we get

R2,Aω1,α = 0. (128)

Thus again eitherR2 = constant (and again, we shall deal with this possibility when analyzing
case (4)) or else ω1 = constant and the same comments as above apply here; namely, the
spacetime is class B warped but, as it can be shown, the energy-momentum tensor of this
particular class of type B warped spacetimes (type BS in the classification given in [17]) can
only be {(1, 1)11} (or any degeneracy thereof), see [17] for details, and therefore perfect fluids
(with ρ + p �= 0) are excluded in this case.

(4) R1, R2 are constant. Suppose now that both R1 and R2 are constant. Since there are
normal forms for the two 2-metrics it is, at this point, best to deal with them dropping the
assumption of co-moving velocity for the fluid (but retaining the condition that it is tangent to
(V1, h1)). Thus we shall write

ds2 = (ω1(t, x) + ω2(y, z))
−2[m2(−�2(x, ε) dt2 + dx2) + dy2 + η2(y, k) dz2], (129)

whereR1 = −2ε/m2, ε = −1, 0, 1 with�(x, ε) = sin x, 1, sinh x, respectively andR2 = 2k,
k = −1, 0, 1 and η(y, k) = sin y, 1, sinh y, respectively. Notice that, from the comments at
the end of the previous section, it follows that ε and k cannot be zero simultaneously if we
want to avoid the CF case.

From the field equations (111) and (113), we get ω2y/z = 0 and η2ω2y/y = ω2z/z which
can be easily integrated to give

ω2 =B1 + B0

∫
η(y, k) dy, whenever k �= 0 or ω2 =B1 + B0y + az for k= 0

(130)

where B0, B1 and a are constants.
Now turning our attention back to (111) and (113) we get, on account of (129),

(ρ + p)u2
t − pω−2m2�2 = Gtt , (131)
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(ρ + p)utux = Gtx, (132)

(ρ + p)u2
x + pω−2m2�2 = Gxx, (133)

pω−2 = Gyy. (134)

Further, we also have

�−2u2
t = u2

x +m2ω−2. (135)

Now solving for ρ + p, ut and ux from the above equations and substituting those results
back into (132), we get

ρ + p = ω2[2Gyy +m−2(�−2Gtt −Gxx)], (136)

u2
x = ω−2[Gxx −m2Gyy][2Gyy +m−2(�−2Gtt −Gxx)]−1, (137)

�−2u2
t = ω−2[Gtt�

−2 +m2Gyy][2Gyy +m−2(�−2Gtt −Gxx)]
−1, (138)

�[Gxx −m2Gyy]−1/2[Gtt�
−2 +m2Gyy]−1/2 = Gtx. (139)

Now, equations (136)–(138) provide expressions for ρ + p, ut and ux in terms of the
metric functions �, η and ω1, whereas (139) provides a differential equation for ω1(t, x)

which is the only unknown function; namely,

(ω1 + ω2)�[(ε − km2) + 2(ω1 + ω2)
−1(ω1xx − B0m

2η′)]1/2[−(ε − km2)

+ 2(ω1 + ω2)
−1(�−2ω1tt −�−1�′ω1x + B0m

2η′)]1/2 = 2[ω1tx −�−1�′ω1t ],

(140)

where a prime denotes differentiation with respect to its argument. Notice that if k = 0 then
η′ = 0 and similarly, if ε = 0 then �′ = 0.

Now, it is immediately seen that the right-hand side of the above equation has no
dependence on y or z and therefore one can differentiate with respect to these variables
in order to obtain equations for ω1(t, x). After some straightforward calculations, one gets:

• if ε = 0 or k = 0 then, either ω2(y, z) = constant, in which case the spacetime is warped
thus falling into one of the previously considered cases, or else both k and ε are zero and
the spacetime is CF (both 2-spaces being of curvature zero), all perfect fluid solutions
then being known (see [1]);

• if k �= 0, then necessarily ε = −k and m2 = 1 in which case the resulting spacetime is
CF (since the underlying 2 + 2 reducible spacetime (M, ĝ) is flat) and, again, all perfect
fluid solutions are known [1].

So far, we have presented only the general case, discussing the various possibilities
regarding the curvature of each 2-space and setting up the basic equations in every case which,
upon integration, would yield actual perfect fluid exact solutions, but no attempt has been
made at finding those solutions. In what follows, we shall present some selected examples.

Example 1. First we consider the CF spacetimes of section 4. The general line element for
CF perfect fluid spacetimes can be written in the form [1]

ds2 = V −2(−F 2 dt2 + dx2 + dy2 + dz2) (141)

where for the expanding (� = �(t) �= 0) generalized FRW models V and F are given by

V = H(r2 − 2x0x − 2y0y − 2z0z) + V0 +Hr2
0 , F = 3�−1 dV

dt
, (142)

whereH, x0, y0, z0, V0 are arbitrary functions of t and r2 = x2 + y2 + z2, r2
0 = x2

0 + y2
0 + z2

0.
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For the non-expanding generalized Schwarzschild models V and F are given by

V = 1
2C(1 + r2), F = − 1

2 (Cf4 + 1)r2 + f1x + f2y + f3z + 1
2 (Cf4 − 1), (143)

where f1, . . . , f4 are the arbitrary functions of t. From this it follows that the general CF
spherically symmetric spacetime has a metric which can be put into the form

ds2 = V −2[−(a(t) + r2)2 dt2 + dr2 + r2(dθ2 + sin2 θ dφ2)], (144)

where V is given by (143) for the non-expanding case and by

V = M(t) +N(t)r2 (145)

for the expanding case, M,N being arbitrary functions of t satisfying

Mt = a(t)Nt . (146)

For the case of plane symmetry, the general metric takes the form

ds2 = [M(t) +N(t)x]−2[−(a(t) + x)2 dt2 + dx2 + dy2 + dz2] (147)

whereM,N again satisfy (146).
Note that the underlying 2 + 2 spacetimes for the metrics (144) and (147) are precisely

those given by equations (52) and (63), respectively. Thus, the CKV for these perfect fluid
spacetimes are precisely those given by equations (55) and by equations (64), respectively,
with the conformal scalar, ψ , recalculated for the metrics (144) and (147).

As a simple illustration of this consider the static Schwarzschild interior solution which,
in isotropic coordinates, takes the form

ds2 = 4C−2(1 + r2)−2[−(a + r2)2 dt2 + dr2 + r2(dθ2 + sin2 θ dφ2)], (148)

i.e., metric (52) multiplied by the factor 4C−2(1 + r2)−2r2 and with a,C being non-zero
constants. We will assume a to be positive, i.e. a = k2. Equations (57) and (58) then yield

mi = µi cos 2kt + νi sin 2kt + κi, (149)

ni = k2 (µi cos 2kt + νi sin 2kt − κi) , (150)

where µi, νi, κi (i = 1, 2, 3) are a set of nine arbitrary constants. Equation (59) yields

D = δ cos 2kt + ε sin 2kt + ω, (151)

where δ, ε, ω are three arbitrary constants. From the first two equations in (55) we find that,
apart from the three KV of spherical symmetry given by the constants a1, a2, a3 in the first
equation in (55) and the timelike hypersurface orthogonal KV �ξ = ∂t corresponding to the
constant ω in (151), there are eleven proper CKV given by

ξ0 = (k2 + r2)−1{2kr[(−µ1 sin 2kt + ν1 cos 2kt) sin θ sin φ

+ (µ2 sin 2kt − ν2 cos 2kt) sin θ cosφ

+ (µ3 sin 2kt − ν3 cos 2kt) cos θ ] + (r2 − k2)(δ cos 2kt + ε sin 2kt)},
ξ1 = (k2 − r2){(µ1 cos 2kt + ν1 sin 2kt) sin θ sin φ − (µ2 cos 2kt + ν2 sin 2kt) sin θ cosφ

− (µ3 cos 2kt + ν3 sin 2kt) cos θ} − (r2 + k2)(κ1 sin θ sin φ

− κ2 sin θ cosφ − κ3 cos θ) + 2kr(δ sin 2kt − ε cos 2kt), (152)

ξ2 = r−1(k2 + r2){(µ1 cos 2kt + ν1 sin 2kt) cos θ sin φ − (µ2 cos 2kt + ν2 sin 2kt) cos θ cosφ

+ (µ3 cos 2kt + ν3 sin 2kt) sin θ} − r−1(k2 − r2)(κ1 cos θ sin φ

− κ2 cos θ cosφ + κ3 sin θ),

ξ3 = r−1(k2 + r2) cosec θ {(µ1 cos 2kt + ν1 sin 2kt) cosφ + (µ2 cos 2kt + ν2 sin 2kt) sinφ}
− r−1(k2 − r2) cosec θ(κ1 cosφ + κ2 sin φ).
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The corresponding conformal scalar, calculated for the metric (148) is given by

ψ = 2r−1(1 + r2)−1{(k2 + r4)[−(µ1 cos 2kt + ν1 sin 2kt) sin θ sin φ

+ (µ2 cos 2kt + ν2 sin 2kt) sin θ cosφ + (µ3 cos 2kt + ν3 sin 2kt) cos θ ]

+ (k2 − r4)(κ1 sin θ sin φ − κ2 sin θ cosφ − κ3 cos θ)

+ kr(r2 − 1)(δ sin 2kt − ε cos 2kt)}. (153)

Example 2. These examples illustrate the case in which both 2-spaces are of constant curvature
but the spacetime is not CF, i.e., the first entry in table 1, or in the foregoing discussion, the
case of a perfect fluid spacetime with both R1 and R2 constant. As follows from our previous
analysis of this case, the spacetime (M, g) has to be warped, that is, the conformal factor
can only depend on the coordinates of one of the 2-spaces, namely (V1, h1). The underlying
2 + 2 spacetime has (V1, h1) given by (82) and (V2, h2) by (104) with k = +1 and so admits
the three KV of spherical symmetry together with the three KV given by (82).

(1) Consider the spacetime with metric

ds2 = cosh−2(r/
√

2)(−dt2 + dr2 + dθ2 + sin2 θ dφ2), (154)

which represents a perfect fluid, with co-moving velocity, density and pressure given by

µ = 1
2 (cosh2(r/

√
2) + 3), p = 1

2 (cosh2(r/
√

2)− 3),

thus satisfying the dominant energy condition everywhere. The three KV of spherical
symmetry together with �ξ1 of (82) remain as KV while �ξ2 and �ξ3 become proper CKV
with ψ2 = −(√2)−1 tanh(r/

√
2) and ψ3 = −(√2)−1t tanh(r/

√
2).

(2) The spacetime

ds2 = exp
[

1
2 (t

2 − r2)
]
(−dt2 + dr2 + dθ2 + sin2 θ dφ2), (155)

represents a perfect fluid with tilting velocity given by

�u = (t2 − r2)−1/2 exp
[− 1

4 (t
2 − r2)

]
(t∂t + r∂r)

and density and pressure

µ = 1
4 exp

[− 1
2 (t

2 − r2)
]

[3(t2 − r2) + 8],

p = − 1
4 exp

[− 1
2 (t

2 − r2)
]

[(t2 − r2) + 8].

The dominant energy condition is satisfied everywhere in the region t > r although p is
always negative there. In this example �ξ3 of (82) remains a KV while �ξ1 and �ξ2 become
proper CKV with ψ1 = −(1/2)t and ψ2 = (1/2)r .

Example 3. Spacetimes admitting four KV and one HV are easily found (see table 1). First
consider the plane symmetric 2 + 2 spacetime given by

d�2 = x2(ψ−1)(−dt2 + dx2) + dy2 + dz2. (156)

Redefining the coordinate x, rescaling t, and taking ψ = 1/4 for this example, results in the
metric

d�2 = −x−6 dt2 + dx2 + dy2 + dz2, (157)

which admits the four KV

�ξ1 = ∂t , �ξ2 = ∂y, �ξ3 = ∂z, �ξ4 = z∂y − y∂z (158)

and the HV

�η = 4t∂t + x∂x + y∂y + z∂z (159)

with homothetic constant ψ = 1.
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(1) The spacetime with metric

ds2 = x4 d�2, (160)

is a vacuum solution. The four KV and HV above remain as such but now ψ = 3
for (159).

(2) A (co-moving) perfect fluid spacetime with (157) as its underlying 2 + 2 spacetime has a
metric

ds2 = (a2x3 + b2x−2)−2 d�2, (161)

its density and pressure being given by

µ = 15a2x−1(4b2 − a2x5), p = 15a2x−1(3a2x5 − 2b2).

The dominant energy condition is satisfied for x5 < 3b2/(2a2). The four KV in (158)
remain as KV, but the HV �η becomes a CKV with ψ = (3b2 − 2a2x5)(a2x5 + b2)−1.

Non-static examples of this type can be found by considering the plane-symmetric 2 + 2
spacetime

d�2 = −t−1 dt2 + t−1 dx2 + dy2 + dz2 (162)

which admits 4 KV, �ξ2, �ξ3, �ξ4 as before (see (158)) but now �ξ1 = ∂x , the HV being �η = 2t∂t +
2x∂x + y∂y + z∂z with ψ = 1.

(1) The spacetime

ds2 = t d�2 (163)

is a Kasner-type perfect fluid solution with µ = p = (1/4)t−2. In this case �η remains a
HV but with ψ = 2.

(2) The spacetime

ds2 = [a(x2 − 2t2) + b]−2t d�2, (164)

where a, b are non-zero constants, is also a perfect fluid solution. In this case �ξ1 and �η
become CKVs with conformal factors ψ = −2ax[a(x2 − 2t2) + b]−1 and ψ = −2 +
4b[a(x2 − 2t2) + b]−1, respectively.

(3) A further perfect fluid solution is found by considering the spacetime

ds2 = t sec2 kx d�2, (165)

where k is an arbitrary non-zero constant. As before, �ξ1 and �η become CKVs with
conformal factors ψ = k tan kx and ψ = 2 + 2kx tan kx, respectively.

Example 4. We note briefly that there are many spacetimes admitting four KV only. These
include all the static spherically and plane symmetric spacetimes that admit no HV or CKV such
as the Schwarzschild solution, the Reissner–Nordström solution and their plane symmetric
counterparts (all of them are instances of warped spacetimes).

Example 5. We now consider spacetimes admitting two KV and one HV.

(1) From table 1, we take as the starting point for the line element of the underlying 2 + 2
reducible spacetime

d�2 = x2(ψ−1)(−dt2 + dx2) + y2(ψ−1)(dy2 + dz2), (166)

and next make a coordinate transformation similar to that between (156) and (157) to
obtain

d�2 = −x−6 dt2 + dx2 + dy2 + y−6 dz2 (167)
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which admits the two KV �ξ1 = ∂t and �ξ2 = ∂z and the HV �η = 4t∂t + x∂x + y∂y + 4z∂z
with ψ = 1. Now, the spacetime with metric

ds2 = (x−2 + y−2)−2 d�2 (168)

is a vacuum spacetime. The KV and HV remain as such but now for �η we have ψ = 3.
(2) A second such spacetime, again vacuum, has the underlying 2 + 2 metric

d�2 = −x−6 dt2 + t−6 dx2 + z−6 dy2 + y−6 dz2 (169)

which admits the two KV

�ξ1 = (t9 + 3x8t)∂t + (x9 + 3t8x)∂x, �ξ2 = (y9 − 3z8y)∂y + (−z9 + 3y8z)∂z

and the HV �η = t∂t + x∂x + y∂y + z∂z with homothetic constant ψ = −2. The vacuum
spacetime has metric

ds2 = (−x6t−2 + t6x−2 + z6y−2 + y6z−2)−2 d�2 (170)

and the KV and HV remain as such with ψ = −6 for �η.

7. Conclusion

We have investigated spacetimes which are conformally related to 2 + 2 reducible spacetimes
and have given an invariant characterization for them (see theorem 1). Also, we have collected
and proved a number of results regarding KV and HV in two-dimensional spaces with metrics
of arbitrary signature; most of them were known previously but a few others, as far as we
are aware of, were not. A distinction has been made between the situation in which the
underlying 2 + 2 reducible spacetime is conformally flat and those cases in which it is not,
showing that, in the latter, no CKV are admitted and also that their KV and/or HV are simply
the ones admitted by the two 2-spaces whose product gives rise to the reducible spacetime
(plus a certain condition regarding the homothetic constants in the case in which a HV exists)
(see [6]). Taking all this into account, a classification of conformally reducible spacetimes in
terms of their conformal algebra (or equivalently, in terms of the conformal and/or homothetic
algebra of the underlying reducible spacetime) is given. All this is done in section 2.

Section 3 deals with the issue of isometries and homotheties with fixed points in two-
dimensional spaces of arbitrary signature; again, most of the results were essentially known
[9, 8, 11] but were scattered in the literature. Further, we provide normal forms for the metrics
of those 2-spaces holding in a coordinate neighbourhood containing the fixed point. Related
to this, an example is presented of a spacetime which admits a groupG4 of isometries acting
everywhere on three-dimensional orbits except for one given two-dimensional orbit, a fact that
does not contradict Fubini’s theorem as it would appear at first sight.

Section 4 is devoted to the study of conformally flat spacetimes; normal forms for the
metric of the 2 + 2 reducible spacetime are given in various coordinate gauges, and expressions
for the 15 generators of the conformal algebra are also provided.

In section 5 we study in detail non-conformally flat spacetimes from the point of view of
their classification in terms of the homothetic algebra of the underlying reducible spacetime
(conformal algebra of the conformally reducible one), such as it is put forward in section 2.
Again, normal forms for both the line elements and generators of the algebras are given
(sometimes in more than one coordinate gauge). All the relevant information is presented in
two tables.

Finally, in section 6, some examples are presented and some others that already exist in
the literature are referred to; in so doing, we have concentrated on just the case of perfect fluid
spacetimes (although some vacuum solutions are also given). Besides the explicit examples,
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a thorough discussion of the general case (with the only limiting assumption being that the
velocity of the fluid is tangent to one of the 2-spaces) is also provided.

The results of this study enable us to classify this important class of spacetimes in terms of
their conformal algebras and, conversely, allows us to find physically meaningful spacetimes
by assuming the existence of one of the specific sets of symmetries associated with such
spacetimes.
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