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We discuss certain general features of type B warped spacetimes which have important conse-
quences on the material content they may admit and its associated dynamics. We show that, for
Warped B spacetimes, if shear and anisotropy are nonvanishing, they have to be proportional. We
also study some of the physics related to the warping factor and of the underlying decomposable
metric. Finally we explore the only possible cases compatible with a type B Warped geometry
which satisfy the dominant energy conditions. As an example of the above mentioned consequences
we consider a radiating fluid and two non-spherically symmetric metrics which depend upon an
arbitrary parameter a, such that for a = 0 spherical symmetry is recovered in both cases.
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I. INTRODUCTION.

Given two metric manifolds (M1, h1) and (M2, h2) and
given a smooth real function θ : M1 → R, (warping func-
tion), one can build a new metric manifold (M, g) by
setting M = M1 ×M2 and

g = π∗1h1 ⊗ e2θπ∗2h2,

where π1, π2 above are the canonical projections onto M1

and M2 respectively, such an structure is called warped
product manifold, and in the case in which (M, g) is
a spacetime (i.e.: dimM = 4 and g a Lorentz met-
ric) it is called a warped product spacetime (or sim-
ply warped spacetime). One of the simplest examples of
warped spacetime is provided by the Friedman-Robinson-
Walker universe. But the warped structure accommo-
dates a large number of metrics in General Relativity,
such as Bertotti-Robinson, Robertson-Walker, Schwarz-
schild, Reissner-Nordstrom, de Sitter, etc. (see [1] and
references therein). Also warped spacetimes can be re-
garded, in some sense, as generalizations of locally de-
composable spacetimes in the sense usually meant in gen-
eral relativity ([2]).
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The importance of warped spacetimes is that their
geometry and, as we will presently show, also its
physics, is directly related to the properties of their
lower-dimensional factors, which are generally easier to
study. The warped product construction provides a use-
ful method for studying large classes of spacetimes. If the
warping factor is constant the spacetime is decomposable,
such as the Bertotti-Robinson spacetime or the Einstein
static universe. Warped product spacetimes with non-
constant warping factors are much richer and include
such well known examples such as all the spherically,
plane and hyperbolically symmetric spacetimes (there-
fore including Schwarzshild solution), Friedmann Robert-
son Walker cosmologies, all the static spacetimes, etc.
(see [3] and references therein).

Anisotropy and shear properties of fluids in General
Relativity have been extensively studied. Shearfree and
non shearfree spacetimes have been widely considered in
the literature (see for example [4]). On the other hand,
the assumption of local anisotropy of pressure (i.e. non
pascalian fluids where radial and tangential pressures are
different, Pr 6= P⊥), has been proven to be very useful in
the study of relativistic compact objects. Although the
perfect pascalian fluid assumption (i.e. Pr = P⊥) is sup-
ported by solid observational and theoretical grounds, an
increasing amount of theoretical evidence strongly sug-
gests that, for certain density ranges, a variety of very in-
teresting physical phenomena may take place giving rise
to local anisotropy (see [5] and references therein).

The purpose of this paper is twofold, on the one hand
we present and discuss in detail certain general features
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of type B warped spacetimes which have important con-
sequences on the material content they may admit and
its associated dynamics; on the other hand, a thorough
study of the dissipative anisotropic fluid dynamics in such
spacetimes is carried out, with particular emphasis put
on a set of geometrical and physical variables which ap-
pear to play a special role in the evolution of such sys-
tems.

In this paper, it will be shown how the local anisotropy
of pressures and the shear of relevant velocity fields are
closely related; in fact, and for BT warped spacetimes,
we will show that if both, shear and anisotropy, are non-
vanishing they have to be proportional. We shall also
show how isotropic and anisotropic physics are related
to the warping factor or to the conformally related de-
composable metric. Further, we will explore the possi-
ble material contents that are compatible with a type
BT warped geometry and satisfy the dominant energy
condition. As an example of the above mentioned con-
sequences we shall consider a radiating fluid. Radiative
hydrodynamics is a theory of fundamental importance in
astrophysics, cosmology, and plasma physics. It has be-
came a very active field with a wide variety of application
areas ranging from Plasma laboratory physics, to astro-
physical and cosmological scenarios (see the comprehen-
sive treatise of D. Mihalas [6] and his recently updated
bibliography [7]).

The mathematical model of radiative hydrodynamics
consists of the equations for a two-component medium:
matter and radiation, which interact by exchanging en-
ergy and momentum; i.e.: anisotropic matter plus radi-
ation (photon/neutrinos) which can be described by the
total stress-energy tensor Tab = TMab +TRab where the ma-
terial part is described by TMab , and T̂Rab is then the cor-
responding term for the radiation field. The interaction
between matter and radiation is described by a radiative
transfer equation through the absorption and emission
terms, describing the rate at which matter absorbs and
emits photons, and by integral terms describing the scat-
tering of radiation (photons/neutrinos) off matter.

The paper is organized as follows: the first section con-
tains a brief account of the definitions and most imme-
diate properties of warped spacetimes, especially those
of the type B, and introduces the notation and conven-
tions used throughout the paper. In Section III some
general results regarding the energy-momentum tensor
of this class of spacetimes are proven and their impli-
cations on the physical content and material dynamics
are pointed out relating them to the issues discussed in
section II; these results complement and extend those in
[8]. Section IV displays some of the consequences of the
geometric structure of this type of spacetimes in a simple
and, we believe, useful form for the case of a radiating
fluid. The restrictions imposed by the energy conditions
are explored and illustrated by this simple and useful ex-
ample. In section ?? we provide a detailed study of the
dynamics of dissipative, anisotropic fluids in these geome-
tries, thus generalizing the results by Herrera et al. [9]

in the spherically symmetric case. Finally, in section VI
we summarize the main results and conclusions.

II. PRELIMINARY RESULTS, NOTATION AND
CONVENTIONS.

In this section we set up the notation and summarize
some of the results to be used in the remainder of the
paper. We recall the basic definitions regarding warped
spacetimes and introduce the concepts of adapted ob-
servers and adapted tetrads. We also explore the struc-
ture of the energy-momentum tensors which are compat-
ible with a type BT warped geometry.

A. Warped and decomposable spacetimes

As mentioned in the previous section, given two met-
ric manifolds (M1, h1) and (M2, h2) and a smooth real
function θ : M1 → R, (warping function), a new metric
manifold (warped product manifold) (M, g) can be built
where M = M1 ×M2 and

g = π∗1h1 ⊗ e2θπ∗2h2, (1)

with π1, π2 the canonical projections onto M1 and M2

respectively (see [10], [11]). Where there is no risk of
confusion; we shall omit the projections π1, π2 and write
from now on:

g = h1 ⊗ e2θh2. (2)

Notice that by pulling out the warping factor, we can
always rewrite the metric as

g = e2θ
(
e−2θh1 ⊗ h2

) ≡ e2θ (h′1 ⊗ h2) (3)

where h′1 = e−2θh1 is also a metric on M1; thus, a warped
manifold is always conformally related to a decomposable
one (see [4]).

If dimM1 + dimM2 = 4 and g has Lorentz signa-
ture (i.e.: one of the manifolds (Mi, hi) is Lorentz and
the other Riemann), (M, g) is usually referred to as a
warped spacetime; see [1] and [12] where (local) invariant
characterizations are provided along with a classification
scheme and a detailed study of the isometries that such
spacetimes may admit. If one has either dimM1 = 1
or dimM2 = 1, the spacetime is said to be of class A,
whereas if dimM1 = dimM2 = 2 it is said to be of class
B, which is the class we shall be interested in. Class B
is further subdivided into four classes according to the
gradient of the warping function: BT if it is non-null and
everywhere tangent to the Lorentz submanifold, BR if it
is null (hence also tangent to the Lorentz submanifold),
BS if it is tangent to the Riemann submanifold, and BP if
it is zero, i.e.: θ = constant which corresponds to (M, g)
being locally decomposable.



3

Of all the above possibilities we shall only be con-
cerned in this paper with class BT . Thus, and with-
out loss of generality we shall assume that (M1, h1) is
Lorentz (coordinates xA = (x0, x1)) and (M2, h2) is Rie-
mann (coordinates xα = (x2, x3)); the warping func-
tion θ then being θ(x0, x1). An adapted coordinate
chart for the whole spacetime manifold M will be de-
noted as xa = (xA, xα) a = 0, . . . , 3 where xA and xα

are those defined previously. We shall always use such
adapted charts, furthermore and in order to ease out the
notation, we shall use the following coordinate names:
x0 = t, x1 = x, x2 = y, x3 = z. At this point, it is
worthwhile noticing that spherically, plane and hyper-
bolically symmetric spacetimes are all special instances
of BT warped spacetimes.

In what follows, we shall write the spacetime metric in
the form (3), i.e.: explicitly conformally decomposable,
and we shall put exp θ = ω−1 for convenience; further,
we shall drop primes in (3) as well as the subscripts 1 and
2 in the metrics of the submanifolds M1 and M2 where
there is no risk of confusion, thus the line element will be
written as

ds2 = ω−2(xD)
[
hAB(xD)dxAdxB

+ hαβ(xγ)dxαdxβ
]

(4)

i.e.

ds2 ≡ ω−2dŝ2 ⇔ gab = ω−2ĝab (5)

where ĝ is the underlying conformally related, decompos-
able metric with line element

dŝ2 = hAB(xD)dxAdxB + hαβ(xγ)dxαdxβ . (6)

Since hAB and hαβ are two two-metrics, one can always
choose the coordinates xA and xα so that both take di-
agonal forms (even explicitly conformally flat); thus, and
in order to fix our notation further, we shall most often
use in our calculations the following form of the metric:

ds2 = ω−2(xD)
[−A2(t, x)dt2 +B2(t, x)dx2

+ e2Q(y,z)(dy2 + dz2)
]

(7)

We shall denote the covariant derivative with respect to
the connection associated with g by a semicolon (or also
∇), whereas that associated with ĝ will be noted by a
stroke (or alternatively ∇̂); accordingly, tensors defined
in (M, ĝ) or referred to the metric ĝ will be noted with a
hat ‘̂ ’.

B. Adapted observers and tetrads

A further important remark concerns observers (con-
gruences of timelike curves) in these spacetimes. A future
directed unit timelike vector field ~̂v will be said to be an

adapted observer in (M, ĝ) if it is hypersurface orthogo-
nal and everywhere tangent to M1. These requirements
are equivalent to saying that, in an adapted coordinate
chart its components are v̂a = (v̂0(xD), v̂1(xD), 0, 0). It
is easy to see that these observers always exist and that
the coordinates xD may be chosen so that v̂1 = 0 while
the metric preserves its diagonal form. We shall con-
struct an adapted tetrad in (M, ĝ) by choosing a unit
spacelike vector field ~̂p which is everywhere tangent to
M1 and orthogonal to ~̂v; i.e.: p̂a = (p̂0(xD), p̂1(xD), 0, 0),
and two other unit spacelike vector fields, ~̂y, ~̂z, which are
also hypersurface orthogonal, tangent to M2 and mutu-
ally orthogonal yaza = 0 (hence in an adapted chart:
ŷa = (0, 0, ŷ2(xγ), ŷ3(xγ)), and something similar for ẑa,
also note that vaya = . . . = paza = 0). In terms of this
adapted tetrad one has

hAB = −v̂Av̂B + p̂Ap̂B , hαβ = ŷαŷβ + ẑαẑβ . (8)

and a trivial calculation now shows that

v̂A/B = −ap̂Av̂B + ϑp̂Ap̂B , v̂α/β = 0 (9)

p̂A/B = −av̂Av̂B + ϑv̂Ap̂B , p̂α/β = 0 (10)

Notice that ϑ and a are respectively, the expansion and
the acceleration of ~̂v in (M, ĝ). Using the above expres-
sions, the shear associated with ~̂v turns out to be (recall
that ω̂ab = 0):

σ̂ab = ϑ

(
p̂ap̂b − 1

3
ĥab

)
, with ĥab ≡ ĝab + v̂av̂b, (11)

We next define an adapted observer in (M, g), ~v to be
~v = ω~̂v, where ~̂v is any adapted observer in the decom-
posable spacetime (M, ĝ) as defined above. Note that ~v
is also hypersurface orthogonal and tangent everywhere
to M1, and its components, in any adapted chart, will
be functions of the coordinates xD alone. We construct
the rest of an adapted tetrad in (M, g) simply as ~p = ω~̂p,
~y = ω~̂y, and ~z = ω~̂z, where the hatted vectors form an
adapted tetrad in (M, ĝ) as defined above. In terms of
an adapted tetrad:

gAB = −vAvB + pApB , gαβ = yαyβ + zαzβ . (12)

Regarding the shear and vorticity of ~v one has [4]:

σab = ω−1σ̂ab = ωϑ
(
papb − 1

3hab
)

hab ≡ gab + vavb,

ωab = ω−1ω̂ab = 0





(13)

¿From a geometric point of view, adapted observers
and tetrads, seem very natural in both warped and con-
formally related decomposable spacetimes. As we shall
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see early on in the next section, they also arise very nat-
urally from physical considerations.

Notice that one could have observers that, while being
tangent to M1 they are not hypersurface orthogonal, e.g.:
in the coordinates introduced in (7), consider

~̂u = f∂t +B−1[A2f2 − 1]1/2∂x (14)

where f = f(xD, xγ) depends on all four coordinates,
it is immediate to check that this vector field has non-
vanishing vorticity (indeed its components depend on co-
ordinates in both M1 and M2 in any adapted chart).
We shall briefly return to this point later on, but as al-
ready hinted above, such observers are somehow unnat-
ural from a physical viewpoint.

C. Einstein Tensor and Warped Spacetimes

The geometry of the decomposable spacetime (M, ĝ)
imposes certain restrictions that will become important
later on in our study of hydrodynamics in warped space-
times of this class and that have to do with the nat-
ural occurrence of the adapted tetrads and observers dis-
cussed above.

With the conventions and notation introduced so far,
it turns out (see e.g. [13]) that the Einstein tensor in
(M, g) can be written as

Gab = Ĝab + 2ω−1ωa/b

− 2ω−1ĝcd
(
ωc/d −

3
2
ω−1ωcωd

)
ĝab. (15)

Note that R̂ab is such that

R̂AB =
1
2
R1hAB , R̂Aα = 0, R̂αβ =

1
2
R2hαβ , (16)

where R1 and R2 are the Ricci scalars associated with the
two-metrics hAB and hαβ respectively. The Ricci scalar
R̂ is R̂ = R1 +R2, hence

ĜAB = − 1
2R2hAB ,

ĜAβ = 0,

Ĝαβ = − 1
2R1hαβ .





(17)

Furthermore

ωA/α = ωα/A = 0, ωα/β = 0, (18)

and taking (15) into account, it follows that Gab has box
diagonal form:

Gab =
(
GAB 0

0 Gαβ

)
, (19)

with

GAB = − 1
2R2(xγ)hAB + SAB(xD)

GAβ = 0

Gαβ = L(xD)hαβ





(20)

where SAB (and therefore GAB) is non-diagonal in the
general case.

At this point, it is interesting to notice that, on account
of the form of Ĝab, it follows that any vector field ~X tan-
gent to M1 that is an eigenvector of Gab (or equivalently
of Rab) will automatically be an eigenvector of ωa/b and
viceversa; and that any vector field ~Y tangent to M2 that
is an eigenvector of Gab (or equivalently of Rab) will also
automatically be an eigenvector of ωa/b and viceversa; in
the next section we will show that all eigenvectors of the
Einstein tensor are necessarily tangent to M1 or to M2,
as the block diagonal structure suggests.

Also notice that almost all the physical properties of
the spacetime under consideration are somehow encoded
in the warping factor ω, since the contribution to the
energy momentum tensor Tab = Gab of the underlying
decomposable spacetime is simply a shift in the eigenval-
ues.

We shall dedicate the next section to study the allowed
algebraic types of the Einstein tensor, which through Ein-
stein’s field equations will provide information on the ma-
terial content allowed for such spacetimes.

III. MATERIAL CONTENT OF BT WARPED
SPACETIMES.

A. Observers and Matter content

Given a second order symmetric tensor such as the
energy-momentum tensor Tab in an arbitrary spacetime
(M, g), and given an arbitrary unit timelike vector field
~v (which we shall assume future oriented) defined on M ,
one can always decompose Tab as follows

Tab = ρ̃vavb + Phab + Πab + vaFb + Favb, (21)

where hab is the projector orthogonal to ~v, that is: hab =
gab+vavb, and the rest of quantities appearing above are

ρ̃ = Tabv
avb, P = 1

3h
abTab

Fa = −h ca Tcdvd,

Πab = h ca h
d
b (Tcd − Pgcd).





(22)

If Tab represents the material content of the spacetime
and ~v is the four-velocity of some observer, then ρ̃ is
the energy density as measured by such an observer, P is
called the isotropic pressure (measured by that observer),
and Fa and Πab are, respectively, the momentum flux
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and the anisotropic pressure tensor that the observer ~v
measures. Notice that

Fava = gabΠab = Πabv
b = 0. (23)

Recalling now (19), one has that in the case of BT
warped spacetimes and working in an adapted (but oth-
erwise arbitrary) chart, the Einstein tensor has got this
box diagonal form. A direct inspection of the functional
dependence of the components of Gab above shows that
given any adapted tetrad ~v, ~p, ~y, ~z to (M, g), the Ein-
stein, or equivalently, the energy-momentum tensor Tab,
may be written as

Gab = Tab = ρvavb + F(vapb + pavb)
+ P1papb + P2(yayb + zazb), (24)

for some functions

ρ = ω2
(

1
2R2(xγ) + S1(xD)

)
,

P1 = ω2
(− 1

2R2(xγ) + S3(xD)
)
,

F = F(xD) and P2 = P2(xD)





(25)

Moreover, if one defines the null vector ka = va + pa, the
above expression can be rewritten as

Gab = Tab = Fkakb + (ρ−F)vavb+
+ (P1 −F)papb + P2(yayb + zazb). (26)

Physically, this can be interpreted by saying that the
material content of one such spacetime can always be rep-
resented either as an anisotropic fluid with four-velocity
~v (comoving with an adapted observer), density ρ, pres-
sures P1 and P2, and momentum flow Fpa (equation
(24)); or else (equation (26)) as the sum of an anisotropic
fluid with the same four-velocity ~v, density ρ− F , pres-
sures P⊥ = P1 − F and P2, plus a null radiation field
directed along ~k carrying an energy density F . This split-
ting of the energy momentum-tensor (especially the last
one (26)) has been extensively used in the spherically
symmetric context: see [9] and references cited therein.

It is also interesting to note that the above decompo-
sitions are highly non-unique in the sense that Gab or
Tab can be split in a similar manner for all observers v

′a

whose world lines are tangent to M1 everywhere (be they
adapted, i.e.: ~v hypersurface orthogonal, or not), that is;
whose four velocity is v

′a = coshφva+sinhφpa for an ar-
bitrary function φ(xD, xγ), then p

′a = sinhφva+coshφpa

and also k
′a = v

′a + p
′a. If φ depends on xγ (i.e.: the

observer ~v′ is non-adapted) the corresponding density
ρ′, pressures P ′1, P

′
2, etc. will not have the functional

form (25), but if φ = φ(xD) alone the resulting observer
and tetrad are also adapted and then (25) holds for the
primed quantities ρ′, etc.

B. The anisotropic pressure tensor and the shear
tensor

Writing Gab in equations (24, 26) in the form of equa-
tion (21) and using the adapted observer ~v to perform
the decomposition, one has:

Tab = ρ̃vavb + Phab + Πab + vaFb + Favb (27)

where

ρ̃ = ρ, P = 1
3 (P1 + 2P2),

Fa = Fpa, hab = papb + yayb + zazb,

Πab = 1
3 (P1 − P2) (2papb − yayb − zazb)

or Πab ≡ Π
(
papb − 1

3hab
)

with Π = P1 − P2.





(28)

¿From (13) and the expression of Πab given above, it
is now immediate to see that the shear tensor σab of ~v
is proportional to the anisotropic pressure tensor Πab,
whenever both tensors are non vanishing:

Πab = λσab, with λ = Π−1ωϑ. (29)

If λ < 0, it can be interpreted as a shear viscosity co-
efficient: λ = −2η, η > 0 being the so called kinematic
viscosity coefficient, and then viscosity can be seen as the
source of anisotropy in the pressure.

For any other adapted observer ~v′, with

v
′a = coshφ va + sinhφ pa, p

′a = sinhφ va + coshφ pa

where φ = φ(xD) one obtains expressions similar to those
above:

ρ̃′ = ρ cosh2 φ− 2F sinhφ coshφ+ P1 sinh2 φ,

P ′ =
1
3

(P ′1 + 2P ′2) ,

P ′1 = ρ sinh2 φ− 2F sinhφ coshφ+ P1 cosh2 φ,

P ′2 = P2, F ′a = F ′p′a,

F ′ = F cosh 2φ− 1
2

(ρ+ P1) sinh 2φ,

h′ab = p′ap
′
b + yayb + zazb,

Πab = Π′
(
p′ap
′
b −

1
3
hab

)
, Π′ = P ′1 − P ′2,

where the primed magnitudes are those measured by ~v′.
Notice that one also has Π′ab = λ′σ′ab; thus, for all the
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adapted observers the anisotropic pressure tensor is pro-
portional to their shear tensor. This proportionality can
be tracked back to the decomposable spacetime (M, ĝ);
to this end consider the adapted tetrad and adapted ob-
server in (M, ĝ) which are conformally related to those
in (M, g); i.e.: ~̂v = ω−1~v, . . . , ~̂z = ω−1~z (see previous
section); from (17) we get

ĜAB = − 1
2R2(−v̂Av̂B + p̂Ap̂B),

ĜAβ = 0

Ĝαβ = − 1
2R1(ŷαŷβ + ẑαẑβ)





(30)

which may also be decomposed with respect to the ob-
server ~̂v as in (21) thus getting

Ĝab = T̂ab = ρ̂v̂av̂b + P̂ ĥab + Π̂ab + F̂av̂b + v̂aF̂b, (31)

with

ρ̂ = 1
2R2, P̂ = 1

3

(− 1
2R2 +R1

)

F̂a = 0, Π̂ab = Π̂
(
p̂Ap̂B − 1

3 ĥab

)





(32)

where Π̂ = 1
2 (R1 − R2). From the above expression for

Π̂ab and (11) one has Π̂ab = λ̂σ̂ab, and recalling that
σab = ωσ̂ab and Πab = λσab, one finally concludes

Πab ∝ Π̂ab. (33)

The true equation of state that describes the proper-
ties of matter at densities higher than nuclear (≈ 1014

gr/cm3) is essentially unknown due to our inability to
verify the microphysics of nuclear matter at such high
densities [14]. Having this uncertainty in mind, it seems
reasonable to explore some possible equations of state for
the local anisotropy starting from a simple geometrical
object as is the shear tensor σab. The proportionality of
the anisotropic and the shear tensors opens the possibil-
ity to devise such equations of state .

Needless to say, a decomposable spacetime of these
characteristics does not represent itself any reasonable
physical content (notice that ρ̂ + P̂1 = 0), however, it is
still interesting to realize how this decomposable struc-
ture somehow ‘generates’ anisotropy in the pressures in
the physically realistic warped spacetime. This is in con-
trast with the warping factor ω, that contributes to what
one could roughly call the ‘isotropic physics’, namely: the
energy density ρ and the isotropic pressure P .

C. Eigenvector structure and energy conditions.

Let us next see how the assumed geometry (warped
spacetime) imposes certain restrictions on the material
content, and how this shows up in the algebraic (eigen-
vector/eigenvalue) structure of the Einstein tensor.

We begin by noting that the eigenvectors of the Ein-
stein tensor Gab are the same as those of the Ricci tensor
Rab, their corresponding eigenvalues being ‘shifted’ by an
amount − 1

2R, where R is the Ricci scalar associated with
g, furthermore, on account of the form of Ĝab (see the
remarks at the end of the preceding section) and equa-
tion (15), it follows that these eigenvectors coincide with
those of the tensor ωa/b.

Thus, the three tensors Gab, Rab and ωa/b all have the
same Segre type [15] with the same eigenvectors. For
convenience we shall work with the Ricci tensor in an
adapted coordinate chart, thus we have

Rab =
(
RAB 0

0 Rαβ

)
, (34)

with

RAB = RAB(xD) and Rαβ = f(xD, xγ)δαβ .

The characteristic polynomial of Rab is then

p(x) = det [Rab − xδab] ⇒

p(x) = det
(
RAB(xD)− xδAB

)
(x− f(xD, xγ))2 (35)

and therefore there is one repeated eigenvalue x = f
that corresponds to two spacelike eigenvectors tangent
to M2 that can be chosen unit and mutually orthogo-
nal, say ~y and ~z; one therefore has in an adapted chart:
ya = (0, 0, y2, y3) and za = (0, 0, z2, z3) (furthermore: in
a chart in which h2 takes diagonal form ya = (0, 0, y2, 0)
and za = (0, 0, 0, z3)). The remaining eigenvalues are the
roots of the second degree polynomial

q(x) = det
(
RAB(xD)− xδAB

)
= x2 − tRx+ dR, (36)

where tR = R0
0 +R1

1 is the trace of the matrix (RAB) and
dR is its determinant. Some elementary algebra consid-
erations lead to the following three possibilities:

a. The polynomial q(x) has two real roots. If q(x)
has two real roots, say λ1 and λ2, they will be functions
on M1 (i.e.: functions of the coordinates xD) since RAB
are also functions on M1. The necessary and sufficient
condition for this to happen is that

t2R − 4dR > 0, (37)

or, on account of our previous considerations on eigen-
vector/eigenvalue structure of RAB and ωA/B , that

t2ω − 4dω > 0, (38)

with

tω = trace
(
ωA/B

)
and dω = det

(
ωA/B

)
,

which involves only covariant derivatives of the warping
function ω taken with respect to the connection of the
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decomposable metric. This corresponds to RAB being of
the diagonal Segre type {1, 1} or equivalently to the exis-
tence of two non-null, mutually orthogonal eigenvectors
of RAB (and therefore eigenvectors of Rab), say ~u and ~n
that may be chosen unit timelike and unit spacelike re-
spectively, which are tangent to M1 at every point and
such that, in the basis of the tangent space to M1 formed
by ~u and ~n, the Jordan form of the matrix (RAB) is

RAB =
(
λ1 0
0 λ2

)
. (39)

In the adapted coordinate chart under consideration,
these two eigenvectors are part of an adapted tetrad
(i.e.: ua = (u0, u1, 0, 0) and na = (n0, n1, 0, 0) with
ua = ua(xD), na = na(xD)), and in particular ~u cor-
responds to an adapted observer.

¿From the conditions −uaua = nana = 1, uana = 0 it
is easy to see that a function ψ(xD) exists such that, for
the coordinate gauge introduced in (7)

ua = (A−1 coshψ,B−1 sinhψ, 0, 0),

na = (A−1 sinhψ,B−1 coshψ, 0, 0).



 (40)

and the eigenvector equations for ~u and ~n readily imply
that

tanh 2ψ =
−2ABG

t
x

Gtt −Gxx
. (41)

Further, a coordinate change in M1 exists such that ψ =
0 and the metric still retains its diagonal form (i.e.: it
still can be written as in (7)). Such an specific coordinate
gauge will be called comoving ; at this point though, we
shall not assume it yet.

¿From our previous remarks, it follows that the Ricci
tensor and hence the Einstein tensor, are of the diagonal
Segre type with a double spacelike eigenvalue degeneracy
{1, 1(11)}, that is:

Gab = ρuaub + p1nanb + p2 (yayb + zazb) , (42)

which amounts to saying that it takes a diagonal ma-
trix form in the (pseudo-orthonormal) adapted tetrad
ua, na, ya, za. The quantities ρ, p1, p2 are given by

ρ =
(

1
2
R2 + S

)
ω2 + 2ωωA/BûAûB , (43)

p1 = −
(

1
2
R2 + S

)
ω2 + 2ωωA/Bn̂An̂B , (44)

p2 = −
(

1
2
R1 + S

)
ω2, (45)

where S ≡ ω−1hMN (2ωM/N − 3ω−1ωMωN ), and ûa =
ωua, n̂a = ωna. In the comoving gauge alluded to above,

the coordinate components of the Einstein tensor also
take a matrix diagonal form (i.e.: Gtx = ωt/x, etc.), and
ûa = (A−1, 0, 0, 0), n̂a = (0, B−1, 0, 0). Einstein’s field
equations imply then that the energy-momentum tensor
Tab takes that same form. The dominant energy condi-
tion is satisfied if and only if ρ ≥ 0 and −ρ ≤ pi ≤ ρ for
i = 1, 2.

Physically, this can be interpreted by saying that there
exists one (adapted) observer that moves with four-
velocity ~u such that measures a vanishing momentum
flow, energy density ρ and pressures p1 in the direction ~n
(which we shall call radial direction/pressure), and p2 in
any other spatial direction perpendicular to ~n (tangential
directions/pressures). The use of the names ‘radial’ and
‘tangential’ is justified by thinking of the situation arising
in spherically symmetric spacetimes (which are particu-
lar instances of those studied here), where the direction ~n
is perpendicular to the orbits (spheres) and can therefore
be identified with the radial direction, whereas the spa-
tial directions perpendicular to that one are necessarily
tangent to the spheres, hence the name ‘tangential’.

Note that perfect fluids are included into this class
and they are those solutions satisfying p1 = p2. From
the above expressions (44,45) it is immediate to see,
on account of the functional dependence of p1 and p2,
that a necessary condition for this to happen is that
R2 = constant. Thus we have the result that Perfect
fluid type B warped spacetimes are necessarily spherically,
plane or hyperbolically symmetric.

If the matter content is described by the energy mo-
mentum tensor (28) this implies, again on account of our
considerations on the eigenvector/eigenvalue structure of
Gab, R

a
b, etc., that

t2G − 4dG > 0, (46)

with

tG = trace
(
GAB

)
, and dG = det

(
GAB

)
,

or, in terms of the physical quantities introduced in (28):
∣∣∣∣

2F
ρ̃+ P + 2

3Π

∣∣∣∣ < 1 (47)

These results can also be arrived at from (24) by writing

va = coshφua + sinhφna and

pa = sinhφua + coshφna



 (48)

and then demanding that φ is such that the term in Tab
containing the mixed terms uanb + naub vanishes. This
is equivalent to saying that there exists a privileged ob-
server that measures zero momentum flow. Such an ob-
server is moving with four-velocity

ua = coshφ va + sinhφ pa where

tanh 2φ = − 2F
ρ̃+ P + 2

3Π
.





(49)
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Notice that from the remarks following equation (24),
it follows that ρ̃+P + 2

3Π is a function of the coordinates
xD, and so is F , hence φ = φ(xD) which is the condition
for ~u being an adapted observer.

The quantities ρ̃, P, Π and F in (28) and ρ, p1 and p2

in (42) are related through:

ρ̃ = ρ cosh2 φ+ p1 sinh2 φ,

P =
1
3
(
ρ sinh2 φ+ p1 cosh2 φ+ 2p2

)
,

Π = ρ sinh2 φ+ p1 cosh2 φ− p2,

F = (ρ+ p1) sinhφ coshφ,

or equivalently

ρ =
1
2



√(

ρ̃+ P +
2
3

Π
)2

− 4F2 + ρ̃− P − 2
3

Π


 ,

p1 =
1
2



√(

ρ̃+ P +
2
3

Π
)2

− 4F2 − ρ̃+ P +
2
3

Π


 ,

p2 = P − 1
3

Π,

and therefore the dominant energy condition reads in
these variables (recall we are assuming that (47) holds):

ρ ≥ 0
⇓√(

ρ̃+ P +
2
3

Π
)2

− 4F2 + ρ̃−
(
P +

2
3

Π
)
≥ 0, (50)

−ρ ≤ p1 ≤ ρ
⇓

ρ̃−
(
P +

2
3

Π
)
≥ 0, (51)

−ρ ≤ p2 ≤ ρ
⇓

ρ̃+ P − 4
3

Π +

√(
ρ̃+ P +

2
3

Π
)2

− 4F2 ≥ 0 (52)

and

ρ̃+

√(
ρ̃+ P +

2
3

Π
)2

− 4F2 − 3P ≥ 0 (53)

with
(
ρ̃+ P +

2
3

Π
)2

− 4F2 ≥ 0 (54)

Notice that the second inequality (51) above implies the
first one (50), therefore only the four last inequalities
need be taken into account.

b. The polynomial q(x) has only one real root. If
q(x) has just one real root, then it must be that

t2R − 4dR = 0, or equivalently, t2ω − 4dω = 0, (55)

where the definitions are the same as in the previous
case. The Ricci (Einstein, ωab, etc.) tensor has then a
null eigenvector ~k with corresponding eigenvalue (in the
case of the Ricci tensor) −σ = 1

2 tR, and the Jordan form
of the matrix (RAB) is

RAB =
( −σ 0

1 −σ
)
. (56)

The whole tensor Gab is then of the Segre type {2, (11)}
and therefore may be written as

Gab = σ (kalb + lakb) + λkakb + p2 (yayb + zazb) , (57)

where kak
a = lal

a = 0 and kal
a = −1, thus ~k,~l, ~y, ~z

form a null tetrad, and ~k,~l may be chosen so that their
components are functions on M1 (i.e.: depend only on
the coordinates xD). The functions σ, λ and p2 are given
by:

σ = −
(

1
2
R2 + S

)
ω2 + 2ωωA/B k̂A l̂B , (58)

λ = 2ωωA/B l̂A l̂B , p2 = −
(

1
2
R1 + S

)
ω2, (59)

where, as in the previous case S ≡ ω−1hMN (2ωM/N −
3ω−1ωMωN ), and k̂a = ωka, l̂a = ωla. In this case one
has that ωA/B k̂Ak̂B = 0. It is easy to see that coordi-
nates {u, v, y, z} exist such that the decomposable metric
can be written as

dŝ2 = −2B2(u, v)dudv + e2Q(y,z)
(
dy2 + dz2

)
, (60)

and then k̂a = (B−1, 0, 0, 0), l̂a = (0, B−1, 0, 0). In this
coordinate gauge, the equation ωA/B k̂Ak̂B = 0 reads sim-
ply ωu/u = 0, which can be easily integrated once to get
ωu = B2, where a redefinition of the coordinate v has
been carried out in order to dispose of one non-essential
function of v that appears when integrating the previous
equation.

Any pair ~u, ~n of mutually orthogonal, unit (timelike
and spacelike respectively) vector fields contained in the
two-space spanned by ~k and ~l will be of the form

ua =
a√
2

(
ka +

1
a2
la

)
and na =

a√
2

(
ka − 1

a2
la

)
,

(61)
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where a is some arbitrary function; it turns then out
that Gab above can be rewritten, in terms of the pseudo-
orthonormal tetrad ~u, ~n, ~y, ~z as

Gab =
(
σ +

λ

2a2

)
uaub +

(
λ

2a2
− σ

)
nanb

+
λ

2a2
(uanb + naub) + p2 (yayb + zazb) , (62)

and the dominant energy condition is satisfied if and only
if [15]

σ ≥ 0, λ > 0 and − σ ≤ p2 ≤ σ. (63)

As in the previous case, if the matter content is de-
scribed by the energy momentum tensor (24) this implies
that

σ +
λ

2a2
= ρ̃,

λ

2a2
− σ = P +

2
3

Π,
λ

2a2
= F , (64)

which readily implies
∣∣∣∣

2F
ρ̃+ P + 2

3Π

∣∣∣∣ = 1 ⇔
∣∣∣∣ρ̃+ P +

2
3

Π
∣∣∣∣ = |2F| . (65)

In this case, no coordinate system exists such that Gab
takes a diagonal form; or, put into physical language,
all allowed physical observers will always measure a non-
vanishing momentum flow F , but F must satisfy equa-
tion (65); further, the dominant energy condition (63)
can be translated as

ρ̃−
(
P +

2
3

Π
)
≥ 0 and F > 0. (66)

Again in this case, we note the proportionality between
Πab and σab.

c. The polynomial q(x) has two complex roots. If
q(x) admits two complex roots they must necessarily
complex conjugate of one another, say z and z̄. In this
case it is well known [15] that the dominant energy con-
dition cannot be satisfied, consequently, if Tab is of this
type it cannot represent physically acceptable matter.
We shall not consider this case any further, but note in
passing that this would arise whenever

∣∣∣∣
2F

ρ̃+ P + 2
3Π

∣∣∣∣ > 1. (67)

D. Summarizing some of the results

In order to close this section, we summarize the results
thus far obtained as follows:

1. The only possible cases compatible with a type BT
warped geometry which satisfy the dominant en-
ergy condition correspond to Gab (or Tab) being of
the type {1, 1(11)} or {2, (11)} (or any degeneracy

thereof). In both cases, the material content of the
spacetime can be interpreted (by any adapted ob-
server) either as an anisotropic fluid with momen-
tum flow, or else as the sum of an anisotropic fluid
with no momentum flow and a pure radiation field.

2. It is of the type {1, 1(11)} whenever (47), and then
the inequalities (51) through (54) must be satisfied
in order to fulfill the dominant energy condition.
In any case, and for any adapted observer (includ-
ing the privileged one that sees no momentum flux),
proportionality exists between the anisotropic pres-
sure and shear tensors of these observers. Perfect
fluid spacetimes are of the type {1, (111)} and one
then has R2 = constant; i.e.: the spacetime is
spherically, plane or hyperbolically symmetric.

3. It is of the type {2, (11)} whenever (65) holds, then
(66) must hold in order to satisfy the dominant en-
ergy condition. Again, proportionality exists be-
tween the anisotropic pressure and shear tensors of
adapted observers.

IV. RADIATION HYDRODYNAMICS
SCENARIO.

In this section we are going to present some of the
consequences of the general results on the energy con-
ditions and the structure of the energy momentum ten-
sor obtained above. We shall particularize to the case
of spherical symmetry (which, as previously discussed
is a particular case of warped BT spacetime) and con-
sider a radiating fluid, but from our previous discussion
it should become clear that all the results obtained in
this section are immediately generalizable to the case of
a generic warped BT spacetime. In this case the energy-
momentum tensor could describe

• An anisotropic (non-pascalian) fluid of velocity ~v
(assumed rotation-invariant and therefore adapted
in the sense defined previously) and energy-
momentum tensor T

M (b)
(a) = diag (ρ, Pr, P⊥, P⊥),

where ρ is the energy density, Pr the radial pressure
and P⊥ the tangential pressure. The indices en-
closed within round brackets are tetrad indices, the
tetrad being ~v, ~p, ~y, ~z, where ~y, ~z are mutually or-
thogonal, unit, spacelike and tangent to the spher-
ical orbits, ~p is unit spacelike and perpendicular to
the spheres, and ~v is unit timelike and orthogonal
to the previous three.

• A radiation field of specific intensity I(x, t;~n, ν)
given through

dE = I(r, t;~n, ν)dS cosϕ dΘ dν dt, (68)

where dE is defined as the energy crossing a sur-
face element dS, into the solid angle around ~n, i.e.
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dΘ ≡ sin θdθdψ ≡ −dµdψ (ϕ is the angle between
~n and the normal to dS), transported by a radi-
ation of frequencies (ν, ν + dν) in time dt. It is
measured at the position x and time t, traveling in
the direction ~n with a frequency ν. As in classical
radiative transfer theory, for a planar geometry, the
moments of I(x, t;~n, ν) can be written as [6, 16, 17]

ρR =
1
2

∫ ∞
0

dν

∫ −1

1

dµ I(x, t;~n, ν), (69)

F =
1
2

∫ ∞
0

dν

∫ −1

1

dµ µ I(x, t;~n, ν) (70)

and

P =
1
2

∫ ∞
0

dν

∫ −1

1

dµ µ2I(x, t;~n, ν) . (71)

Physically, ρR , F and P, represent the radiation
contribution to the energy density, energy flux den-
sity and radial pressure, respectively.

¿From the above assumptions the energy-momentum
tensor can be written as T(a)(b) = TM(a)(b) + TR(a)(b) where
the material part is TM(a)(b) given above, and the corre-
sponding term for the radiation field TR(a)(b) can be writ-
ten, in the tetrad introduced, as [6, 16, 17]

TR(a)(b) =




ρR F 0 0
F P 0 0
0 0 1

2 (ρR − P) 0
0 0 0 1

2 (ρR −P)


 . (72)

therefore in this case the generic physical variables are

ρ̃ = ρ+ ρR;

P = 1
3 (Pr + 2P⊥ + ρR)

Π = Pr + 3
2P − P⊥ − 1

2ρR





(73)

In coordinates, the energy-momentum tensor can be
written as:

Tab = (ρ+ ρR)vavb + (Pr + P)papb+
+ F(vapb + pavb)

+
1
2

(P⊥ + ρR −P)(yayb + zazb) (74)

or, using the notation set up in (21):

Tab = (ρ+ ρR)vavb +
1
3

(Pr + 2P⊥ + ρR)hab

+ F(vapb + pavb)

+
(
Pr − P⊥ +

1
2

(3P − ρR)
)

(papb − 1
3
hab), (75)

where the last term shall be often written in the calcula-
tions as

Πab =
(
Pr − P⊥ +

1
2

(3P − ρR)
)

(papb − 1
3
hab)

Πab ≡ Π(papb − 1
3
hab),

and the notation established in the previous section will
also be used:

ρ̃ = ρ+ ρR, P =
1
3

(Pr + 2P⊥ + ρR) ,

Π =
(
Pr − P⊥ +

1
2

(3P − ρR)
)
.

>¿From a physical point of view, the above tensor rep-
resents the most general situation one is interested in an
astrophysical scenario, and will therefore be adopted as
representing the matter content from now on. Also note
that, from our developments in the preceding sections, it
follows that the spacetime geometry “forces” this kind of
matter content (note that not all of the possible combi-
nations of energy-momentum tensors give rise to a total
energy-momentum tensor compatible with the warped
geometry; i.e.: of the types {1, 1(11)} or {2, (11)}, see
[15] for further details).

Next we shall translate to the present case the condi-
tions we obtained in general; i.e.: (47) and (65), together
with the corresponding inequalities (51) through (54) and
(66) for the dominant energy condition.

For the case of Gab (or Tab) being of the type {1, 1(11)}
(47) can be rewritten as

∣∣∣∣
2F

ρ+ ρR + Pr + P

∣∣∣∣ < 1 (76)

and the inequalities (51) through (54) yield

ρ+ ρR − Pr − P ≥ 0, (77)

ρ+ 2ρR − Pr + 2P⊥ − 2P+

+
√

(ρ+ ρR + Pr + P)2 − 4F2 ≥ 0 (78)

ρ− Pr − 2P⊥ +
√

(ρ+ ρR + Pr + P)2 − 4F2 ≥ 0 (79)

(ρ+ ρR + Pr + P − 2F) (ρ+ ρR + Pr + P + 2F) ≥ 0
(80)

or
∣∣∣∣

2F
ρ̄+ P̄r

∣∣∣∣ < 1 (81)



11

and
√(

ρ̄+ P̄r
)2 − 4F2 + ρ̄− P̄r ≥ 0,

ρ̄− P̄r ≥ 0,

ρ̄− P̄r + 2P̄⊥ +
√(

ρ̄+ P̄r
)2 − 4F2 ≥ 0

ρ̄− P̄r − 2P̄⊥ +
√(

ρ̄+ P̄r
)2 − 4F2 ≥ 0

(
ρ̄+ P̄r + 2F) (ρ̄+ P̄r − 2F) ≥ 0





(82)

where we defined

ρ̄ = ρ+ρR, P̄r = Pr+P, and P̄⊥ = P⊥+
1
2

(ρR−P)

which represent the “total” density, radial pressure and
tangential pressure as measured by a local minkowskian
observer.

Concerning the case in which Gab (or Tab) is of the
type {2, (11)}, (65) can be rewritten as

|ρ+ ρR + Pr + P| = |2F| (83)

and the inequalities (66)

ρ+ ρR − Pr −P ≥ 0 and F > 0. (84)

or equivalently

∣∣ρ̄+ P̄r
∣∣ = |2F| and




ρ̄− P̄r ≥ 0

F > 0
.

V. QUASI-SPHERICAL METRICS.

In this section we shall workout two warped space-
times which can be considered quasi-spherical metrics in
the sense that we can recover the spherical line element
switching of a parameter. The first of such a line element
is given by:

ds2 = r2

{
− 1

2r2

Q2(t, r)
P 2(t, r)

dt2

(85)

+
1

2r2
P 2(t, r)dr2 + [dθ2 + f2(θ)dφ2]

}

where r, θ, φ are the usual spherical coordinates. The
form of the metric coefficients gtt and grr is chosen as
above for convenience, but it should be clear that this
can always be done without loss of generality.

It is clear that if f(θ) = sin θ the metric (85) de-
scribes a typical spherically symmetric spacetime[19], but
if f(θ) 6= sin θ the above line element corresponds to a

special case of axially (not spherically) symmetric space-
time. In terms of the descomposable metric structure (4)
ω = r−1.

Let us next choose the function f(θ) as the Airy func-
tion

f(θ) = Ai
(−1− aθ

a2/3

)

where a is some arbitrary (real) parameter.
A direct calculation of t2G− 4dG (that must be greater

than or equal to 0 in order to have the types {1, 1(11)}
or {2, (11)} respectively) yields:

∆ ≡ t2G − 4dG = 16
Q2
r − 4P 2P 2

t

r2P 4Q2
(86)

and

∆ ≥ 0 ⇔ Q2
r − 4P 2P 2

t ≥ 0. (87)

We shall assume that it is non-zero and put δ2 ≡ Q2
r −

4P 2P 2
t > 0; thus the Einstein tensor admits a unit time-

like eigenvector (4-velocity of the preferred adapted ob-
server that measures zero momentum flow) whose com-
ponents are easily seen to be (see equations (40) and
(44)):

ua =

(
P

Q

√
Qr
δ

+ 1,
1
P

√
Qr
δ
− 1, 0, 0

)
. (88)

The spacelike unit vector ~n is:

na =

(
P

Q

√
Qr
δ
− 1,

1
P

√
Qr
δ

+ 1, 0, 0

)
. (89)

The density ρ and pressures p1 and p2 measured by ~u are
now:

ρ =
1

r2QP 3δ

{
δ
[
2r(2PrQ− PQr) +QP 3 − 2QP

]

+ 2rP (4P 2P 2
t +Q2

r)
}

+
a

r2
θ (90)

p1 =
−1

r2QP 3δ

{
δ
[
2r(2PrQ− PQr) +QP 3 − 2QP

]

− 2rP (4P 2P 2
t +Q2

r)
}− a

r2
θ (91)

p2 =
2

rQ3P 4

{
Q2P (PQr − 2QPr) + 3rQ2Pr(QPr −QrP )

+ 3rQ2Pr(QPr −QrP ) + rQ2P (PQrr −QPrr) (92)

−rP 4(PQPtt − PPtQt + P 2
t Q)

}

The second line element can has the form of

ds2 = r2

{
− 1

2r2

Q2(t, r)
P 2(r)

dt2

(93)

+
1

2r2
P 2(r)dr2 + [f2(θ)dθ2 + sin2 (θ) dφ2]

}
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again r, θ, φ are the usual spherical coordinates. and if
f(θ) = 1 the metric (93) describes a spherically symmet-
ric spacetime.

Now choosing the function f(θ) as

f2(θ) =
2 cos2 (θ)

2 cos2 θ − ((1− 2 cos2 θ) θ + cos θ sin θ) a

we get

∆ ≡ t2G − 4dG = 16
Q2
r

P 4r2Q2
(94)

The 4-velocity of the preferred adapted observer and the
spacelike unit vector ~n now are easily seen to be

ua =

(
\√2P
Q

, 0, 0, 0

)
and na =

(
0,
\√2
P
, 0, 0

)
,

(95)
respectively

The density ρ and pressures p1 and p2 measured by ~u
are now written as:

ρ =
4Pr
P 3r

+
1
r2
− 2
P 2r2

+
aθ

r2
, (96)

p1 =
4Qr
P 2rQ

− 4Pr
P 3r

− 1
r2

+
2

P 2r2
− aθ

r2
(97)

and

p2 =
2Qrr
P 2Q

− 2Prr
P 3
− 4Pr
P 3r

+
2Qr
P 2rQ

+
6P r2

P 4
− 6QrPr

P 3Q
(98)

It is interesting to see that in both cases the values of ρ
and p1 for a = 0, correspond to the spherical case. Thus
the terms ar−2θ can be seen as the contribution of the
“lack of sphericity” which comes from the decomposable
part of each metric modifying the density and the radial
pressure but having no effect on the tangential pressure
p2.

All the energy conditions (50) through (54) can be sat-
isfied and in both cases because

ρ > 0 ⇒




if a ≤ 0 ⇒ ρSpheric ≥ ρQSpheric

if a ≥ 0 ⇒ ρSpheric ≤ ρQSpheric
with ρSpheric corresponding to the density with a = 0
measured at any point and ρQSpheric the density for the
quasispheric case.

It should be stressed that both are exact solutions hav-
ing the parameter a of any order, in particular if a ∼ 0,
it could be considered as a perturbation of the spherical
solution

VI. CONCLUSIONS

We have studied in detail class BT warped spacetimes
which include as a special case all the spherically sym-
metric solutions of the Einstein’s Field equations.

We have shown that the Segre type of the Einstein and
energy-momentum tensor of such spacetimes can only be
{1, 1(11)}, {2, (11)} or {zz̄, (11)} (or any degeneracy of
these types), the latter being non-admissible on physical
grounds (the dominant energy condition is violated).

We have given algebraic conditions for these types in-
volving only covariant derivatives of the warping func-
tion ω with respect to the underlying decomposable met-
ric ĝ; namely t2ω − 4dω greater than, equal to or less
than 0 respectively, see equations (38,55) (alternatively,
they can also be characterized in terms of the compo-
nents of the Einstein or the Ricci tensors: t2G − 4dG ≥ 0,
etc.), and we have provided expressions for the eigenvec-
tors of the Einstein tensor in the two physically relevant
cases: {1, 1(11)} and {2, (11)}. Further, we have pro-
vided explicit algebraic expressions for the inequalities
stemming from the Dominant Energy Condition in each
of the above two cases. It has also been shown that if the
matter content is to be a perfect fluid (i.e.: {1, (111)}),
the spacetime must then necessarily be spherically, hy-
perbolically or plane symmetric.

We have introduced the concepts of adapted tetrads
and adapted observers, and shown that the eigenvectors
of the Einstein tensor alluded to above always form an
adapted tetrad, hence the timelike eigenvector in the case
{1, 1(11)} corresponds to an adapted observer.

The preceding mathematical developments, have been
linked to physics by showing that the material content of
such spacetimes can always be interpreted by all of the
adapted observers either as an anisotropic fluid with mo-
mentum flow, or as the sum of an anisotropic fluid with
zero momentum flow plus a radiation field. Moreover, we
have shown that the anisotropic pressure tensor is always
proportional to the shear of the observer who measures
that anisotropy, this suggesting a model for an equation
of state. Adapted observers appear then as the most
natural observers in these spacetimes. We also trans-
lated both the conditions leading to either Segre type
of the Einstein tensor and the restrictions imposed by
the Dominant Energy Condition, in terms of the various
physical magnitudes measured by any adapted observer;
see (47, 50 to 53) and (65, 66). It can be noted in passing
that the underlying decomposable spacetime structure is
somehow related to the anisotropy, whereas the warp-
ing factor is related to what one could call the ‘isotropic
physics’.

The radiation hydrodynamics scenario has been dis-
cussed in some detail, showing that these spacetimes can
accommodate quite naturally all of the physical compo-
nents that a material content described by a radiating
fluid has, meeting all the requirements that such an sce-
nario demands. Again, we expressed the various condi-
tions in terms of the physical variables.

Finally, we presented two examples of non-spherically
symmetric metrics which depend upon an arbitrary pa-
rameter a, such that for a = 0 spherical symmetry is
recovered in both cases. Interestingly enough, the ex-
pressions for various physical quantities (density, pres-
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sures, ...) split up nicely in a part that does not contain
a (i.e.: the values one would obtain if the spacetime were
spherically symmetric) plus a term proportional to a, ac-
counting for the ‘lack of sphericity’.
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