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ABSTRACT

We propose a method to obtain axisymmetric, dynamic solutions to the Einstein equations that can rep-
resent a radiating collapsing body in slow differential rotation. The method is a generalization of the semi-
numeric approach developed by Herrera, Jiménez, & Ruggeri, in 1980, for the spherically symmetric case.
Solutions are properly matched to the exterior Kerr-Vaidya metric, and the values of the physically relevant
variables (density, pressure, fluid velocity, and energy flux) are obtained inside the matter distribution. As an
example of the method, a model based on Schwarzschild interior homogeneous static solution is presented.

Subject headings: relativity — stars: neutron — stars: rotation

1. INTRODUCTION

One of the most important pending problems in general relativity is the construction of a “ physically reasonable ” source for the
Kerr metric (Kerr 1963). Indeed, in spite of a considerable effort, the question of finding a source for the Kerr metric describing a
finite body, with a physically relevant stress tensor and matched to a Kerr solution, remains unsolved (see Krasinski 1979; Herlt
1988; Wahlquist 1992, and references therein).

On the other hand, a steady increase in the number of observed rotating neutron stars with rotational periods within the
millisecond range (Backer & Kulkarni 1990) has renewed the interest in the influence and the implications of rotation on the
properties of compact objects (Weber, Glendenning, & Weigel 1991).

Fortunately, if in the adiabatic case “slow rotation” is assumed, then the field equations reduce, up to the first order in angular
momentum, to the equations with spherical symmetry plus an additional equation to be solved for the angular velocity of the
inertial frame along rotational axis. This assumption is very sensible because it considers that the tangential velocity of every fluid
element is much less than the speed of light and the centrifugal forces are little compared with the gravitational ones. This important
simplification, and the fact that all known pulsars satisfy these conditions, justify the intense activity developed around this subject.
Thus, equations governing equilibrium configurations in slow uniform rotation have been derived for the first time by Hartle (1967)
(up to the second order in the angular velocity) and Cohen (1970) (up to first order). An analytic theory of slowly and uniformly
rotating relativistic bodies was proposed by Abramowicz & Wagoner (1978). Applications of these methods leading to slowly
rotating neutron star models or to analytic solutions of the Einstein equations for rotating sources (always in the slow rotation
approximation) may be found in Hartle & Thorne (1968); Adams et al. (1973, 1974); Chandrasekhar & Miller (1974); Adams &
Cohen (1975); Whitman & Pizzo (1979); Whitman (1982, 1985); Stewarts (1983); Ibaiiez (1983); Friedman, Ipser, & Parker (1986);
Datta (1988); Weber et al. (1991); Weber & Glendenning (1992) and references therein. It is particularly interesting for the present
work to mention some previous effort building sources to the Kerr-Vaidya metric in the slow rotation approximation (Murenbeeld
& Trollope 1970; Bayin 1981, 1983).

It is the purpose of this paper to present a general method to obtain nonstationary (time dependent), radiating, and slowly
rotating sources. At the outside of the matter distribution a Kerr-Vaidya metric (Carmeli & Kaye 1977) is assumed. This method is
an extension of an approach introduced some years ago to model the collapse of general relativistic radiating spheres (Herrera,
Jiménez, & Ruggeri 1980) and which has been successfully applied to a variety of astrophysical scenarios (Herrera & Nuifiez 1990,
and references therein). Models of axisymmetric radiating bodies based on the slow rotation approximation may be obtained from
static “seed ” solutions. For simplicity, we shall restrain ourselves in this paper, to the first order in the slow rotation limit (i.., we
shall need only linear terms in the angular velocity of the local inertial frame). Therefore all effects related to deviations from
spherical symmetry are purely relativistic. In fact, in the slow rotation formalism, up to first order in the angular velocity of local
inertial frames, all matter variables are angular independent, and effects of rotation manifest through the dragging of local inertial
frames (a purely relativistic effect). This is understandable if we recall that in the Newtonian theory, where the parameter measuring
the “strength” of rotation (the ratio of centrifugal acceleration to gravity at the equator) is not linear in the angular velocity, but
proportional to the square of it.
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The paper is organized as follows. In §§ 2 and 3 the energy momentum tensor and the field equations are introduced. Junction
conditions are presented in § 4. Section 5 displays the method and in § 6 we work out a model starting with the homogeneous
Schwarzschild static “seed ” solution. Some comments and conclusions are included in § 7. Finally, spin coefficients for the interior
and exterior metrics are given in the Appendix.

2. ENERGY-MOMENUM TENSOR

Let us consider a nonstatic and axisymmetric distribution of matter formed by a fluid and radiation. The exterior metric, in
radiation coordinates (Bondi 1964), takes the Kerr-Vaidya form (Carmeli & Kaye 1977):

2mr . . mr
ds?® = <1 — m)duz + 2dudr — 2a sin? 0drd¢ + 4a sin 6? m dudd — (rz + a2 cos? 0)(102
2mra? sin? 0
 ain2 2 2 2
sin B[r +a‘ + 77 1 o cos? 0]d¢ . 1)

Here a is the Kerr parameter, representing angular momentum per unit mass in the weak field limit, and m is the total mass.
The interior metric is written as (Herrera & Jiménez 1982)

ds? = ezﬁ{% du? + 2du dr} — (r* + &2 cos? 0)d6* + 2ae?” sin® 0{1 - %}du d¢ — 2e*5 sin? 0 drd¢

— sin? 0{r2 + &% + 252 sin? 0 %}dqﬁz . V)]

In the above equations (1) and (2), u = x° is a timelike coordinate, r = x! is the null coordinate, and 6§ = x? and ¢ = x? are the
usual angle coordinates. The u-coordinate is the retarded time in flat space time and, therefore, u-constant surfaces are null cones
open to the future.

The Kerr parameter for the interior spacetime (2) is denoted & and, for the present work, will be considered constant and only (as
well as « in eq. [1]) up to the first order. Notice that in these coordinates the r = constant = r, surfaces are not spheres but oblate
spheroids, whose eccentricity depends upon the Kerr parameter & and is given by

€)

Metric elements § and V in equation (2), are functions of u, r, and 6. A function m(u, r, 6) can be defined by
2m(u, r, O)r?
=2y —2 2 T 4
V=e [r r* +&*cos? 6]’ @

which is the generalization, inside the distribution, of the “mass aspect ” defined by Bondi and collaborators (Bondi, Van der Burg,
& Metzner 1962) and in the static limit coincides with the Schwarzschild mass.
In order to give a clear physical significance to the above formulae, we now introduce local Minkowski coordinates (¢, x, y, z):

dt = e”( ﬁ du + \/% dr) + & sin? Be"( \/% — \/I;/)dd) , )

dx = ¢f \/Iz/ (dr + & sin® 0d¢), (6)
dy = (r* + &2 cos? 0)4/2d0 , )
dz = (r* + &2 cos? 0)!/? sin Od¢ . 8)

It is assumed that, for a local Minkowskian observer comoving with the fluid, the space-time contains:

1. anisotropic fluid of density p and pressure P and,

2. aradiation field of specific intensity I(x, t; n, v).
The specific intensity of the radiation field, I(x, t; n, v), is measured at the position x and time ¢, traveling in the direction n with a
frequency v. As in classical radiative transfer theory, the moments of the specific intensity of radiation for a planar geometry can be
written as (Mihalas & Mihalas 1984):

© 1 .
PR % J va d}lI(X, t’ n, V) > (9)
0 -1

F

© 1
) j av f dupl(x, ¢ m, ). (10)
0 -1
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and

© 1
P =1 j va‘ dup®I(x, t; m, v), (§8))
o -1

where p = cos 0. Physically, pg, &, and 2 represent the radiation contribution to energy density, energy flux density, and pressure,
respectively.
For a moving observer the covariant energy momentum tensor can be written as

T,=TH+T5, (12)
where the material part, T,’:’v, is
p 0 0 O
. 0O P O O
M =3
T 0 0 P O 13
0 0 0 P

To construct the tensor for the radiation field, we start with the energy momentum tensor for the radiation field, T,‘fv, as seen by a
local Minkowskian nonrotating observer (Lindquist 1966; Mihalas & Mihalas 1984):

pR - y 0 0
- —-F P 0 0
TR = 14
=l o 0 tx-2 0 9
0 0 0 3(or — P)
With a local infinitesimal rotation, we find the tensor as seen by an observer comoving with the fluid:
Pr -F 0 D(3pr — P)/2
- —-F P 0 -9F
R _ , 15
T 0 Y 0 (15)
DCBpr— P2 —DF 0 (or — 2)/2

where 2 is an unknown function of u, r, and 6, associated with the local “dragging of inertial frames  effect. In the slow rotation
limit, 2 is also taken up to the first order.

Once the Minkowskian comoving energy momentum tensor is built in terms of physical observables on a local frame (p, P, pg, Z,
2, and 92), it can be transformed as follows:

0% o%*
T = 50 b

where L}(m) is a Lorentz boost. In the rotating case, the boost velocity, @, has components w, in the radial direction and w, in the
¢-direction that represent the radial and orbital velocities of the fluid as measured by a local Minkowskian observer. The
coordinate transformations, 0X”/0x*, connecting Minkowskian coordinates (t, x, y, z) to Bondi coordinates (u, r, 0, ¢) emerge from
equations (5) through (8) (see Herrera & Nuiiez 1990 for details). We thus obtain the stress-energy tensor as seen by a general
observer, written in terms of local (Minkowskian) variables.

In radiation coordinates the radial velocity of matter is given by

LYw)L}w)T,, , (16)

ar V o,
T 1w (17

and the orbital velocity by

dp _ o, 1 4 [V (18)
du 1—o,rsin0 r

3. LIMITS FOR THE RADIATION FIELD AND EINSTEIN EQUATIONS

Herrera and collaborators have considered collapsing spherical radiating configurations in the two limits for the radiation field:
free streaming out (Herrera et al. 1980) and diffusion (Herrera, Jiménez, & Esculpi 1987). Barreto & Nuiiez (1991) have also studied
general relativistic spheres where diffusion and free streaming processes coexist. It is clear that in order to deal with realistic physical
scenarios, a relativistic Boltzmann transport-equation should be considered to describe the evolution of the radiation through the
matter configuration (Lindquist 1966). In this way the above radiation momenta (9), (10), and (11) are related to the physical
properties of the medium (absorption and/or emission). Despite this, it is possible to consider several physically interesting
situations in the above mentioned limits (Mihalas & Mihalas 1984). The free streaming out limit assumes that the radiation
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(neutrinos and/or photons) mean free path is of the order of the dimensions of the spheroid. With this assumption it is obtained that
pe=F =P (19)

On the other hand, in the diffusion limit approximation radiation is considered to have a mean free path much smaller than the
characteristic length of the system. Within this limit, radiation is locally isotropic and we have

pr =132 and F=q. (20)
In this work, we have considered only the free streaming out limit; therefore the stress-cnergy tensor in the local Minkowskian
comoving frame takes the form
p+e —e€ 0 €9
—€ P+e 0 —€2
0 0 P 0
€2 —e9 0 P

Give the metric (2), using the transformations of equation (16), and considering the slow-rotation limit (i.e., to first order in the
orbital velocity w,, the dragging function 9, and the Kerr parameter «), we can finally write the Einstein field equations as

~ 2
8nrle *PT,, = 8nr? 1_2_m p+Pa; + ¢ 1+ o,
r l-w 1 - o,

T, = @1)

i . .
=2(1 ___"1>,;,1 _M_M_ze-zﬂ,ﬁo , 22)
r r r
— P
8nrle” AT, = san(p — w“’) =21, — By — By cOt B, 23)
8nr? 1-—
8nr?T,, == 2w ( )(p + P)=4rB, , (24)

i
8nr?Tyy = 8nr3P = 2B, cot O — #ivy v — 2e~ 2Pr2B,, — 6B, fa, r + 3B, 1 + (1 — Tm>(4ﬂfr +2B,.r— By, 25

8mr? p— Pw l1-w p+P ro 2m\" ! p+ P
S T, = 8mr2d — by x x5 - 1-= 26
sin 6 " ’"{ ¢ “<1+w,>+<1+w,)“(1—2ﬁ./r) sin r) 1+o, 26)

=&{2r(B, + Bo) — 1 + r*(B1y — Boy) + €*(1 — 2m)}

8nr? 2m\. | p + Pw? 1+, &
-2 T,y = 81 — e?( 1 — -
T nr{ ¢ ( )[1— + (1— )]+1+wx(p Po)

+9€ 1+ o, rcz?, 1_2_m wx(p+2P)+€l+wx+ 1+ o,
1 - o, wxsm0 r l-w 1 - o, 1 - o,

= r{(l - Tm)[rz(4ﬂ1 Bo — 481 + B1o) — (Bo — 3By)r + 11 — r(Bo — 3B,X1 — 27i,)

K

. . . 2m - _
— fityo + My — mo/r(4B, 1 — 3)] + 32p<1 - T)(l — 2iy) + e Pr?[By — ﬂoo]} s 27
Ty=0= ﬂu-Zﬂz (28)
T,y — sin? 0Tpy =0 = B,, — B, cot 0, (29)
2 . . . m _
Te=0= (1 - T)("Blz +4rBy B, — By) + 2y, + By, — 2B, 1y — 4B,y + Tz +e B, . (30)

Differentiation with respect to u, r, and 0 are denoted by subscripts 0, 1, and 2, respectively.

With f(u, r), m(u, r) and their derivatives as known functions, equations (22) through (30) can be considered as a system of six
algebraic equations in the physical variables w,, w,, p, P, pg, #, 2, and 2. Therefore, only six (of the eight) of these variables can be
algebraically obtained. Accordingly, more information has to be provided to this system.

4. JUNCTION CONDITIONS

If one wishes the solutions to the Einstein equations to represent the interior of a fluid spheroid, they must be matched to an
exterior solution, represented by the Kerr-Vaidya metric (eq. [1]). To accomplish this, we have required the continuity across the
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boundary surface of the tetrad components and the spin coefficients for the metrics (1) and (2). These requirements have been shown
to be equivalent to demand the continuity of both first and second fundamental forms (g;; and K ;) across the boundary (Herrera &
Jiménez 1983).

The Newman & Penrose (1962) null tetrad components of the exterior metric can be written as

r=2a, (31
1 2mr
b=t -] ——m——————— |O* 2
=0 2 [ (r? + o2 cos? 0)]5' ’ 32)
1
mt=——
\/i(r + ia cos 6)
And for the interior metric we have

[io sin 6(6% — o¥) + 05 + i csc 094] . 33)

P =e 25, (34)
1 2mr
TR R 7] [ [k — P 5
m=di—ge [ (? + &2 cos? 0)]5’ ’ . (33
1
m* = —————  — [i& sin 6(64 — %) + 5 + i csc 064] . (36)
ﬁ(r + i& cos 6)

Continuity of these tetrad components across the surface r = a(u) implies
B.=0, (37)
g =m, (38)

and

&=, (39)

where the subscript a means evaluation at the corresponding surface.
The continuity of the spin coefficients 7, y, and v gives

pul1 - 2) - o= D22, 0
ro = o =0, @)

and
B1a — Bod) = almo, — g, + 1) = 0. @

It is to say, (B,, — Bos) and (mg, — iy, + m,,) are of order a.

In order to find the consequences of the junction condition upon the physical variables at the surface, all this results are
introduced in the Einstein field equations evaluated at boundary surface r = a(u). The first outcome emerges from equation (28) that
can be integrated to give

B, = €(u, O)r* . 43)

Now, using condition (41), we find é(u, 6) = 0. Therefore B does not depend on the angular variable. A similar result can be found
using this fact and integrating field equation (30):

. e
iy =—= D(u, 0) . (44)

Again, equation (41) implies that m is a function of r and u only. From field equations (22) through (30), it is easily seen that the
independence of both metric variables on the angular coordinate will lead to the independence of the physical variables p, P, w,, and
€ on this coordinate. This conclusion, that p and P do not depend on 6, to first order in « and in these coordinates (where r = const.
defines an oblate spheroid), was found by Hartle (1967) for the stationary case. Here, it is obtained as a consequence of the junction
conditions. '

The second important consequence comes from equation (40). Using that f is continuous and = 0 for the Kerr-Vaidya metric,
we may expand it near the boundary r = a(u)

ﬂOa +dﬁla=0’ (45)
where @ = da/du. Substituting equation (45) into equation (40) and using field equations (23) and (24)
2m Pa®W., — P
j=(1 22| —HaZxa” "a | 46
¢ (1 a )[(pa + Pa)(l - wx)} ( )
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On the other hand, it follows from equation (17) that

o 2m
j=—"—1—-——]). 4
¢ 1- Wy < a ) ( 7)
Comparing equations (46) and (47) we obtain
P,=0. (48)

As in the spherically symmetric case, the pressure vanishes at the surface in the free streaming out limit (Herrera et al. 1980; Herrera
& Nuiiez 1990).

Finally, we can use equation (45) and a similar expansion for 7 to write conditions (42) as
afi(l+a)=0, (49)
and

(1 +d)=0. (50)

5. SURFACE EQUATIONS AND THE HJR METHOD

To obtain the physical variables for the matter configuration, we will use the so-called HJR method. It can be considered a
method to find dynamic, spherically symmetric solutions to the Einstein field equations starting from a known static solution. We
will follow it closely and find that it can be extended to the axially symmetric slowly rotating case. For details of the method and
some of its applications to astrophysical scenarios, see Herrera & Nufiez (1990).

We start by defining two auxiliary functions (the effective variables):

P_wa

P=1+wx, (51)
and
~ P—po
P=—""-= 52
1+ w, (52)

These are the effective density and the effective pressure, respectively. It is clear that these variables coincide with the corresponding
“physical ” density and pressure in the static case. Now field equations (23) and (24) can be integrated yielding

m= J drdnip | (53)
(1)
and
PP dF | o«
B—L_M(HP). (54)

The crucial point of the HJR method is the system of ordinary differential equations for quantities evaluated at the surface which
is called the System of Surface Equations (SSE). The first of these surface equations is equation (47). Scaling the radius g, the total
mass i, = m, and the timelike coordinate u by the total initial mass, m(u = 0) = m(0), i.e.,

a m u

A=m, M=m, u=;1(—0) (55)
and defining
2M 1
F=1-—", Q—l_wm (56)
Equation (47) can be written as
A=FQ-1). (57)
The second surface equation emerges from the evaluation of field equation (22) at r = a + 0. It takes the form of
M = —FL, : (58)
where L can be written as
L=4nA4%,2Q—1). 59)

Notice that L is related to the total luminosity.
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Now, using above definitions (55) and (56), and equation (57), we can restate equation (58) as

F 2L+(1-FQ-1

= 60

F 1 (60)

The third surface equation comes from field equations (23), (24), and (25). After some straightforward manipulations, it is obtained
2ﬂ_ﬁi _QE_M 4nr P it =___2 p_pP 61

¢ (1 - 2ﬁl/r>,0 o 12y \WEr )= BB, (61)

which is the generalization of Tolman-Oppenheimer-Volkov (TOV) equation for a radiative situation. Now, evaluating equation
(61) at r = a + 0 the third surface equation takes the form of

30—-1 3+F QF\ F Q j, QFR
Q — 1) 4nAdp —— )P —+=-—-7 =0, 62
( )(n g 34 \a >+F+Q ﬁa+ 5 (62
with
~ [éP p+P <
=|—+——F(4rP+)]| .

R [6r T 2w ( e r2>]a (63)
Finally, equations (49) and (50) can be written as a boundary condition on the effective density and the evolution of the boundary:
[Paa’(1 + &]x=0. (64)

This equation implies a severe restriction on the value of p at the surface, i.e., it must be of order a. This is to be considered a
restriction imposed on the equation of state by the junction conditions.

Equations (57), (60), and (62) conform the SSE. This system may be integrated (numerically) for any given radial dependence of the
effective variables, provided that equation (64) is satisfied.

These equations alone suffice to completely determine metric functions  and 7 and are the same equations found in the
spherically symmetric case, with the radial coordinate having a different meaning. This is due to the fact that the metric functions
have been found to be independent of the angular variable 6 to this order in a.

The remaining two equations ([27] and [26]), give the 6-dependent variables 2 and w, as functions of § and . It can be seen
from these equations how simple is their dependence on 0, i.e.:

w, = & sin 8 F[P(u, r), m(u, r), and derivatives with respect u and r ; r] (65)
and
92 = a sin 0 %[ P(u, r), M(u, r), and derivatives with respect u and r ; r] . (66)

Thus, we are lead to the following scheme, that allows one to generate a radiating, slowly rotating model from a known static
solution to the Einstein equations, and may be considered a generalization of the HIR method to the axially symmetric case;

1. Take a static interior solution of the Einstein equations for a fluid with spherical symmetry, py,;. = p(r) and Py, ;. = P(r).

2. Assume that the r dependence of P and j are the same as that of P, and p,,., respectively. Be aware of the boundary
conditions (see § 7 below):

~

Pa = —wxaﬁa s (67)
and

[p.A¥1 + A)]  of order a. (68)

3. With the r dependence of P and p and using equations (53) and (54), we have the metric elements # and S up to some functions
of u.

4. In order to obtain these unknown functions of u, we integrate SSE: equations (57), (60), and (62). The first two, equations (57)
and (60), are model independent. The third one, equation (62), and the condition (64) depend of the particular choice of the equation
of state.

5. One has four unknown functions of u for the SSE. These functions are boundary radius A, the velocity of the boundary surface
(related to Q), the total mass M (related to F), and the “total luminosity ” L. Providing one of these functions, the SSE can be
integrated for any particular set of initial data.

6. By substituting the result of the integration in the expressions for /i and B, these metric functions become completely
determined.

7. The complete set of matter variables can be algebraically found for any part of the spheroid by using the field equations
(22)—(26).

6. AN EXAMPLE MODEL

We shall work out, as an example, a model that has been studied in the nonrotating case, the homogeneous Schwarzschild-like
solution (Herrera et al. 1980). In the static limit, it represents an incompressible fluid of constant density. Despite the simplicity of

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1994ApJ...421..677H&db_key=AST

T . A7 C6TTH

R

r 992

684 HERRERA ET AL. Vol. 421

this model, which provides the clearest illustration of the effects of slow rotation in a radiating general relativistic sphere, this model
has some physical interest. The homogeneity of the mass energy density in this model enables us to study the effects of rotation on
radiating spheres in general relativity under conditions that are “ more extreme ” than any that one encounters with “ more normal ”
equations of state. The model obtained represents a source of the exterior vacuum Kerr metric, as was imposed by the junction
conditions in § 4.

The effective density and the effective pressure are assumed to be

. 31—F
p=flu= 8z A2 ° (69)
and
5 J39@)[1 — (8n/3)f (wr*]'/* — 1
P= 271/2 (70)
3 =391 — Bn/3) f(w)r*]
Following equations (67), the functions f(u) and g(u) are related through boundary conditions
(u) = > 20 71
)= T @A a1 )
The third SE can be written as
_ Q30 - P -1nQ-1) F
Q_I—Fl: 24Q *Fl (72)
Therefore, the SSE is formed by equations (57), (60), and (72) above. The boundary condition (64) now reads
(1=FY1+ Aa=0. (73)

Given the “total luminosity ” L the SSE can be integrated. The function L has been assumed to be a Gaussian such that the total
radiated energy is a fraction of the initial total mass.
Our Schwarzschild-like solution has been integrated using either

A(0) = 2000.0 or A(0) = 3000.0,
as an initial radius of the configuration and
Q(0) = 0.999 and F0)=08,
as a set of initial conditions, with the following parameters:
M =0001 and «=0.001.

The assumption of slow rotation implies that the physical variables p, P, ®,, and € do not depend on the angular coordinate 6
(Hartle 1967). The dependence on 6 of the quantities w, (orbital velocity) and €2 (dragged energy flux) has been found algebraically
from the field equations. Figure 1 shows the evolution of this 8-dependent variables at the equator for two different initial radii 4(0).
Because the evolution of the #-independent variables are qualitatively the same as in the spherical case given by Herrera et al. (1980)
they are not displayed in the present work. The evolution of the surface variables: luminosity, radius, eccentricity, and mass are
presented in Figure 2.

7. DISCUSSION OF THE RESULTS AND CONCLUSIONS

We have developed a seminumeric method to integrate the Einstein field equations for a radiating body in the slow-rotation
approximation. It allows one to construct a dynamic, slowly rotating solution from a static “seed” solution to the Einstein
equations that satisfies the appropriate boundary conditions with the exterior spacetime.

Three main features can be noticed in this method:

1. To construct the energy-momentum tensor in terms of physical variables as measured by a local Minkowskian comoving
observer.

2. To employ Bondi radiation coordinates which lead to metric functions having the same radial dependence as in the static case
whereas physical variables contains corrections of order w.

3. To assume that the r dependence of P and p, equations (51) and (52), is the same as that of P, and p,.,., respectively. This
last assumption leads to the system of surface equations, one of the crucial points of the present scheme.

The comoving Minkowskian observer coincides with the Lagrangian frame (the proper frame) which is the frame where the
interaction between radiation and matter are most easily handled (Mihalas, Kunasz, & Hummer 1976; Mihalas & Mihalas 1984).
Thus, the physical variables are obtained as measured by this observer. The effects of gravitation and those corresponding to the
dragging of inertial frames are clearly obtained through the appropriate transformation of coordinates.

It is worth noticing the fact that in the nonrotating case, Bondi coordinates lead to components T,, and T,, of the energy
momentum tensor, which enter in the field equations for /i1, and §, (eqs. [23] and [24]), containing terms of the order of w,. This is
in contrast with the situation in Schwarzschild coordinates where the lowest terms are of the order w?2. Therefore, for the slow
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Fi1G. 1.—These figures show the evolution of this f-dependent variables at the equator for two different initial radii A(0). All these variables are dimensionless. The
horizontal axes represent the timelike coordinate u while vertical ones denote the value of the variable labeled under the corresponding horizontal axis. Curves
sketching the evolution of the respective variables, from inner to outermost shell (surface), are represented by dotted, dotted-dashed, dashed and continuous curves,
respectively. Notice that inner shells rotate faster and drag more energy flux than the outer ones. It is also clear that the more compact the sources the greater is the
orbital velocity and the dragged energy distribution.

contraction approximation in Schwarzschild type coordinates both the metric functions and the physical variables share the same
r-dependence as in the corresponding static variables. However, in Bondi radiation coordinates only metric functions have the same
radial functionality as in the static case, whereas physical variables contain corrections of order w,. In addition to this, Bondi
radiation coordinates are adapted to radiation problems allowing the physical variables to be solved, algebraically in tems of the
metric elements and their derivatives. -

The rationale behind the assumptions on the r dependence of the effective variables P and p can be grasped in terms of the
characteristic times for different processes involved in a collapse scenario. If the hydrostatic timescale J ypg, Which is of the order
~1/(Gp)'/? (where G is the gravitational constant and p denotes the mean density) is much smaller than the Kelvin-Helmholtz
timescale (J gy), then in a first approximation the inertial terms in the equation of motion (61) can be ignored (Kippenhahn &
Weigert 1990). Therefore in this first approximation the r dependence of P and p are the same as in the static solution. Then the
assumption that the effective variables (51) and (52) have the same r dependence as the physical variables of the static situation
represents a correction to that approximation, and is expected to yield good results whenever  ; > J yypr. Fortunately enough,
T xu > 7 uypr, for almost all kind of stellar objects. Thus for example for the Sun we get Iy ~ 107 yr, whereas I yypg ~ 27
minutes. Also, the Kelvin-Helmholtz phase of the birth of a neutron star last for about tens of seconds (Burrows & Lattimer 1986),
whereas for a neutron star of one solar mass and a 10 km radius, we obtain I yypg ~ 8.61 x 107!,

Other important point which deserves some comments is that our solutions have differential fluid rotation, since we demand only
the angular momentum per unit mass to be a constant inside the distribution. The orbital velocity is strongly differential and a
decreasing function of the radial coordinate (Fig. 1). That is to say, inner shells rotate faster than the outer ones. This effect can be
also appreciated from the dragged energy flux evolution. This behavior of the dragging was already reported in rigid-rotation
models (Hartle 1967; Hartle and Thorne 1968). It can be also noticed from this figure that more compact configurations (smaller
initial radius) have greater orbital velocity and dragged energy flux distribution. The assumption of rigid rotation is common in the
studies of rotating self-gravitating objects, whether in Newtonian or Einstein theory of gravity. In stellar interiors rigid rotation
is usually justified through the argument that differential rotation with depth in the radiative interiors of stars would amplify even
a small internal magnetic field over a short timescale, generating thereby toroidal magnetic fields strong enough to remove the
angular velocity gradients (Spruit 1987; Mestel, Moss, & Taylor 1988). This hypothesis however has been questioned by others
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F16. 2.—In these figures the evolution of the dimensionless variables: luminosity profile (upper left), exterior radius (upper right), surface eccentricity (lower left),
and the total mass (lower right) are displayed. Horizontal axes represent the timelike coordinate u while vertical ones denote the value of the variable labeled under
the corresponding horizontal axis. As it can be appreciated from evolution of the surface eccentricity (lower left), it increases with the timelike coordinate.

researchers (Fox & Bernstein 1987; Tassoul & Tassoul 1982). On the other hand, in the case of isotropic viscosity, a self-gravitating
sphere which initially starts out with differential rotation approaches rigid rotation after viscous timescale. However, nonisotropic
turbulent viscosity (which is the case in convective regions) causes differential rotation (Bierman 1951). Also, from the requirement
that the fluid energy momentum-tensor of the source be that of a perfect fluid it has been argued (Tauber & Weinberg 1961) that the
source should rotate rigidly. However, as it has been recently pointed out (Chinea & Gonzalez-Romero 1992), the necessary and
sufficient condition for the energy momentum tensor to reduce to the perfect fluid type is less stringent than what is required by
Tauber & Weinberg. Also it is worth mentioning that rigid rotation on the giant branch has been found to be ruled out by the
observations (Pinsonneault et al. 1991), once the effects of mass loss on the giant branch are taken into account. In the context of
general relativity attempts have been made to exclude rigidly rotating perfecting fluids as sources of the Kerr metric (see Krasinski
1979 and references therein; and Herrera & Manko 1993).

Notice also that, because of the coordinate system used, the surfaces p = const. are spheroids of increasing eccentricity as r — 0.
This is opposite to the behavior found by Hartle (1967) for the adiabatic case. As it was stressed by this author, the eccentricity in his
models varies from 1 (spherical) at the center to a value which describes the shape of the model at the surface. It can be appreciated
from Figure 2 that our models radiate 0.06% of their initial mass. It also emerges from this figure that the eccentricity of the surface
increases with the timelike coordinate.

As a further consequence of the boundary conditions, a restriction on the equations of state allowed has been found, namely, that
the effective density at the surface must be of order a. This condition must be taken into account on choosing the “seed ” static
solution. Equation (64) restrains the value of p at the surface, to be of order a. In a homogeneous model, this condition obviously
implies a low global density. It is straightforward to find from equations (73) and (56), that for M = 1 models, we must have A of
order o~ '. Because of the above mentioned restriction on the surface density, such model is not highly relativistic, having radius of
the order 10° km and one solar mass. The 6-independent variables show the usual behavior reported for spherical configurations,
but now the density at each shell decreases, because the mass loss is not compensated by an appropriated decrease in radius. The
static limit is not reached, although it was found that the radial velocity tends to a constant value at each shell when the
configuration ceases to radiate.
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APPENDIX
SPIN COEFFICIENTS

We give here the spin coefficients for the interior and exterior metrics as given by the null tetrad components (31)—(36). For details
of the calculations, see, for example, Carmeli (1977).

Al. EXTERIOR METRIC
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