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Center Manifold and Exponentially Bounded Solutions of a Forced
Newtonian System with Dissipation *

LUIS GARCIA AND HUGO LEIVA .

Abstract

In this note, we study the following second order system of ordinary differential equations with
dissipation
v’ +cu' +dAu+kH(u) = P(t), ue R", t€ R,

where ¢, d and k are positive constants, H : R"™ — IR" is a globally Lipschitz function and
P : R— R" is a continuous and bounded function. A i1s a n x n matrix whose first eigenvalue
A1 is equal to zero and the others are positive(0 = A; < Az < ---)A;). Under these conditions,
we prove that for some values of ¢ and k there exist a positive number n depending on ¢ and
a continuous manifold M = M(c, k, P(-)) such that any solution of this system starting in M

is exponentially bounded. i.e., sup,. e {||u(2)||* + llu(®)]2}/* < co. These results are
applied to the spatial discretization of very well known second order partial differential equations
with Neumann boundary conditions.
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1 Introduction

In this note, we study the existence of exponentially bounded solutions of the following second
order system of ordinary differential equations with a dampping force and dissipation in IR

u" +cu' +dAv+ kH(u) = P(t), ue€ R*, t€ R, (1.1)

where ¢, d and k are positive constants, H : R®™ — IR™ is a globally Lipschitz function and
P € Cy(IR; R"), the space of continuous and bounded functions. A is a n X n matrix whose first
eigenvalue A; is equal to zero and the others are positive

0=A <2<+

each one with multiplicity v; equal to the dimension of the corresponding eigenspace.
The equation (1.1) has been studied in [6] for the case that the first eigenvalue A; of the matrix
A is positive (A; > 0); under these conditions they prove that for some values of ¢ and & the

* This research was partially supported by CDCHT-ULA
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equation (1.1) has a bounded solution which is exponentially stable and, if P(t) is almost periodic,
this bounded solution is also almost periodic.
The following second order system of differential equations in IR™ has been studied by Alonso
and Ortega in [2]
v+ cu'+ Au+ VG(u) = P(t), ve R*, t€ R, (1.2)

where ¢ > 0 is a constant, A is a n X n symetric semidefinite positive constant matrix, P is a
continuous function and bounded, and G € C%(IR"). They were interested in the existence of a
bounded solution of (1.2) which is exponentially asymptotically stable. In fact, they prove that: If
A1(A) > 0 and there exist non-negative constants a and b such that

al, < D®G(£) < bl,, VE€ R, (1.3)

b<a+c®+2cy/a+ A (A).

Then (1.2) has a unique bounded solution which is exponential asymptotically stable.

Moreover; if P(t) is T-periodic, then such a solution is also T-periodic.

The fact that, the first eigenvalue A; of the matrix A is equal to zero in the equation (1.1), does
not allow us to prove the existence of bounded solutions of (1.1) in general.

However; we prove that, for some values of ¢ and k there exist a positive number 7 depending on
¢ and a continuous manifold M = M(c, k, P(-)) such that any solution of the system (1.1) starting
in M is exponentially bounded. i.e.,

with @ + A;(A) > 0 and

1/2
sup el {||u'(t]||2 + ||"(t)”2} < oo.
telR

Our method is similar to the one used in [6], we just rewrite the equation (1.1) as a first orden system
of ordinary differential equations and prove that the linear part of this system has an exponential
trichotomy with trivial unstable space. Next, we use the variation constant formula and some ideas
from [8] [9] to find a formula for the exponentially bounded solutions of (1.1). From this formula
we can prove the existence of such manifold M = M(c, k, P(-)). These results are applied to the
spatial discretization of very well known second order partial differential equations with Neumann
boundary conditions:

Example 1.1 The Sine-Gordon Equation with Neumman boundary conditions is given by:

(1.4)

Uy +cUp — Ugy + ksinU = p(t,z), 0<z< L, t€e R,
U:(t,0) =U,(¢t,L) =0, te R,

where ¢ and k are positive constants, p: IR x [0, L] — IR is continuous and bounded.

This equation is physically interesting, the average value of the function U is not ezpected to
remain bounded and actually leads to notrivial dynamics. From mathematical point of view this
case is also interesting.

For each N € IN the spatial discretization of this equation is given by

{ u + cul + 872(2u; — uip1 — ui—y) + ksiny; =’ pi(t), 1<i< N, teR, (1.5)

ug = U1, UN = un41 =0.
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The equation (1.5) can be written in the form of (1.1) with the matriz A been as follows

1 -1 0 -~ 0
1 2 -1 --- 0
52 T (1.6)
0 - -1 2 -1
0 -~ 0 -1 1

where § = .L/ (N 4+ 1). The eigenvalues of this matriz are simple, the first of it is zero and the
others are positive

Example 1.2 A telegraph equation with Neumman boundary conditions

{ Up + cUy = Ugg + arctanlU = p(t,z), 0<z <L, t€ R, @)

Ua(,0) = Us(t, L) = 0, te R,

where c is a positive constant, p: IR x [0, L] = IR is continuous and bounded.
For each N € IN the spatial discretization of this equation is given by

u” 4 cul + 672(2u; — uiyy — ui_1) + arctanu; = p;(t), 1<i< N, t€ R,
t ¢ (1.8)

up = u1, uN = un4+1 =0.

The equation (1.8) can be written in the form of (1.1) with the the same matriz A given by (1.6).

2 Preliminaries

Most of the ideas present in this section can be found in [6]. So, we shall prove only the new results.
The equation (1.1) can be written as a first order system of ordinary differential equations in the
space W = IR"™ x IR™ as follow:

w' + Aw+ kH(w) =P(t), weW, te R, (2.1)

where v = ¥’ and

U 0 0 0 -I
w:(v),’}{=(H(u)),’P=(P(t))and.Az(A d). (2.2)

Now, we are ready to study the linear part of the equation (2.1):
w4+ Aw =0, weW, teR. (2.3)

From now on, we shall suppose that each eigenvalue of the matrix A has multiplicity v; equal to
the dimension of the corresponding eigenspace and the first one is equal to zero and the others are
positive. Therefore, if 0 = A < Az < -+ A; are the eigenyalues of A, we have the following:

a) there exists a complete orthonormal set {¢; x} of eigenvector of A in IR".
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b) for all z € IR™ we have

! Y5 {
Az = Z AiY < T bik > ik = > AjEjz, (2.4)
Jj=1 k=1 1=1

where < -,- > is the inner product in IR™ and
Y3

E;z = Z <z, Pk > k- (2.5)
k=1

So, {E;} is a family of complete orthogonal projections in R® and z = Z§'=1 E;z, z€ R".
c) the exponential matrix e~4* is given by

[
4 =Y e M'E;. (2.6)

i=1

Theorem 2.1 Suppose that ¢ # 2\/X;, j =1,2,...,1. Then the ezponential matriz e~** of the
matriz —A given by (2.2) can be written as follow

1
e My =3 {e"l(j)’Ql(j)w+ eﬂzU)sz(j)w}, weW, teR, (2.7)

=1

where

—ctq/c? — 4);
=—2_J, i=1,2,...,1 (2.8)
and {Q:(j) :i=1, 2}§=1 is a complete orthogonal system of projections in W.

p(7)

Corollary 2.1 The spectrum o(—.A) of the matriz —A is given by

_A) _ {—Cj:\lcz - 4/\j

U(— 2 )

i=12...,1}

Corollary 2.2 Under the hypothesis of Theorem 2.1, there ezist two orthogonal projectors mo, 7y :
W — W and a constant M > 0 such that

le#mol| < M, te R,
lle=Am,|| < ePt, t>0,

Iw = mo + 7, W=WooW,

where Wy = Ran(mo), W, = Ran(mg) and S = f(c) is given by

—ct/c? — 4]
0>—ﬂ=maz{—c, Re(pj)=Re( ¢ J) 1j=2,...,1 i=1,2.}.

2
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Proof The hypothesis ¢ # 2/}, j=1,2,...,] implies that Re(p;(j) <0, j=2,...,l. Therefore
B > 0. Since A; = 0, the formula (2.7) can be written as follows

!
e Mw=Q1(N)w+e Q1)+ ) {ep‘(j)th(j)w + 392(1)’Q2(j)w} , weW, teR.
j=2

Hence, if we define mg = @Q1(1) and
ms =1 —mo = Qa1 +E{Q1 )+ Q2(5)},

we obain the require projections and

leA4mow]l = [[moe=Awll = Q1 (Dwll < @i (Vlllwll, t e R

Therefore, |le"4mo|| < [|@1(1)]| = M. In the same way we get

lettrull? = fme 4wl = eQa(1 w+Z{e‘“"”Ql Qi |
= Qs (1 w|42+z{2Rem(f>'||Q (Gl + R Qs ()w]?}
7=2
< e-”‘{ucz Jull +E|IQ1 Jull® +11Q2(s )w||2}
< e wl?, t 20
So, le=4tmll < e, > 0. 0

Corollary 2.3 For each € € [0, 3) there exists some M(€) > 0 such that

le™Atmol| < M(e)et, te R,
le=Atm|| < M(e)e B~ t>0.

3 Main Result

In this section we shall prove the main Theorem of this paper, under the hypothesis of Theorem
21(c#2/A;, i=1,2,...,1).

The solution of (2.1) passing through the point wg at time ¢ = to is given by the variation
constant formula

w(t) = e~ Aty + [ Al (kP (w ())+’P(s)}ds, te R. (3.1)

to
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We shall use the following notation: For each n > 0 we denote by Z,, the Banach space

Z,= { € C(R; W)+ ally = sup e M|=(0)] < oo} . (32)
te

In particular, Zo = Cy(IR, W) the space of bounded and continuous functions defined in IR taking

values in W = IR™ x R™. )

Theorem 3.1 (Main Theorem )Suppose that H is a bounded function or H(0) = 0. Then for
some ¢ and k positive there ezist n = n(c) € (0,8) and a continuous manifold M = M(c,k, P)
such that any solution u(t) of (1.1) with (u(0),u'(0)) € M satisfies:

1/2
sup =M {Jlu(@)]12 + I/ )12} < oo (3.3)
telR
Moreover,
(a) there ezist a globally Lipshitz function ¢ : Wy — Wy such that
M= {’wo + 'lb(ﬂ)o) two € Wo}. (34)
Moreover, there exist M > 1 and 0 < T' < 1 such that
kLM(1-T)"1 1
1% (w1, P1) — ¥(we, P2)|| < %”wl — wel| + E”Pl - P, (3.5)

for wy,we € W, P, P, € Cy(R, R").

(b) if H is bounded, then v is also bounded.

(c)if P =0 and H(0) = 0, then M is unique and invariant under the equation w’'+ Aw+kH(w) = 0.
In this case M 1is called center manifold and it is tangent to the space Wy at wg = 0.

Before we prove the main theorem, we shall need some previous results.

Lemma 3.1 Let z € Zy = Cy(IR,W). Then, z is a solution of (2.1) if and only if there exists
some wg € Wy such that

Z2(t) = e *wo+ /Ote_A(t_T)ﬂo{—k’H(z(r))+'P(T)}d7‘
+ /_t AT L kH(2(r) + P(r)}dr, te R. (3.6)

Proof Suppose that z is a solution of (2.1). Then, from corollary 2.2 we get z(t) = moz(t) + 7, 2(t)
and from the variation constant formula (3.1) we obtain

t
moz(t) = e Atmz(0) + / e Ao {—kH(2(7)) + P(r)}dr, t€ R. (3.7)
0
From the uniqueness of the solutions of (2.1) we get that

t ’
moz(t) = e= A0 r 2(t0) + [ e A, {—kH(2(7)) + P(r)}dr, t € R. (3.8)

to
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Since z(t) is bounded, there exists R > 0 such that ||2(t)|| < R, for all t € IR. then , from corollary

2.2 we obtain that
e~ ACt=t)r, 2(to)]| < Re=P¢=%) 50 as ty — —o0.

Now, if we put

I = sup [[#(2(r))|| and L, = sup |[P(7)],
relR relR '

then

Ui ; e A0, (—kH(a(r)) + P(r)}ar| < | [ too e~ (kl + Ly} dr|

kl+ L,
—5

Hence, passing to the limit in (3.8) when ¢y goes to —o0, we obtain
t
ro2(t) = / e~ AT r (_kH(2(r)) + P(r)}dr, t€ R. (3.9)

Therefore, putting wo = mz(0) we get (3.6).
Conversely, suppose that z is a solution of (3.6). Then

At) = e Awo+ /Ote-*‘<f—f>7ro{—k7t(z(r))+’P(T>}df
+ / e A, (kR (x(r)) + P(r)} dr
0
0
+ /_ e A my {—kH(2(r)) + P(r)} dr
= M {wo + /_000 47y {—kH(2(7)) + P(T)}dT}
+ / A (ki (a(r)) + P()}dr
0
= e 4(0) + /0 ™40 mo {~kH(2(7)) + P(r)} dr,

where
2(0) = wo + /_ 000 e, {—kH(2(7)) + P(r)}dr. (3.10)

This concludes the proof of the lemma. ' 0

Lemma 3.2 Suppose that H(0) = 0 and z € Z, for n € [0,8). Then, z is a solution of (2.1) if
and only if there ezists some wy € Wy such that z satisfies (3.6).

Proof Suppose that z is a solution of (2.1). Then, in the same way as the proof of lemma 3.1, we
consider:

moz(t) = e~ **2(0) + /0 te_'A(t_T)no{—k’H(z(T)) + P(r)}dr, t€ R.
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and
t
msz(t) = e A0 2 (o) + [ e~ At {—kH(2(7)) + P(r)}dr, t€ R.

to

Since z belong to Z,, there exists R > 0 such that ||z(t)|| < Re™l, for all t € IR. Fix somet € IR
and let to < min{¢,0}; then we have:

||e_A(t_t°)7rsz(to)|| < Re Flt-to)g=mto — Re=Fte(B=nto 4 0 as ty — —oo.

On the other hand, we obtain the following estimate

B+n B-n P (8.11)

I /_:o e~ A=) 7 {=kH(2(1)) + P(r)}dr|| < et {kL_R kLR Lp} .

Where L is the Lischitz contant of H. Hence, putting wg = mo2(0) and passing to the limit when
to goes to —oo we get (3.6).
The converse follows in the same way as the foregoing lemma. 0

Lemma 3.3 Suppose that H is bounded and z € Z, for n € [0,03). Then, z is a solution of (2.1)
if and only if there ezists some wg € Wy such that z satisfies (3.6).

Now, from (3.6) we only have to prove that the following set
M = M(c,k,P)={z(0) :z€ Z,, =z satisfying (3.6)} (3.12)
is a continuous manifold for some values of ¢, k and 7 € (0,8(c)). From (3.10) we get that
M = {wo+ m52(0) : (wo,2) € Wy X Z,, (wp,z) satisfying (3.6)} (3.13)
We shall need the following definition and notations:
Definition 3.1 (a) for each wo € Wy we define the function Swo: IR - W by:
(Swo)(t) = e **wo, t€R;

(b) for each function z : IR = W we define the non-autonomous Nemytski operator G(z) : R - W
by
G(2)(t) = —kH(2(1)) + P(1), t€ R;

(c) for those functions z : IR — W for which the integrals make sense we define Kz : IR — W by
t t
Kz(t) = / e'A(t_T)noz(T)dT—{-/ e~ AT x 2(r)dr, t€ R.
0 -00

With these notations, the equation (3.6) can be written in the following equivalent form in Z,

z=Swo+ K o G(2). (3.14)

4
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Lemma 3.4 (A) S is a bounded operator from Wy into Z, for each n > 0.
(B) if H(0) = 0 or H is bounded, then G maps Z, into itself for n > 0 and

|G (21) — G(2)lln < kL||l21 = 22l, 21,22 € Zn;

(C) for n € (0, 3) the linear operator K is bounded from Z, into itself and

1Kl < Re) = M0 { - + 55—, (3.15)

where 0 < € < n < B and M(¢€) is given by corollary 2.3.
Lemma 3.5 Let ¢ > 0, k > 0 and n € (0,3) such that
['=|K|,kL < 1. (3.16)

Then (I — K oG) : Z, = Z, is a homeomorphism with inverse ¥ : Z, — Z, and the manifold
M = M(c, k, P) is given by

M = {wo + ms¥(Swp)(0) : wo € Wp}. (3.17)

Proof It follows from Lemma 3.4 that K o G maps Z, into itself for n € (0,3) and is globally
Lipschitzian with Lipschitz constant I'. Then, under the condition (3.16) the map (I - K o G) :
Zn — Z, is invertible, with inverse ¥ : Z, — Z, which is also globally Lipschitzian with Lipschitz
constant (1 — I')~!. In particular ¥ is a continuous function. Therefore, the equation (3.14) has a
unique solution given by

2(t) = (I = K 0 G)~ (Swo) (t) = ¥(Swo)(t), t € R. (3.18)

Hence, from (3.13) we get (3.17). 0
Proof of Theorem 3.1. If we take for example = §/2, then R(c) given by (3.15) can be written

as follow 9 9
RO = M) {525+ 505 )
with 0 < e < g Hence, lim. . R(c) = 0. So, we can choose ¢ big enough such that
I'=||K||,kL < R(c)kL < 1.
Then, using Lemma 3.5 we get (3.3) and define ¢ : Wy — W; by
P(wo) = 7, ¥(Swo)(0), wo € Wo,

we obtain (3.3). Clearly, the function 1 is globally Lipschitzian.
On the other hand, from (3.10) we get that

2(0) = wo+ m,2(0) = wo + ¥ (wo)

4

0
= wo+t / ATy {—kH(U(Swo) (1)) + P(r)} dr.
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Therefore,
0
Y(wo, P) = / ATy {—kH(U(Swo) (7)) + P(r)} dr. (3.19)
To complete the proof of part (a), let us consider wy, w, € W, Py, P, € Cp(IR, IR™) and
0
P(wy, P) — p(wy, P) = / —ke?"m, {H(¥(Sw1)(r)) — H(¥(Sws)(r))}dr

+ /_Ooo AT, {P1(1) = P2(7)}dr.

From Corollary 2.2 we get that

|Swy — Swall, = sup e [leA™(Swy — Sws)||
TER
< Mlwy — wel|,

and from Lemma 3.5 we get that
¥ (Sw1) — ¥(Sws)|ln (1= D)7 Swy ~ Swall,

<
< M(1-T)7[w; - wal.

Therefore,
o, P) = wwn, Pl < [ EEMQ =) = e r
+ /_Ow IP; — Py||e®mdr.
Hence,
tn, 1) = bt Pl < B oy w4 S~ P,
To prove part (b), let us suppose that: |[H(u)|| <!, u € R" and L, = sup g | P(7)||. Then,

from (3.19) we get that

0 ki+ L
(o)l < [kt + Lpddr < 2L, o € W,
Part (c) follows from Theorem 2.1 of [8]. 0

Remark 3.1 The equation (3.6) may not have bounded solutions in IR. However, if H =0 and P
satisfies the condition

t
sup{| / |[moP(7)||dT |: t€ R} < 00,
0
then for each wo € Wy the equation (3.6) has a bounded solution which is given by

t t
z(t) = e Atwy +/ E—A(t_T)Wo'P(T)dT“L/ e A=, P(r)dr, teR.
0 —00

An open question, is the following:
What conditions do we have to impose to the functions H and P to insure the ezistence of
4

bounded solutions of the equation (3.6) 7.
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