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Abstract. It i1s shown that wx(f*,t[§7wx(f,t),where Wy is a

Moduli of continuity associated with a rearrangement invariant

space X.



1, INTRODUCTION. Let X(0,1) be a rearrangement invariant space of

Lebesgue me&surable functions on (0,1) (cf.[?]). To this spéce we
associate a modulus of continuity wx(f,t) defined as followsu&(f,t)=
sup || 8, fll y , where (A, f) (x)= |[f(x+h) - f(x)lx(0 1-p) (¥)

b

0<h< t

. * . .
In [8] we derived estimates for f ("the" non-increasing re-

arrangement of f) of the following type

1 &
% o !
(1.1) £ (t)-£ (1/2) < const J wg(f 48) 45 | 0<t<i/2, where
t ¢X(s) 8
- s s Tt s "
¢X (8) = ”X(O,s)lk , 1.e. ¢X is the "fundamental function" of the

space X.

The purpose of this paper is to prove the following theorem:

THEOREM A.  wy(f .t ) < 7 wy(f,t).

In [ 8] we used estimates of the type (1.1) to obtain embedding
theorems for r.i. spaces. These results generalize some classical
inequalities by Sobolev and more recent results by Ul'janov [13],
Storo¥enko [12] and Garsia (cf. [2] and the references quoted in this
paper). In a very interesting paper Garsia [3] used an inequality
of the type (1.1) (for X= LP) to obtain conditions for the uniform
convergence of Fourier series.

In some recent articles inequalities of the type described in

Theorem A have been proved in the context of LF spaces (c f. [u],[9],

[10] , [2u} , [15] ).



Cur result combined with (1.1)allows us to extend the interesting
work by Garsia to a wider class of spaces which includes the L(p,q)
spaces as well as the Orlicz spaces. Moreover, our methods, which are
based on work by the Russian school, seem to be simpler (cf.[3], p.87).

The paper is organized as follows: §2 contains the basic set of
Lemmas on which we base our proof of Theorem A in §3. The reader is
then referred to Garsia [3] for applications to the theory of Fourier
series and Probability theory. ‘e hope to return to these questions

at a later occasion.

2. AUXILIARY RESULTS. Our method of proof of Theorem A follows closely

ideas of [13] and [14]. We start with a result available in the

literature (cf. [11] , p. 455).

(2.1) Lemma. Let f be differentiable almost everywhere in [0,1],

then

e g < HE Hlg GILE Tl

Remark. In [11], (2.1) is stated and proved for X= LP, however

the same proof applies in the more general case.

Using (2.1) we get the following

(2.2) Lemma. Let fe X, and g ¢ W§ (1.e.g' belongs to X) then
B % % -
og (e 0 <2 e gy ot e |y -

Proof. By the triangle inequality we get

% % 3
wx(f - g ,t) + wx(g , t)

wx(fd,t) <
% % %\
<ol £ gl e @l

and the result follows by (2.1).
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Our next result allows us to replace || f - g“HbellﬁrgHX in (2.2)

(2.3) Lemma. Let X(0,1) be a r.i. space, then

% % \/ 1
Ne-glh < gl ¥ f.z2e L.

Proof. Follows from Day [1](p.941, example (ii)y.

Let f e X, and define f_,, 0<8<l, as follows

§ X+s
|
| l j f(u) du if o<x <l1-3 '
l x
I

f (x)=<

S | 1 ;
} % [ f(u) du if 1-s< x < 1,
E 1-5

Estimates for [} f—fsll have been given for example in [ﬁ3] . Similar

estimates hold if we replace |[.||D by an arbitrary r.i. norm.

&

(2.4) Lemma. Let fe X, then

||(f—fS) X(O,l-S)llx < w (f,s).

X
Proof. o .
. 1 1
If(x>‘fs(X)lX(O,1__g)(X) = |; Jff(X)du_E Jf(x*-u)dulx(o’l_s)(x)
0 0
S
< %’ jlf(X)‘f(x"'U)'X(O,i_s)(X)du.
0

Therefore by Minkowski's inequality we get



1
I CE-£0% (0 4 a Ml < 5 ijcf,u> du

< W
- X(f,s).

We can also estimate Il(f-fs)x(1_8_1)||X using the following
Lemma (cf. [13]).

(2.5) Lemma. Let f ¢ X, then

b b b-a

gup f J [ £ -f(t) [dulg(t)|at < 2 I w, (f,s8)ds
llell <1 a a 9

X\

where, 0< a<b < 1, arnd X" denotes the associate space of X ([ & ] ).

Proof. Let ge X°, |l g I&\ < 1, then
b -t
J |£(x+t) - £(1)]ax|glt) |at
a -t

 —T

b
|£Cu)-£(t) |dulg(t) | dt= j
a

L —

"
oOY-—=U
~—

——

0 b
| f(x+t)-F(t) || g(t) |dtldx + { {[ | £(x+t)-£(t)|| g(t) |dt}dx
a- a-

b X

b-a b-x
sup | f | f(x+t) - £(t) |lg(t)|at}ax
0 Il gllgi<1 ©

o
| A

b-a
< J wx(f,x)dx,
0



and

0 b
Jy< f { f [F(x+t) - f(£) || g(t) | dt}dx

a-b a-x
b-a b

< f { f [f(t-v) - f() || g(t) | dt}dv
0 atv
b-a b-v

<] ew [ 1@ - sewllg o Jattay
0 g dlyge s1 0

b-a
< f Wy (f,v)dv
0

where gy (t) = g(t+v). Collecting inequalities we obtain the desired
result.
Using (2.5) we obtain the following

(2.6) Lemma. [[(£f-£) X(1-s,1)“x < 2w (f,s).

Proof.
} 1
_ T 1
| £ fsl (X)X(i—s,l)(X) = | | f(x)du - = J f(u)dulx(l_s,l)(x)
1-s 1-s
therefore,
1 1
-1
]l(f—fs)x(1~s,1)]& < s sup { lg(x)] J | F(x)-f(u)|dudx
“ g”xl f__l '1_8 1—8
8
< 2571 f Wy (f,u)du (by (2.5))
0
< ZwX(f,s)

as required.



3. Proof of Theorem A. “e are now ready to prove our main result

Firstly observe that f_ ¢ wi whenever f € X and moreover
2

? -1 t
fs(X) - S(Asf)(X)’ thus Ilfs'& < s 1w)((f,s). Now,by (2.2),(2.3) we

get
we(f¥*,8) < 2|!f—fs|lX + sllféllx

| A

wa(f,s) + mx(f,s) (by (2.4) and (2.86))

[y

I A

VwX(f,s).

The theorem is established.
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