NOTAS DE MATEMATICA

Nº 23

REGULAR GENERAL CONTACT MANIFOLDS

POR

JORGE SAENZ

DEPARTAMENTO DE MATEMATICA
FACULTAD DE CIENCIAS
UNIVERSIDAD DE LOS ANDES
MERIDA - VENEZUELA
1978

PREPRINT

REGULAR GENERAL CONTACT "AMIFOLDS

JORGE SAENZ C.

1. INTRODUCCION

It has been proved that a compact connected manifold M^{2n+s} with a regular normal f-structure is the bundle space a principal T^s -bundle over a complex manifold N^{2n} . Moreover, if M^{2n+s} is a K-manifold, then T^{2n} is a Kaehler manifold, [2]. In this work we prove that (theorem 4.1) if the K-structure on M^{2n+s} is an S-structure, then M^{2n} is a Hodge manifold. Conversely (theorem 4.4, given a Hodge manifold M^{2n} and any $S \ge 1$, there exists a principal toroidal bundle $M(N,T^s)$ over M^{2n+s} has a regular S-structure.

2. NORMAL f-STPUCTURES

A C[∞]-manifold M^{2n+s}, $n \ge 1$, is said to have an f-structure, if the structural group of its tangent bundle is reducible to U(n) x O(s). This is equivalent to the existence of a tensor field on M of type (1,1), rank 2n, satisfying f³ + f = 0. Almost complex structures (s = 0) and almost contact structures (s = 1) are two examples of f-structures. If there exist vector fields E_i and 1-forms, η^i , $1 \le i \le s$ such that $f(E_i) = 0$, $\eta^i(E_j) = \delta^i_j$, η^i of f = 0, $f^2 = -I + \sum_{i=1}^{s} \eta^i R E_i$

we say that M^{2n+s} has a framed f-structure, or, simply an (f, E_i, η^i) -structure. A framed f-structure is normal if

$$S = |f,f| + \sum_{i=1}^{8} dn^{i} \Re E_{i}$$

vanishes, where |f,f| is the Nijenhuis tensor of f. In this case we have [3]:

1)
$$L_{E_{i}}\eta^{j} = 0$$
, 2) $[E_{i}, E_{j}] = 0$, 3) $L_{E_{i}}f = 0$,

4) $d\eta^{i}(fx, y) = -d\eta^{i}(x, fy)$

The equality 2) implies that the vertical distribution (the one generated by all the E_f) is integrable.

It is known that for any (f,E_i,η^i) -structure there exists a Riemannian metric g which satisfies

$$g(X,Y) = g(fX,fY) + \sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y)$$

A framed f-structure together with this metric is called a framed metric f-structure, or, simple, an, (f,E_i,η^i,g) -structure. The 2-form

$$F(X,Y) = g(X,fY)$$

is called the fundamental 2-form of the (f,E_1,η^i,g) --structure. A K-structure is a normal (f,E_1,η^i,g) -structure whose fundamental 2-form is closed.

Let D be an integrable distribution of dimension h on a manifold N^m . A cubical coordinate neighborhood $(U, (X_j, \dots, X^m))$ on N^m is said to be regular with respect to D if $\frac{\partial}{\partial X^i}$,..., $\frac{\partial}{\partial X^h}$ is a basis for D(p), for every p ϵ U, and if each leaf of D intersects U in at most one n-dimensional slice of $(U, (X^i, \dots, X^m))$. We call D regular if each point p ϵ N has a cubical coordinate neighborhood which is regular with respect to D.

An (f,E_i,n^i) -structure is said to be regular if the vertical distribution is integrable and regular, and if each E_i is regular (the distribution generated by E_i is regular).

Let's state the theorem mentioned at the bigining: THEOREM 2.1. (Blair, Ludden, Yano). Let M^{2n+s} , $n \ge 1$, be a compact connected manifold with a regular framed f-structure. Then M^{2n+s} is the bundle space of a principal toroidal bundle over a complex manifold N^{2n} . Moreover if the framed f-structure is a K-structure, then N^{2n} is a Kaehler manifold.

3. TOROIDAL BUNDLES

Let T' = S' and $T'' = S' \times ... \times S'$ be the one - dimensional and s-dimensional torus respectively. Since these

Lie groups are commutative, by choosing A, a non-zero element of the Lie algebra L(T') of T', we identify L(T') with R, and $L(T^S) = L(T') \times \ldots \times L(T')$ with R^S by means of

$$(0,\ldots,A \quad 0,\ldots,0) \quad \longleftrightarrow \quad \mathbf{e_i} \quad ,$$

where e_1, \dots, e_s is the canonical basis of R^s .

Let $P[N,T^S]$ be the set of all T^S -bundles over the manifold N. If $P(N,T^S,\pi)$ and $Q(N,T^S,\pi)$ are two elements in this set, on $\Delta(PxQ) = \{(u,v) \in PxQ \ / \ \pi(u) = \pi'(v)\}$ we define the equivalent relation:

 $(u_1,v_1) \sim (u_2,v_2) \iff \exists t \in T^S \text{ such that } (u_1t,v_1t^{-1}) = (u_2,v_2).$ The action of T^S on $\Delta(PxQ)$ given by $((u,v),t) \rightarrow (ut,v)$, induces an action of T^S on

$$P + Q = \frac{\Delta (P \times Q)}{\Delta}$$

obtaining, in this way, the new T^S -bundle P+Q. It is known that $P[N,T^S]$ with this operation, "+", is an abelian group whose identity element is the trivial bundle $N \times T^S$. [4].

If ω is a connection form with curvature form Ω of a bundle P(N,T^S), then.

$$\omega = \sum_{i=1}^{s} \omega_i \Re e_i \text{ and } \Omega = \sum_{i=1}^{s} d\omega_i \Re e_i$$

Each real 2-form $d\omega_{\bf i}$ is horizontal and right invariant, therefore there exists a unique real 2-form $\Omega_{\bf i}^{\bf k}$ on N satisfying $d\omega_{\bf i}=\pi^{\bf k}\Omega_{\bf i}^{\bf k}$. Since the forms $\Omega_{\bf i}^{\bf k}$ are closed, they determine a cohomology classes $\left[\Omega_{\bf i}^{\bf k}\right]$, $1\leq {\bf i}\leq {\bf s}$ in ${\bf k}^2({\bf N},{\bf R})$. These cohomology classes are independent from the conection. In this way we get the function

$$\Psi \colon P[N,T^S] \to \bigoplus_{i=1}^S H^2(N,P) \text{ given by } P \to ([\Omega_i^*],...,[\Omega_S^*]).$$

Our intention now is to show that Ψ is a group homomorphism.

Suppose that $\{\phi_{\beta\alpha}\}$ are the transition function of $P(N,T^S)$ corresponding to some covering $\{U_{\alpha}\}$. Each function $\phi_{\beta\alpha}:U_{\beta}\cap U_{\alpha}+T^S$ can be written as $(\phi_{\beta\alpha},\dots,\phi_{\beta\alpha}^S)$. Now $\{\phi_{\beta\alpha}^i\}$ are the transition functions of a 1-dimensional toroidal bundle P_i over M. If we construct the whitney sum P_1 \emptyset ... \emptyset P_S , it happens that a set of transition functions of this sum is precisely $\{\phi_{\beta\alpha}\}$. In other words, P and P_1 \emptyset ... \emptyset P_S have the same transition function. Therefore we may assume that

$$P = P_1 \bullet \dots \bullet P_s \text{ and } P[N,T^s] = \emptyset P[N,T^s]$$

Let h_i be the proyection $h_i : P_1 \oplus \dots \oplus P_s \to P_i$. If Ω_i is a curvature form on P_i , there is a conection on P whose curvature form Ω satisfies:

$$\Omega = \sum_{i=1}^{S} h_{i}^{*} \Omega_{i} \times \epsilon_{i}$$

Therefore we can assume that the function

$$\Psi : P[N,T^{S}] = \bigoplus_{i=1}^{S} P[N,T'] \rightarrow \bigoplus_{i=1}^{S} H^{2}(N,R)$$

is given by $\Psi = \psi x$... $x\psi$ where ψ is the function

$$\Psi : P[N,T^{\dagger}] \to R^2 (N,R)$$
 such that $\psi(P_i) = [\Omega_i^{\star}]$

But this Ψ is precisely the function defined by S. Kobayashi in page 32 of [4]. Furthermore, he proves that $\Psi: \mathbb{P}[\mathbb{N},\mathbb{T}'] \to \mathbb{H}^2(\mathbb{N},\mathbb{R})$ is a group homomorphism wich sends $\mathbb{P}[\mathbb{N},\mathbb{T}']$ onto $\mathbb{H}^2(\mathbb{N},\mathbb{Z})_{\mathfrak{h}}$, where $\mathbb{H}^2(\mathbb{N},\mathbb{Z})_{\mathfrak{h}}$ is the subgroup of $\mathbb{H}^2(\mathbb{N},\mathbb{R})$ formed by all the elements which contain an integral closed from. Therefore

THEOREM 3.1. The function

$$\Psi : P[N,T^S] \rightarrow \bigoplus_{i=1}^S H^2 (N,R)$$

$$P \rightarrow ([\Omega_1^*], \dots, [\Omega_s^*])$$

is a group homomorphism, which sends $F[N,T^S]$ onto $\overset{S}{\overset{}{\bullet}}$ $H^2(N,Z)_b$

 η_{Ω}

4. RECULAR S-STRUCTURES

DEFINICION. A manifold u^{2n+s} is said to have an s-contact structure if there exist on M s global, linearly independent 1-forms η^1, \ldots, η^s such that $d\eta^1 = \ldots = d\eta^s$, $d\eta^i$ has rank 2^n and, at every point of M,

$$n' \wedge \dots \wedge n^s \wedge (dn^i)^n \neq 0$$

It is known [1] that if \mathbb{R}^{2n+s} has s-contact structure, then it has an (f, E_i, η^i, g) -structure, which we call associated to the s-contact structure, such that $F = d\eta^i$, where F is the fundamental 2-form. A normal (f, E_i, η^i, g) -structure associated to an s-contact structure is called an S-structure. Notice that an S-structure is a K-structure.

THEOREM 4.1. Let M^{2n+s} be a compact connected manifold with a regular S-structure (f,E_i,η^i,g) , $i=1,\ldots,s$. Then M^{2n+s} is the bundle space of a principal toroidal bundle over a Hodge manifold N^{2n} .

PROOF. By theorem 2.1 and its proof we have that M^{2n+s} is the bundle space of a principal $T^{\underline{S}}$ bundle over a Kaehler manifold N^{2n} , and that the group action is given by the one-parameter groups of transformations of the vector fields E_1 ,..., E_s .

Now we claim that the form

$$\omega = \sum_{i=1}^{S} \eta^{i} \mathbf{R} \in \mathbf{i}$$

is a conection form. This is, ω satisfies:

- a) $R_t^* \omega = \omega$, for $t \in T^S$.
- b) $\omega(X^*) = X$, where X^* is the fundamental vector fields of X, with X in the Lie algebra of T^S .

Part a) follows from the fact $L_{E_{\hat{i}}} \eta^{\hat{j}} = 0, i, j = 1, \dots s_{\hat{j}}$, which is a consequence of the normality of the S-structure. For part b) it suffices to prove it for the vector $e_{\hat{i}}$, $\hat{i} = 1, \dots, s$. But this follows immediately from $e_{\hat{i}}^* = E_{\hat{i}}$.

On the other hand from the proof of theorem 2.1. We also have that the fundamental form of the f-structure, F, and the fundamental for of the Kaehlerian structure, Ω^{\star} , are related by

$$F = \pi^* \Omega^*$$

Where π is bundle proyection. But, in the particular case of an S-structure we have $F=d\eta^{\dot{1}}$, $i=1,\ldots,s$. Therefore $d\eta^{\dot{1}}=\pi^*~\Omega^*$. Hence, by theorem 3.1. $[\Omega^*]$ is in H (N,Z), which says that \mathbb{N}^{2n} is a Hogde manifold.

THEOREM 4.2. Let $M(N,T^S, \pi)$ be a principal toroidal bundle whose base space N^{2n} has an almost Hermitian structure. Then M has a regular (f,E_i, η^i, g) - structure, $i = 1, \ldots, s$.

PROOF: Fix a conection form $\omega = \sum_{i=1}^{s} \eta^i \Re e_i$ on M i=1 and let F_i be the fundamental vector of e_i , $1 \le i \le s$. Then we have

$$\eta^{i} (F_{j}) = \delta^{i}_{j}$$

Let (J,g') be the almost Hermitian structure of N. If $u \in M$, $\pi(u) = v$ and $\overline{\pi}_{v} \colon T_{v}(N) \to T_{u}(M)$ is the lifting with respect to the fixed connection, define f by

$$f(X) = (\bar{\pi}_{V} \circ j \circ \pi_{u}) (X), X \in T_{u} (M)$$

Then we have $f(F_i) = 0$ and $\eta^i \circ f = 0$ $i = 1, \ldots, s$. We also have

$$f^{2}(X) = (\bar{\pi} \circ j \circ \pi)^{2}(X) = -(\bar{\pi} \circ \pi)(X) = -X + \sum_{i=1}^{s} \eta^{i}(X)E_{i}$$

This is, $f^2 = -I + \sum_{i=1}^{s} \eta^i \Re B_i$. Thus we have an (f, E_i, η^i)

-structure, $1 \le i \le s$, on M. Furthermore, the Riemannian metric g on M defined by

$$g(X,Y) = g'(\pi X,\pi Y) + \sum_{i=1}^{s} \eta^{i}(Y) \eta^{i}(Y)$$

is associated to this $(f,E_i\eta^i)$ -structure, since $g(fX,fY) = g^*(\pi fX, \pi fY) + \sum_{i=1}^{S} \eta^i(fX)\eta^i(fY) = g^*(J\pi X,J\pi Y) = i=1$ $= g^*(\pi X,\pi Y) = g(X,Y) - \sum_{i=1}^{S} \eta^i(X)\eta^i(Y)$ i=1

It is clear from the definition of F_i that each one of these is regular. The regularity of the distribution determined by all the F_i's (vertical distribution) follows form the theorem XIV of [5], which says that if the leaf space of an integral distribution is a manifold and if the proyection mapping takes the tangent space of any point onto the tangent space of its proyection, then the distribution must be regular.

THEOREM 4.3. The framed f-structure defined in the previous theorem is normal if and only if the following two conditions hold:

1) J is a complex structure, 2) $d\omega(fX,Y) = -d\omega(X,fY)$, for any X,Y.

PROOF: Since 2) es equivalent to 3) $d\omega(fX,fY)=d\omega(X,Y)$, the theorem will follow as soon as we prove the two equalities:

- a) $\pi(S(X,Y)) = [J,J] (\pi X,\pi Y); X,Y$ right invariant vector fields.
- b) $\omega(S(X,Y)) = d\omega(X,X) d\omega(fX,fY)$, for any X,Y.

a) If X.Y are right invariant vector fields on M, so are [X,Y], f(Y) and f(Y). (f is right invariant). Besides, we have the relations: $\pi[X,Y] = [\pi X,\pi Y]$ and π of $= J \circ \pi$. Therefore

$$\pi(S(X,Y)) = \pi([f,f] (Y,Y) + [d\eta^{i} (X,Y)E_{i}) = [J,J] (\pi X,\pi Y)$$

b) Since f is horizontal we have $d\omega(fY,fY)=-\omega([fX,fY])$. Hence $\omega(\xi(X,Y))=\omega([fX,\xi Y])+d\omega(X,Y)=-d\omega(fX,fY)+d\omega(X,Y)$.

THEOREM 4.4. Let π^{2n} be a Hodge manifold. Then for each $s\geq 1$ there exists a principal toroidal bundle $M(N,T^S,\pi)$, whose bundle space π^{2n+s} has a regular S-structure.

PROOF: Let (J,g^2) be the Hodge structure on M, and Ω^* its fundamental 2-form. Since $[\Omega^*]$ $\in H^2(M,Z)_b$, then

$$(\underbrace{\left[\Omega^{*}\right], \ldots, \left[\Omega^{*}\right]}_{s}) \in \bigoplus_{i=1}^{s} \mathbb{H}^{2}(\mathbb{M}, \mathbb{Z})_{b}$$

By theorem 3.1., there exists a toroidal bundle $\mathbf{M} = \mathbf{M}(\mathbf{N}, \mathbf{T}^{\mathbf{S}}, \pi)$ such that $\Psi(\mathbf{M}) = ([\Omega^*], \dots, [\Omega^*])$. We can find a connection form $\omega = \sum_{i=1}^{\mathbf{S}} \eta^i \mathbf{K} e_i$ whose curvature form $d\omega$

satisfies

$$d\omega = \sum_{i=1}^{S} d\eta^{i} \Re e_{i} = \sum_{i=1}^{S} \pi^{*} \Omega^{*} \Re e_{i}$$

The forms η', \ldots, η^S define an s-contact structure on M^{2n+s} . In fact, since $d\eta^{\hat{i}} = \pi^* \Omega^*$, the ranh of $d\eta^{\hat{i}}$ is 2n.

On the other hand, if F_1, \ldots, F_s are the fundamental vector fields of e_1, \ldots, e_s , we have $\eta^i(F_j) = \delta^i_j$.

Now, taking F_1, \ldots, F_s and Y_1, \ldots, Y_{2n} horizontal and linearly independent vectors, we get

 $\eta' \wedge \dots \wedge \eta^{S} \wedge (d\eta^{\hat{1}})^{\hat{n}} (E_1, \dots E_S, X_1, \dots X_{2n}) = (d\eta^{\hat{1}})^{\hat{n}} (X_1, \dots, X_{2n}) =$ $= \Omega^* (\pi X, \dots \pi X_{2n}) \neq 0$ which proves that $\eta' \wedge \dots \eta^{S} \wedge (d\eta^{\hat{1}})^{\hat{n}} \neq 0$ at every point of M.

If (f, E_i, η^i, g) is the framed f-structure on M constructed in the theorem 4.2 using the Hodge structure (J, g') on N , we have

$$F(X,Y) = g(X,fY) = g'(\partial X,\pi f Y) = g'(\pi X,\partial \pi Y) = \Omega^{*}(\pi X,\pi Y) = d\eta^{i}(X,Y)$$

Therefore this $(f, E_i^{}, g)$ -structure is associated to this s-contact structure defined by η', \ldots, η^S . By theorem 4.2. and its proof, $(f, F_i^{}, g)$ is regular. On the other hand, since J is a complex structure and dw $(fX, fY) = d\omega(X,Y)$, $(f, E_i^{}, \eta^i, g)$ is normal. and therefore a regular S-structure on M.

REFERENCES

- [1] Blair, D. "Geometric of Manifolds with structural Group U(n) x 0(s)," Journal of Differential Geometric 4, 1970, pp. 155 167.
- [2] _____, Jano, K. Ludden, C. "Differential Geometric Structures on Principal Toridal Bundles, "Transaction of the American Mathematical Society, 181, 1973, pp. 175 184.
- [3] Goldberg, S.I. and Yano, K. "On Mormal Globally Framed Manifolds", Tohoku Mathematical Journal, 22, 1970, pp. 362 370.
- [4] Yobayashi, S. "Principal Toroidal Bundles with 1-dimensional Toroidal Group," Tohoku Mathematical Journal, 8, 1956, pp. 29 - 45.
- [5] Palais, R. "Grobal Formulation of the Lie Theory of Transformation Groups", Memoirs of the American Mathematical Society, No. 22, 1957.