PRODUCTO DE MEDIDAS REGULARES

POR

DIOMEDES BARCENAS

RESUMEN

En el presente trabajo se muestra que el producto de dos medidas regulares sobre espacios topológicos de Hausdorff localmente com pactos, tiene una única extensión al σ -álgebra de Borel del espacio producto, en el caso en que ambas medidas son de variación acotada.

PRODUCTO DE MEDIDAS REGULAPES

INTRODUCCION.

En [3] teorema 21.8 pg. 389, se prueba que si S y T son espacios de Hausdorff localmente compactos; B(S) y B(T) los σ -álgebras de Borel de S y T; μ_1 y μ_2 medidas regulares y σ -finitas sobre B(S) y B(T) respectivamente, entonces μ_1 x μ_2 admite una extensión regular hasta la completación de B(S) x B(T). Jhonson [4] prueba que, bajo cier tas condiciones, el dominio de completación de B(S) x B(T) contiene a B(SxT). Como consecuencia de esto se obtiene que bajo las condiciones dados en [4], el producto de dos medidas regulares admite una extensión regular a B(SxT). En el parágrafo 2 de este trabajo demos tramos que el producto de dos medidas finitas y regulares tiene una extensión regular de B(SxT) y en el parágrafo 3 extendemos este resultado al caso de medidas vectoriales de variación acotada.

1. PRELIMINARES

Sean T un espacio topológico de Hausdorff localmente compacto y K y G sub-conjuntos de T con G abierto y K compacto. El intervalo de extremos K y G se define como la clase de conjuntos.

$$I(K,G) = \{A \in P(T) : K \subset A \subset G\}$$
.

Definamos sobre P(T) la topología T que tiene por base los intervalos I(K,G). La topología inducida por T sobre una clase A de P(T) seguirá siendo denotada por T. Es fácil ver que una clase A es densa en P(T) con esta topología si y solo si para cada compacto K y cada abier to G que contenga a K, existe $A \in A \cap I(K,G)$. En consecuencia, tanto la clase de los conjuntos compactos como la clase de los conjuntos abiertos son densas en P(T).

El siguiente resultado es esencial para los propósitos de este trabajo:

TEOREMA: Una medida positiva μ es regular si y solo si es continua en la topología de P(T), esto es; si y solo si es continua en la topología inducida por τ sobre los borelianos de T.

DEMOSTRACION: Véase [2] pg. 304.

2. PRODUCTO DE MEDIDAS REGULARES

LEMA 1. Si S y T son espacios de Hausdorff localmente compactos y A es el álgebra generado por los rectángulos medibles, entonces A es denso en $P(S\times T)$.

DEMOSTRACION: Sea K compacto y G abierto en SxT con K \subset G; para cada x \in K existen abiertos U_X y V_X en S y T respectivamente tal que x \in U_X x V_X \subset G. Como K es compacto, existen $x_1, \ldots, x_n \in$ K tal que

$$K_{\boldsymbol{c}_{i}} \stackrel{n}{\underline{U}}_{1} \quad U_{x_{i}} \times V_{x_{i}} \stackrel{c}{\underline{C}} G;$$

y como A es el álgebra generada por los rectángulos medibles,

$$\bigcup_{i=1}^{n} \bigvee_{i} \times \bigvee_{i} \in A$$

y en consecuencia A es denso en P(SxT).

De la demostración del lema 1 se deduce el siguiente resultado:

COROLARIO. Si denotamos por $\tau_1 \times \tau_2$ la topología producto de SxT entonces A \cap $\tau_1 \times \tau_2$ es denso en P(SxT).

TEOREMA 2. Si μ_1 y μ_2 son medidas positivas finitas y regulares,

entonces μ_1 x μ_2 es regular sobre el álgebra A generado por los rectángulos medibles.

DEMOSTRACION. De acuerdo con [2] prop. 2 pag. 305; es suficiente probar que para cada A ϵ A y cada ϵ > 0, existe un compacto K ϵ A en SxT tal que K ϵ A y μ_1 x μ_2 (B) < ϵ \forall B ϵ A \ K.

Supongamos que A es un rectángulo medible de la forma $A_1 \times A_2$ con $\mu_1(A_1)$ $\mu_2(A_2) > 0$ (el caso $\mu_1(A_1)$ $\mu_2(A_2) = 0$ es trivial); luego existen compactos K_1 y K_2 contenidos en A_1 y A_2 respectivamente tales que

$$\mu_1(B) < \frac{\varepsilon}{2\mu_2(A_2)}$$
; $\mu_2(B') < \frac{\varepsilon}{2\mu_1(K_1)}$

siempre que $B \in \mathcal{B}(S)$, $B \subset (A_1 \setminus K_1)$; $B' \in \mathcal{B}(T)$, $B' \subset A_2 \setminus K_2$. El conjunto $K = K_1 \times K_2$ es compacto en T; pertenece a A y además, para cada $E \in A$ con $E \subset A \setminus K$ se tiene que

$$E \subset (A_1 \setminus K_1) \times A_2) \cup (K_1 \times (A_2 \setminus K_2)$$

y por lo tanto,

El resultado general es consecuencia de [2] proposición 7 pag. 307.

TEOREMA 3. La función de conjuntos definida sobre los compactos de SxT mediante la fórmula

$$\gamma(K) = \inf\{\mu_1 \times \mu_2(A) : A \in A \cap \tau_1 \times \tau_2; A \supset K\}$$

satisface las siguientes propiedades:

- (1) $\gamma(K_1) \leq \gamma(K_2)$ si $K_1 \subset K_2$
- (2) $\gamma(\kappa_1 \cup \kappa_2) \leq \gamma(\kappa_1) + \gamma(\kappa_2)$
- (3) Si $K_1 \cap K_2 = \Phi$, entonces $\gamma(K_1 \cup K_2) = \gamma(K_1) + \gamma(K_2)$
- (4) Para cada compacto K y cada ε > 0, existe un abierto G con KCG tal que si K' es compacto y K C K' C G, entonces $\gamma(K') \gamma(K) < \varepsilon$.

DEMOSTRACION:

(1) Si
$$F = \{A \in A \cap \tau_1 \times \tau_2 : A \supset K_1\}$$

$$G = \{B \in A \cap \tau_1 \times \tau_2 : B \supset \kappa_2\}$$

entonces G C F γ por 1o tanto inf $\mu_1 \times \mu_2(B) \ge \inf \mu_1 \times \mu_2(A) \Longrightarrow B \in G$ A $\in F$ $\Longrightarrow \gamma(K_2) \ge \gamma(K_1)$.

(2) Si K_1 y K_2 son compactos existen G_1 y G_2 en $A \cap \tau_1 \times \tau_2$ tal que $K_1 \subset G_1$, $K_2 \subset G_2$ y $\mu_1 \times \mu_2(G_2) \leq \gamma(K_2) + \epsilon/2$.

Como

$$\kappa_1 \cup \kappa_2 \subset G_1 \cup G_2, \ \gamma(\kappa_1 \cup \kappa_2) \le \mu_1 \times \mu_2(G_1 \cup G_2)$$

$$\le \mu_1 \times \mu_2(G_1) + \mu_1 \times \mu_2(G_2) \le \gamma(\kappa_1) + \gamma(\kappa_2) + \varepsilon$$

y de la arbitrariedad de ϵ se obtiene (2).

(3) Supongamos que $K_1 \cap K_2 = \Phi$ como S x T es Hausdorff y localmente compacto, existen abiertos G_1 y G_2 tales que

$$G_1 \cap G_2 = \Phi$$
; $k_1 \subseteq G_1$ y $K_2 \subseteq G_2$.

Los conjuntos $^{G}_{1}$ y $^{G}_{2}$ pueden ser seleccionados pertenecientes a A \bigcap τ_{1} x τ_{2} por ser esta familia de conjuntos densa en P(SxT).

Sea E ϵ A \cap τ_1 x τ_2 tal que

$$K_1 \cup K_2 \subseteq E$$
 $y \mu_1 \times \mu_2(E) < \gamma(K_1 \cup K_2) + \epsilon$.

Luego,

$$\gamma(K_1) + \gamma(K_2) \le \mu_1 \times \mu_2(E \cap G_1) + \mu_1 \times \mu_2(E \cap G_2) =$$

$$= \mu_1 \times \mu_2(E \cap (G_1 \cup G_2) \le \mu_1 \times \mu_2(E) < \gamma(K_1 \cup K_2) + \varepsilon;$$

como ϵ es arbitrario se sigue que

$$\gamma(K_1) + \gamma(K_2) \leq \gamma(K_1 \cup K_2)$$

y de la parte (2) de este teorema se sigue (3).

(4) Sea ϵ > 0 y K compacto. Existe G ϵ A τ_1 x τ_2 tal que k C G y

$$\mu_1 \times \mu_2(G) < \gamma(K) + \varepsilon$$
.

Si K' es compacto con K < K' < G, entonces

$$\gamma(K) \, \leq \, \gamma(K^{\, {}_{\! 1}}) \, \leq \, \mu_1 \, \times \, \mu_2(G) \, < \, \gamma(K) \, + \, \epsilon \, \Longrightarrow \, \gamma(K^{\, {}_{\! 1}}) - \gamma(K) < \, \epsilon \, \ .$$

Esto prueba (4) y termina la demostración del teorema.

TEOREMA 4. Si μ_1 y μ_2 son medidas regulares, entonces μ_1 x μ_2 tiene una única extensión regular y numerablemente aditiva a $\mathcal{B}(\text{SxT})$.

DEMOSTRACION. Sea γ la función de conjuntos del lema anterior; por [2] teorema 1 pag. 339, la función de conjuntos

$$\overline{\gamma}$$
: $P(SxT) \longrightarrow R$

A
$$\longrightarrow$$
 sup $\gamma(K)$
A $\supset K$, K compacto

es numerablemente aditiva y regular sobre el σ-álgebra

$$\Phi = \{A \in P(SxT) : \overline{\gamma}(A) = \inf \overline{\gamma}(G); G \supset A, G \text{ abierto}\},$$

el cual contiene a los abiertos y por lo tanto a los borelianos de SxT. Además, $\overline{\gamma}$ es única.

Probamos ahora que $\overline{\gamma}$ |B(S) x B(T) = μ_1 x μ_2 .

(a) $\overline{\gamma}$ y μ_1 x μ_2 coinciden sobre los rectángulos de lados compactos.

Supongamos que K es un rectángulo medible de lados compactos; la monotonia de μ_1 x μ_2 muestra que

$$\mu_1 \times \mu_2(K) \leq \gamma(K) . \tag{1}$$

Sean ε > 0, A abierto en S y B abierto en T tal que

$$\mu_1(\mathsf{A} \setminus \mathsf{K}_1) \; < \; \frac{\varepsilon}{\mu_2(\mathsf{K}_2)} \; ; \; \mu_2(\mathsf{B} \setminus \mathsf{K}_2) \; < \frac{\varepsilon}{\mu_1(\mathsf{K}_1)} \; .$$

Luego,

$$\mu_{1}$$
 x $\mu_{2}(AxB)$ - μ_{1} x $\mu_{2}(K_{1}$ x $K_{2})$ < ϵ

y por lo tanto,

$$\overline{\gamma}(K) \leq \mu_1 \times \mu_2(K)$$
 (2)

de (1) y (2) se deduce (a).

(b) Para cada rectángulo medible AxB,

$$\mu_1 \times \mu_2(AxB) \leq \overline{\gamma}(AxB)$$
.

Sean $K_1 \subset A$, $K_2 \subset B$ y $\epsilon > 0$ tal que

$$\mu_{1}(A) < \mu_{1}(K_{1}) + \frac{\varepsilon}{2\mu_{1}(K_{1})};$$

$$\mu_2(B) < \mu_2(K_2) + \frac{\varepsilon}{2\mu_2(K_2)}$$
 .

Luego,

$$\mu_1 \times \mu_2(AxB) \setminus (K_1 \times K_2)$$

$$= \mu_1 \times \mu_2((\mathsf{A} \backslash \mathsf{K}_1) \times \mathsf{K}_2) \ \mathsf{U}(\mathsf{K}_1 \times (\mathsf{B} \backslash \mathsf{K}_2)))$$

$$\leq \mu_1 \times \mu_2(A \setminus K_1) \mu_2(K_2)$$

+
$$\mu_1(K_1)$$
 $\mu_2(B \setminus K_2) < \varepsilon \implies \mu_1 \times \mu_2(AxB) =$

 $\sup\{\gamma(K):\ K\ \epsilon\ A,\ K\ \blacktriangleleft AxB,\ K\ compacto\}\le\overline{\gamma}(AxB)\,.$

(c)
$$\mu_1 \times \mu_2(SxT) = \overline{\gamma}(SxT)$$
.

Por (b) se tiene que

$$\mu_1 \times \mu_2(SxT) \leq \overline{\gamma}(SxT)$$
.

Por otra parte, como SxT ϵ A () τ_1 x τ_2 , para cada compacto — se tiene que

$$\gamma(K) \leq \mu_1 \times \mu_2(SxT)$$
.

Tomando supremo sobre el lado izquierdo de esta desigualdad obtenemos que

$$\overline{\gamma}(SxT) \leq \mu_1 \times \mu_2(SxT)$$

de esto y la conclusión de (b) se deduce que

$$\overline{\gamma}(SxT) = \mu_1 \times \mu_2(SxT)$$
.

(d) $\mu_1 \times \mu_2 \text{ (AxB)} = \overline{\gamma} \text{ (AxB)}$ para cada rectángulo medible AxB.

Supongamos que existe un rectángulo medible AxB tal que

$$\overline{\gamma}(AxB) > \mu_1 \times \mu_2(AxB)$$

por la regularidad de $\overline{\gamma}$ existe un compacto K ${m c}$ AxB tal que

$$\overline{\gamma}(K) > \mu_1 \times \mu_2(AxB);$$

y de la aditividad de $\overline{\gamma}$ y μ_1 x μ_2 junto con la parte (c) de este teorema se sigue que

De la regularidad de μ_1 y μ_2 se obtiene la existencia de rectángulos compactos K' y K'', de lados compactos, tal que

$$K' \subset (S \setminus A) \times B ; \qquad K'' \subset Ax(T \setminus B) \quad y$$

$$\mu_1 \times \mu_2(SxT \setminus AxB) \leq \mu_1 \times \mu_2(K') + \mu_1 \times \mu_2(K'') + \epsilon =$$

$$= \mu_1 \times \mu_2(K' \cup K'') + \epsilon = \overline{\gamma}(K' \cup K'') + \epsilon.$$

puesto que μ_1 x μ_2 y $\overline{\gamma}$ coinciden sobre los rectángulos de lados compactos. Así,

$$\overline{\gamma}(SxT \setminus K) < \mu_1 \times \mu_2(K' \cup K')$$

lo cual contradice la monotonía de $\overline{\gamma}$ puesto que

Esta contradicción muestra que $\overline{\gamma}$ y μ_1 x μ_2 coinciden sobre los rectángulos medibles; y en consecuencia coinciden sobre el álgebra generado por los rectángulos medibles. Así, μ_1 x μ_2 tiene una extensión regular, desde el álgebra A generado por los rectángulos medibles, hasta $\mathcal{B}(SxT)$. Es decir, μ_1 x μ_2 tiene una extensión continua, desde A hasta $\mathcal{B}(SxT)$ en la topología τ que tiene por base los intervalos de la forma $\Gamma(K,G)$. Como A es denso en $\Gamma(SxT)$ con dicha topología; la unicidad de la extensión se deduce de 5 ejercicio (c) pág. 119.

3. EXTENSION AL PRODUCTO DE MEDIDAS VECTORIALES

DEFINICION 1. Si μ es una medida vectorial, se dice que μ es regular si para cada ϵ > 0 y para cada conjunto medible A existen un compacto K y un abierto G tal que K \subset A \subset G y $||\mu(B)|| < \epsilon$ para cada conjunto

medible B C G \ K.

DEFINICION 2. Si μ_1 y μ_2 son medidas vectoriales numerablemente aditivas y de variación acotada con valores en X e Y respectivamente don de X e Y son espacios de Banach; y si Z es un espacio de Banach y b: X x Y \rightarrow Z es una aplicación bilineal y continua, la medida producto de un rectángulo medible AxB se define por la fórmula

$$\mu_1 \times \mu_2(AxB) = b < \mu_1(A), \mu_2(B) >$$

y se prueba ([1]) que μ_1 x μ_2 tiene una única extensión numerablemente aditiva al σ -álgebra generado por los rectángulos medibles. Esta extensión es de variación acotada y además,

$$|\mu_1 \times \mu_2| \le ||b|| ||\mu_1| \times |\mu_2|.$$

El objetivo central de este parágrafo es probar el siguiente resultado:

TEOREMA 3. El producto de dos medidas vectoriales regulares, numera blemente aditivas y de variación acotadas definidas sobre los bore - lianos de dos espacios topológicos de Hausdorff y localmente compactos S y T admite una única extensión regular a los borelianos de SxT.

DEMOSTRACION. Sean $\mathcal{B}(S)$ y $\mathcal{B}(T)$ los σ -álgebras de S y T respectivamente; X,Y,Z espacios de Banach y b: X x Y \rightarrow Z la aplicación bilineal y continua mediante la cual se define la medida producto. De $\begin{bmatrix} 1 \end{bmatrix}$ sabemos que

$$|\mu_1 \times \mu_2| \le ||b|| ||\mu_1| \times |\mu_2|;$$

de regularidad de μ_1 y μ_2 se deduce la de $|\mu_1|$ y $|\mu_2|$ y por el teorema 4 §2; $|\mu_1|$ x $|\mu_2|$ es regular. Esto implica la regularidad de

 $\|\mathbf{b}\| \|\mathbf{\mu_1} \times \mathbf{\mu_2}\|$ y esta a su vez la de $\|\mathbf{\mu_1} \times \mathbf{\mu_2}\|$.

Para cada compacto K C SxT definamos

$$\eta(K) = \inf\{|\mu_1 \times \mu_2| (A); A \in \mathcal{B}(S) \times \mathcal{B}(T): A \supset K\}$$
.

La función de conjuntos η satisface las condiciones del teorema 3 del parágrafo 2; y por un proceso similar al de la demostración del teorema 4 del mismo parágrafo, se prueba que η admite una extensión regular μ a $\mathcal{B}(\mathsf{SxT})$ y de la demostración del teorema 2 pág. 347 de $\boxed{2}$, se deduce que $\mu(\mathsf{A}) = |\mu_1 \times \mu_2|$ (A) \checkmark A ε $\mathcal{B}(\mathsf{SxT})$. Así, μ es una extensión regular de $|\mu_1 \times \mu_2|$.

Usando un argumento similar al de las proposiciones 1 pag. 304 y 19 pág. 314 de [2], se obtiene que μ_1 x μ_2 es regular sobre B(X)xB(T).

Consideremos ahora la pseudométrica

$$\rho: \mathcal{B}(SxT) \times \mathcal{B}(SxT) \longrightarrow [0,+\infty)$$
(A,B) $\longrightarrow \mu(A \Delta B)$.

Como $\mathcal{B}(S)$ x $\mathcal{B}(T)$ es denso en $\mathcal{B}(SxT)$ con la topología τ , la proposición 29 §15 de [2] muestra que $\mathcal{B}(S)$ x $\mathcal{B}(T)$ es denso en $\mathcal{B}(SxT)$ con la topología determinada por la métrica ρ ; por tanto μ_1 x μ_2 puede ser extendida a una única medida $\gamma\colon \mathcal{B}(SxT)\longrightarrow Z$ con variación acotada $|\gamma|$ tal que $|\gamma|$ es una extensión de $|\mu_1$ x $\mu_2|$. De la unicidad de la extensión se deduce que $|\gamma| = \mu$. De donde $|\gamma|$ es regular y en consecuencia lo γ . Esto termina la prueba.

REFERENCIAS

- [1] BARCENAS D. Producto Bilineal de Medidas, Notas de Matemáticas N° 72, Mérida, Venezuela, (1985).
- DINCULEANU N. Vector Measures, Pergamon Press, Oxford, 1967.
- HEWITT-STROMBERG. Real and Abstract Analysis, Springer Verlog, Berlin, Third printing, 1975.
- [4] JHONSON R.A. Product of two Borel Measures, Trans. Amer. Math. Soc. 611-625, 1982.
- [5] KELLEY J.L. Topología General, Eudeba, Buenos Aires, 1962.