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ON MODULI OF SMOOTHNESS OF BANACH SPACES

JOZEF BANAS

1. INTRODUCTION.

.

in the geometric theory of Banach spaces the notions of moduli of
convexity and smoothness play a very important and significant role.
They appeared to be useful tools in characterization of Banach spaces
with respect to the rotundity and to the smoothness of their unit balls.
By this regard these notions are applicable in many theories concerning

Banach spaces (cf. [1,9,5,6,11,12]).

This paper is devoted mainly to the notion of a modulus of smooth-
ness. The notion of such a modulus was introduced by Day Eﬂ and next
was examined and applied by several mathemticians D+,5,10,12,13]. It
is worth while to mention that there exists the nice relationship bet-
ween a modulus of convexity of a given Banach space E and a modulus of
smoothness of its dual space E*[Hﬂ. But on the other hand it is very
difficult to find some relations among these moduli in the same spa-

ce E.

In this paper we introduce two new moduli of smoothness. One of
them is defined in the manner very close to the modulus of convexity.

By this regard it seems to be more natural than the classical modulus
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due to Day . We prove a few properties of the given moduli and a few
relations among them. Moreover, we calculate exact formulas for the-

se moduli in the case of some Banach spaces.

Actually we were not able to salve many interesting problems which
appear in connection with moduli of smoothness considered here (see:

.

Final Remarks).
2. NOTATION, DEFINITIONS AND PRELIMINARY RESULTS.

Let (E, || .]|) be a given Banach space. By B,S we will denote
the closed ball and the sphere in the space E with the center @ and
radius 1. Let us recall that the modulus of convexity of the spaceE is

the function §:< 0,2> » < 0,1> defined by

§(e) = inf |1 - X’z'y : x,y€ S, || x-y|l = 8]

l}ﬂ- The function § is continuous on the interva <0,2), nondecreasing
on the interval <0,2> and increasing on the interval <g,,2>, where
€o = sup|e: 8(e) = 0] is the so-called characteristic of convexity of
the space E. The space is called uniformly convex provided €, = 0,

For other properties of the modulus of convexity we refer to[5,6,12,13].

New let us recolled two definitions of a uniformly smooth space

3.8].

DEFINITION 1. We say that E is uniformly smooth if for each € > 0 there

isn >0 for which || x||> 1, ||yll > 1 and || x-y[| < n implies



Ixll+ 1yl -1 =yl < ell x=yll

DEFINITION 2. A space E is referred to as uniformly smooth if for any
€ > 0 there is T > 0 such that || x|/ =1, |[yll< 1t implies || x+y|l +

%=yl <2 +ellvll.
It may be shown that the above definitions are equivalent J}ﬂ.

By means of Definition 2 the notion of the modulus 0§ smoothness

of a space E was introduced by Day Ijﬂ in the following way

s(e) = sup| erdllAlloevll 2 o, gy i< o],

where € € <0,1> . The function p possesses several properties, for
example it is continuous and convex on the interval <0,1> and
/l+€2 -1 < p(e) < e for ¢ € <0,1> le]. Moreover, it may be shown that

E is uniformly smooth iff 1lim p(e)/e = 0.
e~>+0

Now let us remark that the assumptions || x||> 1, |ly|[> 1 in De-
finition 1 seem to have no significance. In fact, we may accept the

following

DEFINITION 3. A space E is called uniformly smooth if for each € > 0

there exists n > 0 such that for any x,y € S and le-yllf_n the ine-

quality 1 - lLé%XlL-j_e ]]x-yll holds true.

We show that this definition is equivalent to those previous gi-

ven. Actually if E is uniformy smooth in the sense of Definition 1



then it is also uniformly smooth in the sense of Definition 3. Conver
sely, let us suppose that E is uniformly smooth with respect to Defi-
nition 3 and it is not in the sense of Definition 1. Then there exist
€, > 0 and two sequences (xn), (yn) such that ]lxn]LZ 1, | yn]]_i 1,

|Ixn-yn||+ 0 as n tends to infinity and
(1) I e By = Dix +y [ > e llx =y |

for all n=1,2,... Without loss of generality we may assume that H ynH

< |Ix,ll for n e N. Further, putting U = x_/ I xn||, vV =y /||yn”

we have fIUnfl = || Vn” =1 and
Y 2 Y 2
o, - vl s — - 0 Il %=y,
non Ix I = Il x| uynn‘ el "

what implies that ||Un- Vn||+ 0 as n > and additionally
X
(2) e, -yt > el v 11, ez,

Next, by virtue of (1) we get

x_ Y, ) X . Yn
2= flugrv Il = ” N ||+ HHynll 'l l'llxnll llynlln

Il -

L x|+ Il - Ly Il +-—

Il " le | le I Hy,

a1l nx:,,H* Hy:nll] 't I ::H+ | :“H

(el Dy, )+

>

- llx I
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vl | T lllnll}’ 1l lllnll' Il 1 -
- I[lnll[llxnll gl = gt ]+l v, I | II;HI!- lllnll] .
T g [ e L
' }:::::= ff;n;r"x" ol
what in view of (2) implies

2= flu_+ v il>S [lu - v [, n=1,2,.....

But this inequality contradicts to our assumption and the proof

is complete.

In what follows, keeping in mind Definition 3, we may define the

another modulus of smoothness of a space E by the formula

pl(e) = sup |1 - 1L5§1ﬂ t x,y €S, || x-vl| = e] , € €<0,2>.

L
o

Actually a space E is uniformly smooth iff 1lim p](e) /€=
£>0

Further, let us introduce another one function being kind of a

modulus of smoothness, defined in the following way

0y (€) = sup [mind[lxryll [ x-yll ¥ =12 [ xll=1, [Iyli<e] , e e <o,
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In the next section we show that p2 may be also treated as a modulus

of smoothness of a Banach space.

REMARK. In the situation when we have to distinguish different Ba-

nach spaces we will write p](s,E]), pz(e,E )} or Pe (), for example.
2
3. FURTHER RESULTS.

In this section we list some properties of the previous introdu-
ced functions Py and p2 in connection with the classical modulus p
and the modulus of convexity 8. At the beginning let us notice the

simple relations
§(e) < pye) , € € <0,2>,
p,(e) <ple) , e e <0,1>
being valid for an arbitrary Banach space E.

It is easily to compute the exact formulas for Pys Py in the case
of a Hilbert space H. Indeed, using the parallelogram law we obtain

2
_ _ _8
p1(€,H) = dH(c) 1 1-= ,ce€<0,2

1+¢2 -1, ee <0,1> .

pz(e,H) = pH(e)

Furthermore, we have the following lemma which is true for on arbitra-

ry Banach space E.

LEMMA 1. The function Py is increasing on the interval <0,2> and



p1(€) < €/2 for ony € € <0,2> .

The proof of the first part requires only some technical argumen-

tations and is therefore omitted. Moreover, we have

o (€) = sup [ 2| x]| - Lyl X,y &5, || x-y| = E] <

< sup ]:JLX'i')’JJ +|I X;Y”" ” X+Y“ : X,y € S, || x-y” = g]:_é:_

what proves the second part of our lemma.

It is worth to mention that in the case C <a,b> it is easily to
calculate that pI(E) = ¢/2 and pz(e) = p(e)=€. On the one hond this
show that the estimate from Lemma 1 and the earlier given estimate
p(e) < &€ are exact. On the other hand the example given by Poulsen
[}ﬂ suggest that the equality Py =P is not valid in the case of an

arbitrary Banach space.

LEMMA 2. The function P, is nondecreasing on the interval <0,1> and

pz(e) < e for € € <0,1> .
The proof is obvicus.

In the sequel we will also use the following lemma being analogous

to Lemma 4 from |5].

LEMMA 3. If [ x|[> 1, |l yll> 1 and | x-yl[< 2 then

| x+yll > 2 (1 - o Ul x=yl[)).
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The proof is similar to the proof of the above mentioned lemma

from Eﬂ and we omit it.

Now we prove two theorems showing some relations among discussed

moduli.

THEOREM 1. p](e) j_(]-p1(€)) D(ETT:B?TEYT ) .

PROOF. Let € € <0,2> be fixed. Take on arbitrary n > 0 (sufficiently

small) and x,y € S, |[ x-y|[ < € such that

o, (e) ~n<1- lLflgilL-g_p](e).

1

Then
Lx-yll - £
| xtyll ™ 2(1-p,(e))
Further we get
p‘I (g)—n i ” XH +‘LY£I -“ X+LI| = ” X;y” ( l ‘ X+y . Xy ' .
I x+yll ] x+yll
v 1 ” xty _ _x-y ”) < (1= oy (e)n)sup| 1Lu+vn+”u v]-2
20 I xeyll | =yl

lall =1, nvlli—zﬁ;ﬁﬂ

what implies the desired inequality.

THEOREM 2. p](e) = (I—p](e) pz( T(l_—g]—(e_ﬁ) .

The below given proof is patterned on the proof of Lemma 6 from[b}.
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Without lass of generality we may assume that dim E < «. Further,
take € € <0,2> and x,y € S, [[ x-y[[ = € such that [[x+y[[=2 O - p, (e]].
Denote by s = e/Z(l—p](e)) and put u=(x+y)/ [| x+yll , v=(x-y) /| x+y]|| .
Then |[ull=1, || v]|=s and || utv]|| = || u-v|| = ]/(1—p](€)). Hence
min {[[ utv]l |l u-vil } = 1/(1-p,(e)) and finally p,(s) > (17(1-p, (s))-1=

= 01(8)/(1—pl(€)). Thus we get

£
(3) 01(8) < (]'01(8)) pZ( Z_(T—-p_]-(a))
In order to prove the reverse inequality let us choose u € S and v such
that |[v]] = s and min{|| utv]| ,]Ju-v|| } =1 + pz(s) = %—. Putting
x = alutv), y = a(u-v) we have || x| > 1,]ly]|> 1 and || x-y|| = 2as.

Then using Lemma 3 we obtain

p](Zas)il Ayl 1 - 3= P2(s)

2 - 1+pZZs§ )
The above inequality together with (3) implies

0,(2as) > p, (e)

what in view of Lemma 1 allows us to infer

2as > € .

Hence




_]0..
what completes the proof.

Let us observe that the equality from Theorem 2 permits us to dedu-

ce the following inequalities

7 0,0e) < 0 (e) <o, ( 5.

Hence we obtain the following
COROLLARY. A Banach space is uniformly smooth if and only if

lim pz(s)/ e = 0.
e~>0

4. THE CASE OF THE SPACE £°.

We are going now to calculate the exact formula for the modulus Py
in the cas of £° space, p > 1. We will use the following inequalities

due to Hanner |:7,12]:
LEMMA 4. Llet x,y € 2P, Then for p > 2

(Exll+1Ty P +

lell-llyll,p >l xeyll Pl =y 1P > 20l x( P2l y (1R
If 1 < p < 2 then the inequalities have the converse signs.

Now, putting in the above inequalities x+y instead of x and x -y

instead of y we derive.

(v ] Pl ey P2+ {1y =10 xey I P > 2P I P+l v IER) >

2(]] x#y [l P+ [ =yl ).

| v
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Hence, dividing all inequalities by 2P and considering the case 1<p<2

we have

(L) I[X;Yl[ + IIX%X“ ]P .

Loerll - ooyl < P oy P <

< gl

[ ey

Let us consider firstly the case 1 < p < 2. Take an arbitrary €€ <0,2>.
Without loss of generality (cf. I},12]) we may assume that there exist

X,y € S 0’ | x-y|| = € with the property
s

=1 - A Xty
pl(e) 1 5 ,
what gives
+
XYL =y - p1(e) .

Substituting the above relationship to (4) and using only the right ine-

quality we get

2 <2 {(1-p; (NP + (5P} .

Hence

(5) oy(e) < 1 - (1-(5)P)P.

Now we show that the equality in (4) is atlained. Indeed, let us take

€ \py 1/ €
x =((1-(5)") p,f,o,o,....)
y =((-($)MP, - £ 0,0,...).
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Then I[x[{= [[y[[= 1, [[x-y[[ = ¢ and finally

Ixsyll = 2 (- 51P)7P

Hence we infer

2(1-( )PP = xay > 2 (10, (€)) ~

what gives

(6) p (&) > 1-(1-( £)P) 1P
Now combining (5) and (6) we have

(7) p,(e,£P) = 1-(1-( 5)P) /P

for 1 < p < 2.

Similarly, using the left hand side inequality (4) (with the rever-

se sign, of course) we can compute that for p > 2

(8) (1-p, ()= 5P + | 1-0 (&) - £ |P = 2.

Let us pay attention to the fact that the equality (7) implies

(9) oy (e) >0 (o)

for 1 < p < 2, so that in this case we can also write (cf.|33])

(10) 0, (e4P) > o (e,8%) = 8(e,8)) = 1-(1-(£)H 2,
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It may be also shown that for 2 < p the following inequality holds

true

(i) o (e,P) > 8 (e) = 1-(1-( $)P) 7P,

£

In the case p=2 we have the equality p](e,ﬂz) =4 2(8).
£

5. FINAL REMARKS

At first, let us pay attention to some facts connected with the
inequalities (9), (10) and (11). In the section 2 we have noticed
that pl(e)‘z 8(e) for any Banach space E. The inequalities (9) and
(11) show that in same cases the inequality sign may be strong. That
is caused by the fact that for p > 1, p # 2 the space 2P does not ha-
ve such ''nice' geometrical structure as the Hilbert space (Kz, for
example). The above discussion motivates the introduction of the

notion of the defomumation of a Banach space.

DEFINITION 4. For an arbitrary Banach space E the function d:<0,2>>

+ <0,1> , defined by the formula
d(e) =p,(e) - &(e)
will be called the deformation of the space E.

Now we raise a few of open problems connected with the conside-

rations of this paper.

PROBLEM 1. Is the function Py continuous? The same problem for the



-14-
function Py-

PROBLEM 2. Are the functions Py and p, convex?. Let us mention that
Liokoumovich I}ﬂ showed that it is not always true for the case of

the function §.

PROBLEM 3. It is well known |30,13] that for any Banach space E the

following evaluations are valid

/l+ez -1

pg(e) > o, (€)

1- VI'( % )2’

pgle) < o, (e)

where H denotes a Hilbert space. That suggests,for example, the va-

lidity of the following inequalities
py(e,E) > o (e,H) = p(€)
0,(e,H) > py(e)

(compare the inequality (10)). s that true?.

PROBLEM 4. Compute the exact formulas for the moduli Py and P, in
the case of other Banach space, for example Lp, the Day's space and

the James space (cf. [jz]).

PROBLEM 5. Examine the properties of the deformation d(e). Let us
remark that this function allows us to classify Banach spaces with

respect to ''beauty' their geometrical structure. For example



_]5..

d(e,C<a,b>) = €/2 for €€<0,2> (very "bad" space) and dH(e) =0, so

that H is very ''‘nice' space.
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