A NOTE ABOUT THE MAXIMUM PRINCIPLE

BY

DIOMEDES BARCENAS

AND

MARIA LUISA COLASANTE

ABSTRACT. In this paper we give sufficient conditions so that an analytic function having complex domain, range contained in a Banach space and satisfying the maximum principle becomes a constant.

1. PRELIMINARIES. Let Ω be a region of the complex plane and let X be a complex Banach space with dual X^* . A function $f \colon \Omega \to X$ is called an analytic function if and only if $X^* f \colon \Omega \to \mathbb{C}$ is an analytic function for each $X^* \in X^*$.

In all this work we consider Ω , X and f as above.

For analytic functions with values in Banach spaces the

following result is valid (see Hille-Phillips [5] or Dunford Schwartz [4]).

THEOREM 1.1. If $f: \Omega \to X$ is an analytic function and there exists $\mathbf{a} \in \Omega$ such that $||f(a)|| \ge ||f(w)|| \forall w \in \Omega$, then ||f|| is a constant.

Theorem 1.1 is known as the maximum principle. We will show in section 3, by means of example, that the maximum principle does not imply that f is constant.

A Banach space X has the Radon-Nikodym Property if for each X-valued vector measure μ defined on the Borel sets contained in [0,1], which is of bounded variation and absolutely continuous respect to the Lebesgue's measure m, there is a unique function m - Bochner integrable g: $[0,1] \rightarrow X$ such that

$$\mu (E) = \int_{E} g dm \qquad (1)$$

for each Borel set E ϵ [0,1].

An extensive study and a larger bibliography on the Radon-Nikodym Property can be found in Diestel-Uhl \centsum . In that reference is proved-among other examples-that ℓ_1 , reflexive Banach spaces and dual separable Banach spaces have the Radon-Nikodym Property; however C_0 and ℓ_∞ are Banach spaces which lack this property.

There are many characterizations of Banach spaces with the Radon-Nikodym Property; but in this work we will use the following result obtained by Huff-Morris [6].

THEOREM 1.2. A real Banach space X has the Radon-Nikodym Property if and only if for each non-empty, bounded and closed A X, the set of all linear and continuous functionals attaining maximum on A is norm-dense in X^* .

Another geometric property of Banach space used in this work is the following:

THEOREM 1.3. (BISHOP-PHELPS). If A is a non-empty convex, bounded and closed subset of a real Banach space X, then the set of all linear and continuous functionals attaining maximum on A is norm-dense in X*.

The proof of these theorems can be found in Diestel-Uhl
[3].

RESULTS. The ideas for the respective proofs of the following theorems 2.1 and 2.2 are contained in the proof of theorem 2.2 of Aurich [1].

THEOREM 2.1. Let $f: \Omega \to X$ be an analytic function. If there exists $a \in \Omega$ such that $||f(a)|| \ge ||f(w)|| \ \forall \ w \in \Omega$ and $f(\Omega)$ is convex and closed in X, then f is constant.

PROOF. If || f(a) || = 0, it is trivial. Suppose that

 $\| f(a) \| > 0$ and $x^* \in X^*$. If x_1^* denotes the real part of x^* and x_1^* attains maximum on $f(\Omega)$, then x_1^* f is constant (see Conway [2] pg. 266) and therefore x^* f is constant.

Suppose that $y^* \in X^*$ with real part y_1^* . By Bishop-Phelps theorem, given $\epsilon > 0$ there is a linear and continuous real functional x_1^* which attains its maximum on $f(\Omega)$ and

$$|| x_1^* - y_1^* || < \frac{\varepsilon}{||f(a)||}$$
 (2)

If we define x* by means of

$$x^*(x) = x_1^*(x) - i x_1^*(ix),$$
 (3)

Then x* f is an analytic function whose real part x_1^* f has maximum. Hence x_1^* f is constant. Thus for each z ϵ Ω ,

$$|y_1^* f(z) - y_1^* f(a)| \le$$

$$|x_1^* f(a) - y_1^* f(a)| + |x_1^* f(a) - y_1^* f(z)| < \varepsilon.$$
 (4)

Therefore y* f is a constant and, by Hahn-Banach theorem, f is constant.

The conclusion of the preceding theorem remains valid if

we replace the hypothesis " $f(\Omega)$ is convex" by "X has the Radon-Nikodym Property".

THEOREM 2.2. Let $f: \Omega \to X$ be an analytic function. If there exists $a \in \Omega$ such that $||f(a)|| \ge ||f(w)|| \ \forall \ w \in \Omega$, $f(\Omega)$ is closed in X and X has the Radon-Nikodym Property then f is a constant.

PROOF. It is similar to the one in theorem 2.1 by changing Bishop-Phelps theorem by Huff-Morris theorem.

3. EXAMPLES.

EXAMPLE 3.1. Let $\Omega = \{ z \in \mathbb{C} : |z| < 1 \}$ and define $f : \Omega \to C_0$ by

$$f(z) = \{1, z^n, n > 1\}.$$
 (5)

For each $\{\alpha_0, \alpha_1, \ldots, \alpha_n, \ldots\}$ $\epsilon \ell_1 = C_0^*$, we have

$$\{\alpha_0, \alpha_1, \ldots, \alpha_n, \ldots\}$$
 f(z) = $\sum_{n=0}^{\infty} \alpha_n$ zⁿ (6)

which is an analytic function. Therefore f is analytic.

It is easy to see that $||f(z)||_{C_O} = 1 \quad \forall \ z \in \Omega$, but f is not constant. This last conclusion is due to the fact that although $f(\Omega)$ is closed it is not convex.

It is well known that $C_{\rm O}$ lacks the Radon-Nikodym property. A new way to prove this fact is by using example 3.1

together theorem 2.2 from the preceding section.

EXAMPLE 3.2. Let Ω be as example 3.1 and define $f: \Omega \to C_O$ by $f(z) = \{1, \frac{z}{n}, n \ge 1\}$. The function f defined above is non constant but $|| f(z) ||_{C_O} = 1 \quad \forall z \in \Omega$.

On the other hands, it is easy to see that $f(\Omega)$ is convex but not closed and that f is an analytic function. This proves that the hypothesis " $f(\Omega)$ closed" cannot be removed in theorem 2.1 of precedent section.

ACKNOWLEDGMENT. This work was supported by C.D.C.H.T of Universidad de los Andes under project C 391. 89.