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A NOTE ABOUT THE MAXIMUM PRINCIPLE

BY
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AND

MARIA LUISA COLASANTE

ABSTRACT. In this paper we give sufficient conditions so
thatan analytic function having complex domain, range con-
tained in a Banach space and satisfying the maximum princi-

ple becomes a constant.

1. PRELIMINARIES. Let  be a region of the complex plane
and let X be a complex Banach space with dual X*. A func-
tion f: Q > X is called an analytic function if and only if

x* f: Q » T 1is an analytic function for each x* g X*,
In all this work we consider Q, X and f as above.

For analytic functions with values in Banach spaces the
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following result is valid (see Hille-Phillips [5] or Dunford-

Schwartz Eﬂ).

THEOREM 1.1. 1§ 4: Q - X {8 an analytic function and there
exists a € Q such that || flall]l > || §tw)]] ¥ w e @, then || 4l

i a constant,

Theorem 1.1 is known as the maximum principle. We will
show in section 3, by means of example, that the maximum

principle does not imply that £ is constant.

A Banach space X has the Radon-Nikodym Propenty if for
each X-valued vector measure p defined on the Borel sets
contained in [0,1], which is of bounded variation and abso-
lutely continuous respect to the Lebesgue's measure m, the-
re is a unique function m - Bochner integrable g: [0,1] + X

such that
u(E) = [ gdm (1)
E

for each Borel set E ¢ [0,1].

An extensive study and a larger bibliography on the Ra-
don-Nikodym Property can be found in Diestel-Uhl [3] . 1In
that reference is proved-among other examples-that Kl, re-
flexive Banach spaces and dual separable Banach spaces have
the Radon-Nikodym Property; however Co and £ are Banach

spaces which lack this property.
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There are many characterizations of Banach spaces with
the Radon-Nikodym Property; but in this work we will use the

following result obtained by Huff-Morris f}ﬂ.

THEOREM 1.2. A real Banach space X has the Radon-Nikodym
Property L4 and only L§ forn each non-empty, bounded and
closed A X, the set of all Linear and continuous functio-

nals attaining maximum on A A5 norm-dense in  X*.»

" Another geometric property of Banach space used in this

work is the following:

THEOREM 1.3. (BISHOP-PHELPS). If A 48 a non-empty convex,
bounded and clLosed subset ocf a neal Banach space X, then
the set of all Linear and continuous functionals attaining

maximum on A A8 noam-dense in X¥*.

The proof of these theorems can be found in Diestel-Uhl
[3].

RESULTS. The ideas for the respective proofs of the follo -
wing theorems 2.1 and 2.2 are contained in the proof of

theorem 2.2 of Aurich [1].

THEOREM 2.1. Llet {: Q@ = X be an analytic function. 1§
thene exists a € Q@ such that || fla)]] > || flw)]] ¥ we @

and §(Q)] 48 convex and closed in X, then { 44 constant.

PROOF. If || f(a)]|= Q,it is trivial. Suppose that
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| £(al|] > 0 and x* e X*. 1If x} denotes the real part

3 f 1is

constant (see Conway [2] pg. 266) and therefore x* f is

of x* and x{ attains maximum on f(Q), then =x*

constant.

Suppose that y* e X* with real part y{. By Bishop-
Phelps theorem, given ¢ > Q0 there is a linear and conti-

nuous real functional x{ which attains its maximum on

f(Q) and
2 - y3 1l < —g (2)
If we define x* by means of
x*(x) = X{(xl - i x{(ixl, (31

Then x* £ is an analytic function whose real part XI £

has maximum. Hence xf f is constant. Thus for each z ¢ Q,

ny £(z) - y* £(a)]| <

%

|x¥ f£(a) - y¥ £a)| + |x¥ f(a)-y} flz)] < e. (4)

=%

Therefore y* f is a constant and, by Hahn-Banach theorem,

f is constant.

The conclusion of the preceding theorem remains valid if
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we replace the hypothesis "f(Q) is convex" by "X Hhas the Ra-

don-Nikodym Property".

THEOREM. 2.2. let {: Q > X be au analytic function, 14 the-
ne exists a e Q such that ||| > |[fW)| ¥we Q, §@Q)

48 closed in X and X has the Radon-Nikodym Propenty then

§ 48 a constant.

.

PROOF. It is similar to the one in theorem 2.1 by changing

Bishop-pPhelps theorem by Huff-Morris theorem.
3. EXAMPLES.

EXAMPLE 3.1. Let Q=1{z ¢ L: |z| < 1} and define f: 2= C
by

f(z) = {1, zn, n > 1}, (5)

For each {ao, Qpreees O ..} € Zl = C¥ , we have

n’*

{ogs aqreeey apree} £(2) = z o, 2 (6)

which is an analytic function. Therefore f 1is analytic.

It is easy to see that || f2) ||, =1 ¥ zeQ but f
o)
is not constant. This last conclusion is due to the fact

that although f£(Q) is closed it is not convex.

It is well known that Co lacks the Radon-Nikodym pro-

perty. A new way to prove this fact is by using example 3.1
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together theorem 2.2 from the preceding section.

EXAMPLE 3.2. Let Q9 be as example 3.1 and define f: Q - Co
by f(z) = {1, g-, n > 1}. The function f defined above is

non constant but || f(z) | c =1 ¢+ z e Q.
o

On the other hands, it is easy to see that f(Q) is con-
vex but mot closed and that £ 1is an analytic function. This
proves that the hypothesis "f (2) closed" cannot be removed

in fheorem 2.1 of precedent section.
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