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SOME INEQUALITIES FOR THE FIRST EIGENVALUE OF THE
LAPLACE-BELTRAMI OPERATOR

G.A. Camera.

1. Introduction.

In a recent paper on the biology of cell membranes [6] the
following eigenvalue problem (for m=3) is studied
2
%ég_ + (m-2)cot6 %1% + AF = 0, 0<0<0p<n
(1.1)

.

F(00)=0.

It is known ([1],[7]) that the solution of (1.1) gives the smallest value of
J(f) where

6o

jf(9)2senm'26d9
0

60
[f)2senm-20de
0

J =

and f belongs to the class B9, of functions defined in [0,n],

Lipschitzian, non-negative, non identically zero on [0,n] and which
vanish in [0g,n]. The smallest value of J(f) in the class By, is the
smallest eigenvalue of the Laplace-Beltrami operator

d2 d
— +2A - 22 NL
S =1r2A -r =) r(m l)dr

(where A is the Laplace operator in Rm) of a spherical cap. By a
spherical cap we mean a set of the form Ceo={(x1,xz,...,xm) | cose<

x1L1}NSy, where Sy, is the unit sphere in Rm,

The following result is due to Pinsky [10].

Theorem 1. If}; is the smallest eigenvalue of (1.1) for m=3,

then
2
) jo
5 5§K1S'jf,
2 e llog cosm2 | %
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where jo = 2,4048... ig the first zero of the Bessel function Jg.

This theorem is a consequence of the following more general result
(see [1]) which improves the lower bound and extends both the upper
and lower bound.

2. Inequalities in R™ (m>3).

Theorem 2. If A; is the smallest eigenvalue of (1.1) then
.2

1 - M<ng-3)42

—_ —_ ’

Jo .

00

dx
-2
O)(senm' < jsen™ tdt

where j(m is the first zero of the Bessel function J (

-3)/2 m-3)/2 °

Remarks:

0
1. In the case m=3 the lower bound inTheorem 2 is (2/log cos-ig [)-1
which improves the one given in Theorem 1. We shall prove later on

that this bound is sharp as 6 approaches n both in the case m=3 and
m>3 (see [1]).

2. The upper bound in Theorem 2 extends Pinsky's upper bound to
the higher dimensional case. Later on we shall improve the upper
bound.

3. We remark that in the case m=4 the smallest eigenvalue can be
calculated explicitly giving

2
Al =7t_2_ 1.
8o

Since the proof given in [1] is short we shall include it here.
More recently the author has given a new proof of the lower bound
based on the elementary theory of compact operators in a Hilbert
space [2a]

Proof of Theorem 2. Consider the eigenvalue problem

d dF
i 2-M o | (ginQ)M-2 =
(sin 6) 90 [(sme) de:l +AF =0

(2.1)
F(60)=0, 0<0<0Bp<m,
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and let (X¢) be the diffusion on (0,n) with generator
L = 2{(sin 6)2-m -(-;%((sin gym-2 2196”

killed when it reaches 6¢g. Define
Tog=inf{t>0 : X(=00}

and let
Tog .
VE(0)=E® [f(Xdt
. 0
be the associated potential operator. We see that

11V = sup E®(Tq) < glog),
J

6o x
where g(9)=20f§-ngm§§x—g|'senm'2t dt .

From (2.2) we obtain

2
£(6,)

A2

This gives the lower bound.

In order to find an upper bound for A we follow Pinsky [10] and
compare the equation

2
%5122 + (m-2) cot 6 Ecll% + AF =0, 0<6<8y<mn

with the equation

d2F (m-2)dF ~
ot o ast AF =0, 0<6<8y<, (2.3)

whose solution is F{(0)=63-m/2 J 20, where J is the

(3-m)/2 (3-m)/2
Bessel function of order (3-m)/2. Thus the smallest eigenvalue %, of
69
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being the first zero of the Bessel function

J (3-m)/2 Using now the comparison theorem in [3] we get the
desired upper bound.

3. The

In this section we would like to obtain asymptotic expressions
for the first eigenvalue of a cap of the (m-1)-dimensional unit sphere
(m>3). The result that we obtain turns out to be different in the cases
m=3 and m>3.

Following Hobson [9] we consider the Legendre's associated
function of the first kind Pil(m) defined for unrestricted values of the

degree n and the order 1. This function is a particular integral of the
ordinary linear differential equation of the second order

d2u du 2
a0 _ _
(1-p )duz Z“du + {n(n+1) __}l-uz u=0,

which is known as Legendre's associated equation of degree n and

order I. Next, we quote a result concerning the zeros of P;ll(cos j)

considered as a function of n and when A is near n. The proof of the
following lemma can be found in Hobson [9].

Lemma 1. The smallest value of n for which Pr_ll(cos 6) vanishes
satisfies the following asymptotic relations as 0 tends to =: if [=0 then

n 1
- —,
2log——
Ogn-e
if 50 then
r2l+1) -0
U b d L 21—
T+ 1)T(D) tan®t53.

In what follows we define the characteristic constant of a
spherical cap of the (m-1)-dimensional unit sphere and see its
relationship with both the above lemma and the first eigenvalue.
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Let Cgy be the cap of the (m-1)-dimensional unit sphere Sy(0,1)

defined by cos 8g9<x1<1. The characteristic constant a(6g) of such a
cap is given by the positive root of the equation

a(80){a(60)+(m-2)}=A(60),

where
Ilgrad f12doy
Co
0
A(60) =f inf J{f) = inf ,
€ 1990
[1f12do;
Ceo

and dg,={f, functions depending only on xi, non-negative, Lipschitzian,
non-identically zero on Sp(0,1) and vanishing outside the cap
Ceo}.This infimum is attained at the solution of the Laplace-Beltrami

equation
"Sf +Af=0
on Cg,, where A=LA(6,) is the lowest eigenvalue of this equation.

The fact that we may take axi-symmetric functions is due to Sperner
[11]. If we write x1=cos6, then all functions f on the cap Cg, can be

considered as functions of the variable 6(6€[0,x]). Therefore the
elements of the class 99, are functions f(6) defined in [0,x],

Lipschitzian, non-negative, non-identically zero on [0,r] and which
vanish in [8g,n]. Furthermore

8o
f(0)2senm-20d6

A@0) = inf
fedg, %0

Ojf(e)2senm-29de

Regarding the minimum value of J(f) we have the following
lemma due to Friedland and Hayman [7].

71
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Lemma 2. Let f(6) be a Lipschitzian function in [0,n], not identically
zero and such that f(8)=0, 60<6<r. Then J(f)2J(F)=A(80), where

u=(sing)(m-2)/2F(9) is a solution of the differential equation

d2u (m-2)2  (m-2)(4-m),
a2t M a T gz 0O .

and the positive number A is so chosen that F remains analytic at 6=0
F'(0)=0, F(8g)=0 and F(6)>0 for 0<6<0g.

The smallest zero of the function F(0) is 6g. The differential
equation (3.1) can also be written in the following way

adé'{(sine)m‘2 %%} = - sinM-20 F(0)

or

2
g—eg + (m-2) cot® %%+ AF= 0. (3.2)

Theorem 3. The following asymptotic relations hold as 6—=n

() ~ ——5 . if m=3

2log—
ogn_e

[(m-2) 9 if m>3
-1 -3, 24 = :
TeRmE=d

o(0) ~

Proof. The differential equation (3.2) is equivalent to

(1-22)w"-(2v+1)zw' + a(a+2v)w = O

for z=cos 6, v=m—2'2- and a(o+m-2)=A.

This means that the function F in (3.2) is a Gegenbauer function
of degree o and order v. We also observe that o is the characteristic
constant of Cg,. In the standard nomenclature this Gegenbauer

v
function is denoted by Ca(z). These functions can be represented in

72 .
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terms of the Legendre's associated functions of the first kind in the
following way (see[4])

v . 2V-(1/2(a+2v)T(v+(1/2))(z2-1)1/4-(1/2)v _(1/2) - v
- P 3.3
S r(2v)r'(a+1) giv-(l/ﬁ (3-9)

\%
We are interested in the zeros of Ca(cos 0) as a function of a.
More precisely, we are interested in an asymptotic expression for af(as

\
a zero of Ca(cos 0), in terms of 6, as 0 approaches the value n. This

asymptotic expression will lead us to the corresponding asymptotic
expression for the characteristic constant of a spherical cap Cg in

terms of 6(as 6—n). Lemma 1 states these relations for the functions

P;ll(cos 0). Therefore by means of (3.3) we obtain the corresponding

\Y
relations for the functions Ca(z). All we have to do is to write in

Lemma 1 the values

I'(m-2) {n-eim_3

a(0) ~ 5} if m>3.

Remark. In the case m=4 equation (3.1) is

2
37‘2% A+1)u = O

which is a Sturm-Liouville equation. The eigenfunctions of this
equation are

u(f)=sin yA+1 6.
- 73<
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The condition u(8g)=0 implies that
272
= =——-1,n=12,...
00

so the least eigenvalue is

72
A6g) = 5 - 1,

8o

as was indicated in Section 1.

4. Sharpness of results.
The lower bound near 8=x for m=3:

According to Theorem 2 we have

A(8) > 1 (4.1)

6
21log cosz |

Since A(8) ~ a(6) for m=3 then the asymptotic behavior obtained

in Section 3 for o(0) is the same for A(6). If we compare (4.1) with
this asymptotic expression we see that this lower bound for A(0) is

0
sharp. All one has to do is to prove that [log 2(r-6)-1]/llog cos 5 | —1
as 0 tends to =. This is easy to do.
The lower bound near =g for m>4.

In Theorem 2 we have the global lower bound

2(0) 2 1

6

dx
Ofm senm-2t dt

We shall prove now that this lower bound is also sharp for m>4. What
we shall do is to compare this lower bound with the asymptotic
expression that we obtained for afj) in the case m=>4.

74
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A :
Since — ~ m-2 as 6—n, the sharpness of our lower bound comes

o
as a consequence of the following
Lemma 3.
6 -1, m-3
. g (_dx o 2m-8r (551 (55)
él—ﬁt (-0) Ofmd[sen tdt= Tl )
Proof. We have as 0 tendston
(-1m

(r-9)m- 3J_W_Ofsenm 2t dt ~ (m-3)cosm-20 (J)'senm-2tdt.

Therefore,

T
1
lim (r-6)m- 3J-Wg—g[senm 2t dt = = |sin™-2tdt
0on

_ Om _ ‘/;r(gz;l')
- (m-3)0m-1 (m-3)I(F)

On the other hand, from the duplication formula for the Gamma
function we have that

\/;F(m-l)

rEEIrG = ~—5mr— -
Thus

Vr  2m2r@y  2m3m-3rtSd)
rgg TIm-1) I'(m-1)

Then

VeI@5)  2mSreEyres)
m-3rey  Tm-1)

Thus the lemma is proved.
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The upper bound near 6=0 for m=3.

We shall show that for m=3 the upper bound obtained by Pinsky
[10] may be combined with the lower bound obtained by Friedland and
Hayman [7] to show that

lim 62A(0) = jo,
0—-0

where jo = 2.4... is the first zero of the Bessel function Jg. In fact,
Hayman and Friedland have shown that

o) 2 30|57 - 3 ‘
sin2 6/2

for O<6<12£. Since A(0)=a(6)(a(6)+1)

then
1 1 1 1] 1 1 1 1
AMB) 2| 5ij ——_ = i —_— + 7.
(©) [2‘]0 N sin2 6/2 2 2][2JO N sin2 6/2 2 2]
Therefore,
1 2 1 1 1 T
A(0) 2 ZJO( 5" E) - 0<0<3 .
sin2 5

On the other hand, Pinsky obtains

The last two inequalities yield

lim 62X(6) = jo
6—-0

The upper bound near 6 =0 for m 2 4

We have obtained the upper bound
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2
J (m-3)/2

02

A(0) <

where jmy-3)/2 is the first zero of the Bessel function Jy,_3)/9. Friedland
and Hayman [7] have obtained the following lower bound for the

- T
characteristic constant o(8) of Cg, 0<8<7, and m24,

1 l/m-l 2 1
5 - §lm-3y/2 - 5 (m-2).

a(0) 2 jim-3)/2

(m-1) |sinm-2tdt

Since k(9)=a(6)(a(9)+m-2) one obtains

2
1 1/m-1 2 (m-2)2 J (m-3)/2

2 2
Jm-3)/2 5 -5 -7 — s Me) <

(m-1) |sinm-2tdt

From these inequalities one can deduce that also for m>4

2
lim 627\,(9) =j (m-3)/2 -
6-0

5. Upper and lower bounds near 9=0.

In this section we shall improve the upper bound given in
Theorem 2. We shall also give upper and lower bounds near zero.
Since A is explicitly given for m=4 we shall consider the cases m=3

and m>5. The technique to do this is due to Friedland and Hayman
[7].

Theorem 4. In the case m=3 and O<Bosg-we have

2 2

Jo 1 1 A\ Jo 1
- -|lg-—7=| S A1 £ 5-7.
% (2 “2) o >

The upper bound holds for 0O<6g<n.
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Proof. First of all we note that (sin 6)-2 - 6-2 increases from é—to 1- iz
T

T
as 0 increases from O to 5. This can be seen from the inequality

d 1 -L >0
E(sm% 92)

taking into account that

-+ 00

1 1 | .
sin20 (6+nn)2

n=-o00

The differential equation (1.1) can also be written in the following way

a%{sinm'ze g—g} = -A sinM-29 F(0)

or

-2)2 - -
d2_u { (m-2) + (m-2)(4-m) }u =0, (5.1)

ae2 " 4 4sin20
where u=(sin 0)(m-2}/2 F(@).

The equation (5.1) for m=3 is

2
d?u {k+l+

1
de2 * 4 " 4 sin26 }u =0. (5.2)

Since (sin 0)2 > 6-2 + ils; 0<0<m, then we can compare (5.2) with the
differential equation

d2u 1 1
5-62—+{7»+§+265}u=0 (5.3)

using the comparison theorem in the Sturm-Liouville theory (see [2]).

1
A solution of (5.3) is v(8)= 61/ 2Jo('\/ A+3 6) where Jg is the Bessel's
function of order zero. From the comparison theorem we deduce that

78 -
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the first zero of Jo('\/ X1+3 ), that is \/_,_ls greater or equal to 6q.

Therefore

80 < Jo
1
‘\/?\,1+§

This inequality gives the upper bound in Theorem 4. In order to
obtain the lower bound we start with the inequality

s—+(1-i2), 0<0<
T

YE
ol
L)

This inéQuality allows us to compare (5.2) with

d2u 1 4 1
d92 {l+ Z(l';? +—é'5}u 0. (5.5)

A solution of (5.5) is v(8)= 81/2 Jp(C6), where C = [M+ —-—2]1/2 From
yis

the comparison theorem we deduce that the first zero of Jo(C8),

namely jo/C, is less than or equal to 6p. Thus

This completes the proof of Theorem 4.

Theorem 5. If m>5 and 0<6p< 2 5 we_have

2 2
J_k__ (m-2)(m-1) - -E_ (m-2)(4m-16+2r2)

SA <—75-
05 6 oo 472

The lower bound holds for 0<8p<m.

Proof. The proof follows the same lines as that of Theorem 4.
Again, since (sin 0)-2>6-2 + % O<é<m we can compare the equations

79



d*u {x L2 | (m2)(4-m) }u =0 (5.6)

de2 * 4 4 sin20

and

d2u { (m-2)2 (m-2)(4-m) +(m-2)(4'm)}u=o (5.7)

do2 + z 12 402
taking into account that a solution of (5.7) is v(6) = 61/2Jk(C8), where

- -2)2 -2)(4-
Jk is the Bessel's function of order k=@ andC2=A + Lm—42i-+ (m-2)(4

m),12). The first zero of v(0) is jx/C. Using the comparison theorem we
get the lower bound. The upper bound follows by comparing (5.6)
with

d2u (m-2)2 (m-2)(4-m) 4, (m-2)(4-m) B

de2 + { 1zt 4 (1- 11:2) * 402 }u =0
taking into consideration that - L <1- 2 0<e<£

g sin20 062~ = g2’ 2

Remark. Theorem 5 also holds for m=4. In this case both the upper
2
and lower bounds are equal to A= Zt-i- -1.
90

6. Some guestions.

There are a series of questions that would be interesting to
answer.

(a) (Convexity of the characteristic constant). The characteristic
constant o of a spherical cap Cg defined in Section 3 can be
0

Om-
m-1 foinm-2¢dt,

considered as a function of 6 or as a function of S =
Om

where o is the surface measure of the unit ball in Rk. From the point
of view of the theory of growth of subharmonic functions (see [7]) it
would be nice to prove that a(S) is a convex function of S. If this is not

the case one can ask for the region in [0,1] where o is a convex
function of S. -
(b) (An inequality of Friedland-Hayman-Ortiz). Friedland, Hayman and

Ortiz have proved ([7],[8]) that a(S)>2(1-S), %s S £ 1. There is no
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analytic proof of this inequality. Would it be possible to prove it using
the lower bound in Theorem 2, expressing it in terms of S? We

remark that the proof of the inequality a(S)>2(1-S) is highly technical
and relies to some extent on the use of computer techniques.

(c) (Upper bound for A1 near n). The upper bound for A; given in
Theorem 2 is not good as 6 approaches & so it would be interesting to

give an upper bound for A1 near n with the same order of magnitude as
the lower bound given there

(d) (Harmonic measure and the first eigenvalue). To extend Tsuji's
estimate for the harmonic measure [12] to the higher dimensional
case and use the lower bound in Theorem 2.

(e) (Riemannian Geometry). To extend Theorem 2 to Riemannian
Manifolds. An answer to this question as regard asymptotic estimates
has been given in [6a].

() (Asymptotic paths for subharmonic functions). It would be
interesting to study the connection between Theorem 2 and the
recent work by Erémenko [5].

(g) Sperner has proved [11] that among all regions of a given measure
(on a sphere) the spherical cap of that measure possesses the smallest
X1. One may ask if this result can be extended to Riemannian
manifolds and geodesic balls.
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