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GLn— orbits of minimal functions over finite fields

Francisco Rivero

1. This paper deals with the fourier transform over finite fields.
Our main goal is to give a partial answer to a problem posed by

McGehee ( See {1] ) . First we need some definitions

Let G denote the additive group of a finite field of p" elements
A character on G is a map

X
Xx + G —mmm3 €

such that ¥ (a + b) = ¥ (a). x (b) for a ,b in G

%
T denoctes the multiplicative group of complex numbers.

Thus ¥ (0) = 0, and for all a in G, its image X (a) 1s a p-th
root of unity.

-

" The trivial character Xo is the map given by Xy (a) = 1 for all

a in G.
The set of all characters becomes a group under the multiplica-

tion of functions. We call this group the dual of G and we denoted it

by G
McGehee considers functions
» . G—mmm {0, 1, -1},
with » (x) = 0 if and only if x = O

We denote the set of such functions by M .For a function » in i

its fourier transform is defined as
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(%) = % » (g) % (g) for x in G
=
g:

The norm of H is given by

W w il =Sup _ 1 » (x) |,
w = G
2
and this norm satisfies I » I § pn/ .
2
We say that » is minimal if Il » Il = p°/

.

The basic examples of minimal functions are the quadratic func-

tion ¥ and its negative -¥ , where

1 if x is a nonzero square
¥ (x) = -1 if x is nonsquare
0 if x = 0 .

McGehee question is to describe all minimal functions ; or at
least to count them . When n = 1 or 2 , McGehee gave a éomplete count
of all minimal functions.

The set of minimal functions will be denoted by fig . We know two
bounds for the number of elements in this set ( See [2] )

2 ¢ 1myl $2°5,

where s = —ﬁE::Tl .

The following theorem , due to McGehee , is a useful criterion

to test a function in i for minimality .

2
THEOREM 1 Let f be a function in Ml . Then Il £ 1l = p°/2 if and only if

i) £ (xg) = ©

. 2
1) 1 F (xg) | =52 for x #xp .
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We will refer to i) and ii) as the minimality conditions for f

2. We now consider group actions on the set of minimal functions
Let  a group automorphism & : G —— G , and let % be
a character on G . Define the action of & over ¥ as
X (g) =% (o (&)
Thus the group Aut (G) acts over G and by means of this action ,

we can make Aut (G) act on on the set fng of minimal functions.
Lét f = mo , then define

fU =f o for o in Aut (G)

[v2
THEOREM 2 If f is a minimal function , then f is minimal for all =~

in Aut (G).
PROOF : Let f be in mo and let ¢ be in Aut (G) . In order to prove

o
that £ 1is in Mgy , we only need to verify the minimality conditions.

Thus

i

T
f(Xo)
g G

H

[a3
Y £ (@) xg (&)
Y £ (o (&) Xy (&)

g G
Making o (g€) = s , and using the fact that ¢ (g) runs over all

elements in G, as € runs over G , gives

-~

£ = Y f(s) =f£(xy) =0
s G
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[a )
Therefore the first minimality condition holds for f .Now ,let

% be any character on G , x # Xg - Then we have

~

£ o =Y f (o (@) x (g) |
g =G
— o1
=1 3 f (o (g)) X (& (g))y |
[ ——
g€ =G
“ -1 2
ST Ty = 2 0
There is a subgroup of Aut (G) , which is of our interest ,

namely GLn ( Fp) . If we look at the finite field Fpn as a vector

space over Fp , then GLn ( Fp } is the group of all invertible

Fp— linear maps from F n to itself .
P

We will study the action of this group on fig and in particular

its action on ¥ . The size of the orbit of ¥ is given by

| GL, ( F ) |
| Stab ¥+ |

| GLy, ( Fp ) . v | (1)

Here Stab v = { o & GL, ( Fp Yy / Yo =% }

REMARK There is a formula for the order of GLn ( F. ) ( See [3] )

p

| GLy ( Fu ) I = (PP -1) (pP-p).... ( p®-pP71l) (2)

p )

REMARK We found a formula for the order of Stab ¥ in [2]

| Stab v | = n 2552—1 (3)

The above formula was verified for some numerical values of pP
we
HoweverYdid not have a complete proof for that formula . While we
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were trying to prove (3) , we arrived to the following interesting
conjecture

CONJECTURE 1 Every ¢ in Stab ¥ is of the form

c=c . 61 1$i¢n (4)

where ¢ is a non-zero sqQuare in G, and 8 is an element in the Galois

group Gal ( Fpn : Fp )
Our conjecture can be restated as follows .

CONJECTURE 2 Let ¢ be a F_- linear invertible map on F = F n

P P
g : F——3 F , such that

i) o (1) =1

ii) o ( F2 ) = F2

Then & (xy ) = ¢ (x) ¢ (y) for all x, y in F .

In a letter sent to the author , Dr Robert Perlis pointed out
that this conjecture was a special case of a theorem of L. Carlitz ,
from 1960 ( See [4] ) . There is a more elegant proof of the same

theorem , given by A. Bruen and B. Levinger ( See [5])

THEOREM 2 ( Carlitz ) Let F be a finite field of order g = p® , and

let K= {x=eF / xd = 1 }, for some proper divisor d of g-1 . Then
a mapping f of F into itself satisfies

(x - )L ( £(x) - £(y) ) =K (6)
for x# y in F , if and only if f(x) is given by

J
f(x) = a + b xp , (7)

where a € F, b= K, and (g-1) divides d (pJ -1)
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We will give a proof of the conjecture as stated in (4)

PROOF OF THE CONJECTURE
Take d = (q-1)/2 , then it follows K = squares in F .
Now , let o be a map in Stab + . We will show that & satisfies
condition (6) . Consider %,y two different elements in F and its
difference x-y in F . We have two choices

I) If x-y is a square we get ¢ (x-y) = o(x) - o(y) =K , thus

( x-y)” 1 ( o(x) - o(y)) € K .

II) If x~y is nonsquare we have ¢ (x-y) = o(x) - o(y) is n;nsquare,
and from this we obtain : ( x-y)™1 ( o(x) - o(y)) = K .
Thus by using Carlitz theorem we conclude
o (x)4= a+b xp'j , (8)
where a = F , b = K, and q-1 divides le (pd - 1)
First we note that there is no restriction on j , since g-1
always divides ngll { pj -~ 1 ). Second we observe that if j > n ,

j 2 n
the element x p is on the set xP , xP7,..., %P , thus we can take

1 £ j$%n . Moreover , putting xP = 8 € Gal ( F ; Fp Yy in (8) gives

c(x) =a+b6d 1¢jsn. (9)
Finally , observe that a = 0 , since o (0) = 0 . Thus
c(x) =beJ 1¢j$n , b =K ,
and that finishes the proof . g

REMARK Once we prove the conjecture , the order of Stab + can be
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found easily by counting the choices for ¢ in (4)

n
| Stab ¢ | = # choices for b . # choices for j = 2521 n

Thus we have shown

THEOREM 3 Let F be a finite field of p!! elements . Then we have

| GL, ( F ; F w =-—2Cpf-p) (P8 -p2 ), . (ph-pl7ly g

p )

-

REMARK The above formula gives a good lower bound for the number of
minimal functions . When p = 3 , n = 3 McGehee found exactly 288 of
such functions by numerical computations . Also for n= 1 and any p
there are only two minimal functions v and -¥ . Then in this two
cases all minimal functions are in the orbit of ¥ . An open question

is : Does GLn ( Fp ) acts transitively on flig » n¢l , n odd %

REMARK When n = 2 and p # 3,5 we show in [2] that GLZ ( Fp ) does not

act transitively on the set of minimals . However , there is a larger
group that acts transitively in this case .

We may consider G , the additive group of F n 8s a vector space
P

over Fp . Then a line through the origin given by a in G is

Fp .a = {x=G/ x=c.a forc in ¥

p }
Then G can be seen as the union of lines through the origin . It
can be shown that the set of all permutations ¢ of G , taking 0 to to

0, and lines to lines is a group . Also this group , which is denot-

ed by P2 , acts transitively on mo . Thus we obtain all minimal func-

tions from the Pz - orbit of ¥ . The number of such functions is
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| g | :<§;).

In general when n = 2m is even , then the finite field F = F om
P

contains the subfield K = F and G = ( F, + ) can be consid-

p?
ered to be a K- vector space , and thus G is the union of K-lines
through the origin . As before , we consider the group PZ (K) of per-

mutations of F , taking O to O and K-lines to K-lines . It is not

~

known whether P2 (K) acts transitively on minimals when n > 2 . But

we caﬁ say that the action of Py (K) gives that the number NO of
minimals functions satisfies

t
2
w2 (%,

For example , for p = 7 and n = 6 we see
344
Nn 2
Y (172)

which is a number with over 100 digits

where t = p® + 1
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