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0. INTRODUCTION. In this paper we consider the system

o
]

ui Fi(tlu)l u = (ull'f'lun); l_jl_<_n (0.1)

where, from now on, F: = (Fl ...,Fn): R x Bfl+ r" denotes a
continuous function which is locally Lipschitz with respect to
the u variable. These systems arise naturally in population’

biology.

If F 1is "diagonal dominant" ; i.e.

oF. oF. .
1 . .
- Ci % (t,x) > m +.z C:j Hl (t,x) H 1 <1 :n ’ (0.2)
] i jEJi i

(t e R, x > 0) for some positive constants m, CpreessCpli
Jg. = {1,..., i-1, i+l,...,n} ; and the system (0.1) has a posi-

tive solution v°= (vi,..,v;) defined and bounded in [0,«), then
uf{t) - v°(t) - 0 as t = + « (0.3)

for any solution u of (0.1) with u(0) > 0. Moreover, this
'system has at most one solution u° defined in IR whose compo-
nents are bounded above and below by positive constants. Further
if F 1is almost periodic and vi,...,v; are bounded below in
[p,w) by positive constants, then such u°® exists and u° is
almos periodic. A parallel result holds for the periodic case.

See also remark 3.3. below.



-

This result has the advantage that we do not assume any
sign condition in aFi/axj for 1 # j. So we can study simul-
taneously several population models: Competing speciles (competi-
tive systems (107]), predator-prey and cooperative models, [8]

pag. 36 (cooperative systems [10]).

Condition (0.2) is guite restrictive but can be applied

successfully when Fi(t,u) has the form:

n .
F (t,u) = ai(t) —jzlbij(t)uj (0.4)

and ai, b IR -+ IR are bounded continuous functions. For

ij’

example, assume aiL > 0, bijL > 0 and

a,. >) b.. a. /b.. (0.5)
iL jea, ijM “9M 550
where, in the next; gL(gM) = inf(sup) {g(t): t ¢ IR} for each

bounded function g: IR + IR. We shall prove that in this case
F satisfies (0.2) and (0.1) has a solution u° as above and so

we improve the main results in [1], [2], [6] and [7). To end

this paper we prove a "stable coexistence" theorem for the pre-

-dator-prey model.

REMARK. ' If n=2 and Fi is given by (0.4) then (0.2) is implied

by bi;. > 0, Ib21|L> 0 and

sup(|b12|/b22) < (|b2|/b11)



1. THE MAIN RESULT. We begin with some notations. Given

X = (x ,xn) in R" we put x > 0 (x > 0) if X; > 0

1ree-
(x; > 0) for 1 < i < n. We also define | x|} = lxl]+..nblan

-

The domain of a solution u to (0.1) is denoted by dom(u).
Notice that if wu(t ) > 0 for some t, then wu(t) > 0 for

all t € dom(u).

Since we are interested in the almost periodic case we
must study the system (0.1l) in the non differentiable case.
Thus we shall assume that there are positive constants
cl,...,cn and a non negative continuocus function m: R -+ IR

such that

iy i-1
c; [F;(t,x) - Py, % )] + m(t)hy <

i i-1

< - c. |F.(t , x) - F.(t ,x (1.1)
i
for x =‘(xl,...,xn) > 0, h =(h1""’hn) Q and
i_ L .
Xp = (Xg + hyeeeeyx; + hyy Xy 000000 %)) (( < i <n). Noti

ce that (0.2) implies (1.1) in the "Cl-case".

i

If u= (ul,...,un) and v = (vl,...,vq) are positive so-

lutions to (0.1), we define

[ o]

r(t): = r(t,u,v}: =

. . . 1.2
j cjlln(uj(t)/vj(t))l (1.2)

1



1.1. THEOREM. If (1.1) holds and 1I: = dom(u) N dom(v) 1is
nonempty, then there exists a subset Io of I such that I—Io
is a denumerable set; r 1s differentiable at all points of

I and
o .

r'(t) < -m(t) || ult) - vl ;5 teI (1.3)

PROOF. Let f:(a,b) » R be a cl—function defined\in an open
interval of R and define g{(t) = |f(t)]. Let D be the
subset of (a,b) consisting of points to such that g 1is not
differentiable at to’ then f(to) = 0 and f'(to) # 0 and
hence D 1is a discrete set. So, there is a subset IO of I
such that I minus IO is a denumerable set and ln(uj/vj)

is differentiable in IO for 1 < j < n.

Let us fix tO in Io and define

s, = {3: uj(to) > vj(to)}, s_ = {3j: uj(to) < vj(to)} ;

n
]

{3: uj(to) = vj(to)}, S =8 U S

and notice that S 1is non empty and

d - . ,
3T lln(uj/vj)' = 0 1in ty for all j ¢ So
Consequently
' = ¥ P , - .
r'(t]) IS5 [Fylegoute )= Pote vt )]

jes+



- F e, [Fote_, ult)) - Fo(t_,v(t))].
. |

js_ j j o o) j o o
Now let us define x,h,k ¢ HJ‘ and A?i e R ; 1 <i, j £n,
p = h,k; by: xj = vj(to) if j e S, i xj = uj(to) if
j e 84 Us_ , x= (X;,vooyx)i h=ult) - x k= vit,) - x
P _ i, _ i-1
and Aji = Fj(to’ xp) Fj(to, xp ) Then
Fj(to, U(to)) - Fj(to, V(to)) =
= |:Fj(to, x + h) = Fo(t ,x)] - [Fi(t_,x+k) = F,(t_,x)]
- ¥ Ah _ v Ak
L i 4 L
leS, I+ ieS_ Jt
(Notice that h; = 0 for all i ¢S, U S, so x; = x;—l for
ie So v s, and hence A?i = 0 for 1 ¢ SOlJ S,- Analogous-
k _ .
ly Aji =0 for 1eS, VU S).
From here
' = 7 v v Ak Ly Tl ok
r'(t) = eyl B35~ o Byy) mo cyle By -l 55
jeS+ JeS+ jeS_ JeS_ j€S+ S_
h h k k
=7 (] < Byi - ) oy Aji) - F () < 853 - L ey Aji) =
ieS, jeS jes ieS  jeS jes
+ + - - +
= ¥ - Y
L , L .
jes ih g ik



where
= ¥ P Y P =
L= ) e AL - ) e AT, p = h, Kk
1P jcS+ I3 jes_ e
For 1 e§_ we have (see (1.1)).
A, < c, b.. + ) ¢ IAh | < - m(t.)h
ih = 7i “ii / j'iTgit = o' 1
iji
Analogously Aik > m(to)ki for all 1 ¢ S_ and the proof 1is
complete.

In the following C+ denotes the set of all bounded con-

tinuous functions g: IR - R such that 9 2 0.

1.2. THEOREM. Assume (1.1) and suppose that (0.1) has a solu-
tion v = (vl,...,vn) defined and bounded in [}O,w) for some

to’ such that

M: = sup {vy(t): 1 <i<n, t>¢t}<+e (1.4)

If u-= (ul,...,un) 1s a solution to (0.1) such that
I: = dom(u) N dom(v) is nonempty and u(t,) > 0 for some ¢t,,

then u is defined and bounded in [t,,») We have also the
following facts:
a) If m 1is a positive constant then (0.3) holds with v°=v

b) If

e = Inf {v ()1 1 < i <ny £>tj}1>0 (1.5)



then there are positive constants A,y such that

' t
| ult)=v(t) || < A Hu(tl)—v(tl)H exp (-u J m(s)ds) (1.6)
£
for t, < t; < t. In particular (0.3) holds if
( m(s)ds = + « (1.7)
Jo
c) The problem
! -
ui ul Fi(t,u), u; € C+, 1 <1i<n. (1.8)

has at most one solution if

(1.9)

]
+
8

0
J m(s)ds

PROOF. From (1.3) we know that r 1is a decreasing function

in I; in particular «r(t) < r(t,) for all t > t,, t e I.

Hence there are positive constants p,q such that
q vj(t) < uj(t) < pvj(t); l1<j<n, t>t,, tel (1.10)

Thus, u is defined and bounded in [t,,=).

From (1.3) we also have, for t > t,,

t
f llu(s)-v(s) || ds i% (r(t,)-r(t)]
t*



and hence

J || u(s) =~ v(s)|] ds < + « (1.11)
t*

But u,v are bounded in [ﬁ*,w) and then, then same holds for
u',v'. 1In particular || u(s)-v(s)]|| is a Lipschitz function in
[ﬁ*,w) and so (1.11) implies (0.3). Thus the proof of a) 1is

complete.

.

REMARK. Let f: [0,») > R be an increasing and bounded cl-func—
tion such that f' 1is Lipschitz continuous. If is not hard

to prove that f'(t) » 0 as t =+ + o,

From (1.4), (1.5) and (1.10) there are positive constants

a0y such that

1 1
= ju,(t)-v_ (t)]| < |In(u,(t))-In(v_ (t))|[< =— Ju_,(t)-v.(t)
%y | J( ) J | - [ 1n J ] |— % | ] J |
A
for all t > t, ; 1 < j < n. From this, there are positive
constants Ays Qg such that
~1
ay [lutt) = vie) ]l < r(t) < ay | u(t)-v(e) ||, for t > t,
1 1
(1.12)

Consequently r'(t) < - ag m(t) r(t) (t > t,) and hence

t
r(t) < r(t;) exp(- o, f m(s)ds) ; t > t; > t,
t

1

The proof of b) follows now from (1.12).



Assume now that u,v are solutions to (1.8); from the ar-
guments above we conclude that (1.6) holds for all t, 2t

In particular

0

| ute) = v(e) || > x| u(0)-v(0) || exp(-u f m(s)ds) for t
t

(Y
o

and hence u(0) = v(0) since (1.9) holds and wu,v are bounded.

Thus the proof is complete.

-

1.3. COROLLARY. Suppose that F is periodic in time with
period T > 0; and assume that there is a solution v of (0.1)
defined in [t_,«) which satisfies (1.4) - (1.5). If (1.1)
and (1.7) hold; then the system (0.1l) has exactly a T-periodic

solutiop u = (ul,...,un) such that ui € C+ for 1 < i < n.

PROOF. Let us define vk(t) = v(t + kT) for-all integers k>1

(¢ > t_ - kT); and choose a subsequence {v?(0)} of {vk(O)}

n

such that vm(O) - ¢ for some £ in X . Since e_iv?ﬁﬂibd_

for all components of vk, if is easy to prove (see Lemma 1
of [17]) that the solution u of (0.1), having the initial
condition u(0) = &, is defined in 1R and € < u; < M for all

components uy of u.

On the other hand, by theorem 1.2, we have that vl(t_:)—v(t)-* 0

as t + + « and hence vm+l(0) + £. Therefore v'(T) - £ and

then u(T) = u(0). So the proof is complete.

{x ¢ R®: x > 0}; we say that F is almost pe -

Let P

riodie in P 1if for all sequences (sk) of IR and all com -
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pact subsets K of P; there exists a subsequence (tk) of

(sk) and a continuous function G: Rx K - IJI such that

F(t+t, ,x) » G(t,x) as k » + «, uniformly on Rx K
(1.13)
1.4. THEOREM. Suppose that F 1is almost periodic in P and
assume that every x € P has a neigborhood N such that F
is Lipschitz continuous in x € N. Let v be as in Corolla-
ry 1.3 and suppose that (1.1) holds for a positive constant m.
Then the problem (1.8) has exactly one solution u and u is

almost periodic.

PROOF. Let U be an open and convex nonempty subset of P
whose closure <cl(U) is contained in P, and let (tk) be a se-
guence of IR . We can assume that (1.13) holds with K= cl(U).
Notice that G(t,x) is locally Lipschitz with respect to the
x variable and G satisfies (1.1) for x, x + h ¢ K. In par-

ticular, the problem

u.

' =
i uy Gi(t,u), u; € C

has at most one solution.

Now choose U as above such that [[e,M]" is contained in
U and let (tk) be a sequence of R such that t, >t .

Without loss of generality we can assume that (1.13) holds

f

for K = cl(U). Define, vk(t) v(t + tk) for all integer
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k > 1; t > tk - to; then ¢ < v?(t) < M for all component

vEof v¥(k=1,2,..., 1<i<n, t+t >¢t) and v is

a solution to the system

. .
u; = uy F.(t + tk,u), 1 <i<n.

Since {vk(O)} i1s a bounded sequence of R” we can
.

assume that v (0) » £ ¢ U as k - + », Hence, the solution

"

w of the initial value problem

i
—
| A
3

ui = u, G(t,u), u(0) =¢, 1

is defined in R and w 1is a solution to (1.14).

Define now wk(t) = w(t-tk) for te R and k = 1,2,...;
we can assume that wk(O) + n and hence the solution to (0.1)
given by u(0) = n is a solution to (1.8). The proof follows
now from the ‘arguments in [1], theorem 2. See also [5],

“theorem 1.17.

REMARK. Let H = (Hl,...,Hn): R x IJ’* " be a continuous

0. Assume further that the par-

[§1}

function such that H{t,0)

tial derivatives aHi/axj are defined .nd continuous 1in

IR x :an and

BHl BHj
3;; (t,x) + ]} - (t,x)] < =-m(t); 1 <1i<n.
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If (1.7) holds, then the trivial solution of the system
x' = H(t,X) (1.15)

is globally exponentially stable. To show this, let 2Z2(t) be
a non trivial solution to (1.15); from the arguments in theo-
rems 1.1, 1.2 we get

.

t
Il z(e) || < | z(tO)H exp (- It m(s)ds); t, < t, t,t, e dom(z)
o

and hence dom(z) = (a,~) for some =~ « < o < + « and z(t) > O
as t > + ., Moreover, if (1.9) holds then the trivial solu-

tion to (1.15) is the only solution to this system, bounded
in R.
When (1.15) is a linear system and m 1is constant, this

result becomes complement to theorem 2 of [9].

An "unstable" result is obtained from the change of varia-

bles z(t) » z(-t).

2. COMPETITION SYSTEMS. 1In this section we consider the sys-

tem

where a. bij £ C+ i 1 <i,j < n. This system models the

competition between n biological spaces in a closed environ-

ment.
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2.1. PROPOSITION. Suppose that there are positive constants

€, Ml""’Mn i € <M Mn; such that

Lrecs

Assume further that Fi(t,x) < Fi(t,y) if 0<y<x%. If u
is a solution to (0.1) such that u(to) > 0 for some to, then

u is defined in [t ,«) and

min {u (), ... u (£), e} < u;(t) < max {uj(e),...u (t), M}

(2.2)

for 1 <1 i n and t > to' Moreover, the system (0.1) has

a solution u =(u .,un) such that

1o

u. € C, , 1 <1i<n (2.3)

PROOF. Fix 1 < i <n and let N, be the max in (2.2). Ob-

, : < i
viously ui(to) S N,. Assume now that ui(tz) > N; for some
t, > to‘ Then, there is tyi t < tl < t2 such that

2 0

. .
ui(tl) > Ni and ui(tl) > 0, From this we have

.,...40) <0

0 < Fy(ty, ulty)) < Fo(ty, 0,uney My <

and this contradiction proves the second inequality in (2.2)
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e < Mt - .Z sup(bij/ai)] ; 1 <1i<n
jeJd.
1
If Fi is defined by (0.4) then the assumptions in proposition
2.1 are satisfied and the proof will follow from theorem 1.2

if we show that {1.1) holds.

To make this, let us fix &6; 0 < 6§ < 1, such that the ma-
triz Mg: = M + 8 (identity) has no reigenvalues in [1,«).
From the Perron-Frobenius theory of positive matrices we know
that M has a positive eigenvalue X < 1 and Mé(c) = )Ac
for some column vector c¢ = col(cl,...,cn) > 0. From here,

M(c) < (1-8)c and hence

c; by;(t) >m +'ZJ b..(te, , 1 <1i<m
jed;
where m: = § min {bii(t): te R; 1<ic< n} > 0. This im-

plies (1.1) and so the proof is complete.

2.3. COROLLARY. If (0.5) holds then the assertions in theo -

rem 2.2 are true.

PROOF. Obviously condition (0.5) implies (2.4). Define now
the real nxn matriz P = (pij) by P;y = 0 and pij =

= Db b for 1 # j; then (0.5) implies P(d) < d, where

19MP55L
d is the column vector col(alL,..., anL)'

Let us fix & > 0 (6§ < 1) such that Pé(d) < d; where

P = P + §(identity); from Perron's theorem we get a real po-
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~,

sitive eigenvaluc X of P such that X < 1 and X > |u| for

all eigenvalues u of P, . See (4] pg. 227. Hence, the
adjoint matrix P* of P has no eigenvalues in [1, +») and

the proof follows easily.

REMARK. The second assumption in theorem 2.2 is satisfied for
n=2,3 1f det(lI - M) > 0; where I = identity matrix. In

particular we have:

2.4, COROLLARY. Assume n = 2 and

inf(al/blz) > sup(az/bzz)
inf(az/b21) > Sup(al/bll)

inf(bll/b21)> sup(blz/bzz)

then the assertions in theorem 2.2 holds.

REMARKS.

(a) Corollary 2.4 was proved in [ 3] for the periodic case.
In the almost periodic case this corellary improves a

theorem of [1]].

(b) Corollary 2.3 generalizes the main results in [ 1|, [ 2],
(6} and [7] ana [11].

3. THE PREDATOR-PREY MODEL. In this section we consider the

system
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u' =ufa(t)-b(t)urc(t)v] , v' =v [d(t)-e(t)u-f(t)v] (3.1)

where a,...,f ¢ C+. The following result justifies the

assumption (3.3) in the main result of this section.

3.1. PROPOSITION. 1If inf(f/d) > sup(c/a) then the system (3.1)

has no solution (u,v) such that
u,v c C+ | (3.2)

PROOF. To simplify our statements let us define, in the next;
B=Db/a, C=c¢/a, E=e/d and F = £/d. Assume now that
{(u,v) 1is a solution to (3.1) = (3.2); it is not hard to pro-
ve that for all bounded differentiable functions g: R + R
tﬁere exists a sequence (tn) of 1R such that g(tn) > 9
(resp. gM) and g'(tn) + 0. Choose a sequence (tn) such that

u(tn) + u and u'(tn) -+ 0 then -B(tn)u(tn) + C(tn)v(tn)+l

L
and hence 1 < - By u, + Cy vy. Analogously; 1 > E; u +F vy

and thus 0 > C, - F > (Cy E, + F. B)u > 0. This contra -

M L L

diction ends the proof.

3.2. THEOREM. Assume

;nf(c/a) > sup(£/d) (3.3)

inf(b/e) > sup(c/f) ‘ (3.4)

If a,...,f are periodic with period T > Q0 then the problem

(3.1) - (3.2) has exactly one solution (ug,v ) and
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(u(t) = wo(t), vit) = v (t)) ~0 as t =+

for any solution (u,v) to (3.1) with (u(to), v(to)) > 0 for

some té. Moreover; (uo,vo) is T-periodic.

PROOF. Notice first that (3.3) 1s equivalent to Cp > FM and
let us define o = (CM - FL) / (BL FL). If (u,v) is a solution
to (3.1) with v (0) < l/FL and u(0) < o then v(t) < l/FL

and u(t) < a for all t ¢ dom(u,v). In particular (u,v) is

defined and bounded in [0,=).

Let us write I = inf(b/e) and S = sup(c/f); then the
system (3.1) satisfies the hypothesis in theorem 1.1 with
c, =1, c, = (I + 8)/2 and m = (I - S) min {eL,fL}/Z. Thus
theorem 1.2 implies:

(u(t) = u(t+T), v(t) = v(t + T)) 0 as t » + =

where (u,v) is a solution to (3.1) as above.

Define now P = {p ¢ R® ; p>0} and P_= {p e P: p>0}
and for all p e P let (u(t,p), vit,p)) be the solution to
(3.1) given by (u(0,p), v(0,p)) = p. By theorem 1.2 we know
that this solution is defined for all t > 0, and p > 0. No-
tice that the same holds if p has a trivial coordinate. So
the Poincaré map T: p + P; T(p) = (u(T,p), v(T,p)) is well

defined and

Tn+l(p) - Tn(p) 0 as n =+ ; peP, (3.5)

v
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Assume now that T has no fixed points in P+; then
Py: = (0,0) and pyi= (0, Vv(0)) are the unique fixed points
of T where V(t) is the unique positive and T-periodic so-
lution -to the logistic equation x' = x [d - fx] .
Define Wi = {p e P : Tn(p) > p; as n > w} ; i=0,1;
it is easy to prove that
W_ = (0,») x {0} (3.6)

On the other hand, the eigenvalues A,u of the Frechet deriva-

tive T'(pl) are given by

T T

A = exp(- J f(s) V(s)ds); u = expl f [c(t) V(t)-a(t)]dt)

: 0 0
and 1/Fy < V(t) < 1/F,. Thus c(t) V(t) - a(t) =
= a(t) [c(t) V() - 1] > a [(c/F),) - 1] >0 and hence
0 <A< 1<y, So, Py is a hyperbolic fixed point of T
"and there exists an open ball B of ]R% centered at Pys
such that B f)Wl is an open interval of the positive verti-
cal " axis. Assume now that p ¢ Wys then TN(p) e BN Wy for
some integer N > 1 and hence u(NT,p) = 0. Consequently

u(0,p) = 0 and therefore

.

W, = {0} x (0,x) (3.7)

Let us fix p ¢ P, and open balls Bo’ Bl in Eg such
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that P; belongs Bi (i = 0,1) and cl(Bo) N cl(Bl) =g.
(cl = clousure). Since Tn(p) is a bounded sequence then

n
there is a subsequence {T k(p)} of {T"(p)} such that

n
T k(p)»-» q for some g ¢ P, and by (3.5); T(g) = g. Conse -

quently either gq = P, Or Qq = pyg-

For i = 0,1, lct Ni be the set consisting of all inte-
gers n > 1 such that Tn(p) € Bi and let N2 be the set of
all integers n > 1 such that n ¢ NO Y Nl' From the argument
mentioned above we have that N2 is a finite set; and by (3.6)

(3.7) we get that N,, N, are infinite sets.

Choose now an open ball Ul such that -Ul N Bo =

= Ulf\{Tn(p): ne N, = ¢ and cl(B,) © Ujand let us write
Ny = {nl < n, <...}. Since
nr+l n.
T (p) = T "(p) = O as r + +
_ nr+l
then there exists an integer r, 21 such that T (p) € Uy

for r >r_. Then n_+ 1 ¢ N, for all r > r and hence N;

contains all integer n > r_ . So N_  is a finite set and

this contradiction ends the proof.

REMARK. Theorem 3.2 remains valid for a system of the form
u' = u F(t,u,v) , v' = v G(t,u,v)

if we assume that F(t,0,0) < 0 and
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(1) 98G/du < 0, 09G/av < 0, B3F/3u < 0, 2QJF/3v > 0;

dF/9u - c 3G/%u < - m, and c 3G/9v + OJF/3v < m

for some constants c¢,m > 0.

(ii) There are positive constants 0 < ¢ < M, a > 0 such that

G(t,0,N) < 0 < G(t,0,e) and F(t,a, N) < 0.

3.3. REMARK. Suppose that F 1is T-periodic: F(t+T,u) = F(t,u);
if F satisfies (0.2) and (0.1) has a positive solution v° defi-
ned and bounded in [0,=) then there exists a non negative T-pe-

riodic solution u® of (0.1) such that

u(t) — u®(t) ~ 0 as t » +o,

for any solution u of (0.1) with u(0) > 0. Proof. By theorem
1.2 (a) we know that system (0.1) has at most a T-periodic posi-
tive solution. From this and induction on n, the set of all

T-periodic non negative solutions of (0.1) is finite. Now let
(nk) be a sequence of positive integers such that v°(nk T) ~q

for some g ¢ E{:. By the arguments in theorem 3.2 we have that

u°(t) - u°(t) 0 as t >+ =

where u®°® is the T-periodic solution of (0.1) given by u°(0)=qgq

The proof follows now from theorem 1.2 (a).
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