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1. INTRODUCTION. Forsets A and B with A CB and a mapping T: A —
B, every solution of the equation

(1) | T(x) = x

is called a fized point of T, and the set of all such points is denoted FixT. Fized point
theory entails the study of conditions on A and/or T which assure that T always has at
least one fixed point, as well as the study of methods of approximating fixed points when
they do exist and the study of the structure of FixT.

Fixed point theory is a major branch of nonlinear functional analysis because of its
wide applicability. Numerous questions in physics, chemistry, biology, and economics lead

to various nonlinear differential and integral equations, and if one ignores the concrete form
of these equations one can often reduce them to abstract operator equations of the form

(2) F(xy) =0,

where x and y are, respectively, elements of Banach spaces X and Y. In turn, (2)
can often be reformulated as a fixed point problem. In the simplest case, F(x) =0 may
be written

x = x — F(x).

Thus finding a solution to the equation F(x) = 0 reduces to finding a fixed point for the
mapping T defined by

T(x) = x — F(x).

More generally, it suffices to find a fixed point of T where T is defined in any of the
following ways:

T(x) = x — AF(x) (A #£0);
T(x) = x — Ag(F(x)) (A#0; g(u) =03u=0);

T(x) = h }(F(x) — G(x)), where F(x) = h(x) + G(x).

There are three major branches of fixed point theory in functional analysis, and
each branch has its celebrated theorems.

I. Metric: (Banach's Contraction Mapping Principle; The Browder—Go6hde—Kirk
Theorem).

I1. Topological: (Brouwer's Theorem; Schauder's Theorem; Sadovskii's Theorem; The
Leray—Schauder Theorem).

III.  Set Theoretic: (The Bourbaki — Kneser Theorem; Tarski's Theorem; Amann's
Theorem).



2. THE METRIC THEORY. A mapping T defined on a metric space (M,d) and
taking values in a metric space (N,d) is said to have Lipschitz constant k, or to be
k—lipschitzian, for a real number k > 0, if for each x,y € M

d(T(x),T(y)) < kd(x,y).

If k<1,then T is said to be a contraction mapping, or k—contraction, and if k =1,
then T is said to be nonezpansive.

BANACH'S CONTRACTION MAPPING PRINCIPLE (1922). Suppose (M,d) is
a complete metric space and suppose T:-M — M @ contraction mapping with Lipschitz
constant k < 1. Then:

.

a) T has ezactly one fized point, say z € M.

b) Moreover, given any x € M, the sequence {T"(x)} convergesto z, and
o) forall n=12, .., d(Tx),z) < k(1 — k) Ld(x,T(x)).

d) Also, for all n =1,2, ..., d(Tn+1(x),z) <kd(T(x),x), and

o AT (x),2) <k — k) H(T(x), T (x)).

The great significance of Banach's Principle, and the reason it is one of the most
frequently cited fixed point theorems in all of analysis, lies in the fact that a) —e) contain
elements of fundamental importance to the theoretical and practical treatment of
mathenllatical equations. Another practical result is the following corollary to Banach's
Principle.

COROLLARY (Continuous Dependence on a Parameter). Suppose (M,d) is a
complete metric space, suppose S is a melric space, and suppose for each s € S, TS:M —
M is a k—contraction. Let 89 € S and suppose that for all x € M,

lim Ts(x) = TS (x).
8- 5 0
Then, for each s € S, there is exactly one point X4 € M such that Xg = Ts(xs) and
moreover, lim Xg = Xg -
s — 8, 0
Modifications of Banach's Theorem.

THEOREM (Krasnoselskii and Zabreiko, 1975). Suppose M is a complete metric
space and T a selfmapping of M which satisfies the following condition: For arbitrary
numbers 0 < a <b there erists a number k(a,b), 0 <k(a,b) <1, such thatif x,y e M
satisfy a < d(x,y) < b, then



d(T(x),T(y)) < k(a,b)d(x,y)-
Then T has a unique fized point.

THEOREM (Edelstein, 1962). Suppose M is a compact metric space and suppose
T is a contractive selfmapping of M (i.e., d(T(x),T(y)) < d(x,y), x,y € M). Then T

has a unique fized point in M and, moreover, for any x € M, the Picard iterates {T"(x)}
converge to this fized point.

THEOREM (Cf. Browder, 1968/76). Suppose M is a complete metric space and
suppose T is a selfmapping of M which satisfies

d(T(x),T(y)) < ¥d(x,y)) forall x,y € M, ~

where ¥:[0,1] — R is a monotone, increasing, right—continuous function satisfying
0<¢(r)<r forall t > 0. Then T has a unique fired point in M and, moreover, for

any x € M, the Picard iterates {T"(x)} converge to this fized point.

THEOREM (Caristi, 1976). Let M be a complete metric space, suppose p:M — R
is a lower semicontinuous function which is bounded below, and suppose T 1is a selfmapping
of M which satisfies

d(x,T(x)) € p(x) — p(T(x)) for all x € M.
Then T has at least one fized point in M. Moreover, if T is continuous, then the Picard
iterates {T™(x)} converge to a fized point of T for each x € M

NONEXPANSIVE MAPPINGS. The nonexpansive mappings can obviously be
viewed as natural extensions of the contraction mappings. However fixed point theory for
nonexpansive mappings differs sharply from that of the contraction mappings in the sense
that additional structure is needed on the underlying space to assure the existence of fixed
points. This can be seen be considering the following very simple examples.

Examples. Consider the unit ball B in the Banach space ¢ of all sequences of

real numbers with zero limit and supremum norm. Thus if x = (XI’XZ’ ) € Cgs lim X;
i= o

=0, and [|x|| = max|x_|. It is easy to check that the mapping T defined by
n

T() = (1= [l )

is nonexpansive, maps B into itself, and has no fixed points.

For another example, consider the space C|[0,1] of continuous real valued functions
defined on the interval [0,1] and for fe€ CI[)O,l], set

IIfll = sup{[f(t)] : t € [0,1]}.

It is well known that with this norm C[0,1] is a Banach space. Now let




K= {feC[0,1]: f(0) = 0; (1) = 1; 0 < £(t) < 1, ¢ € [0,1]}.

It is easy to check that the set K is a closed and convex subset of C[0,1]. Now define the
mapping T:K — K sy setting

T(f)(t) = tf(t), t €[0,1]); feC[0,1].
Again T is nonexpansive and fixed point free.
As our first positive result for nonexpansive mappings we prove the following:

LEMMA. Let K be a nonempty, bounded, closed, and convex subset of a Banach
space and let T:K — K be nonezpansive. Then

inf{jfix — T(x)|| : x€ K} = 0.

.

Proof. Fix z€ K and t € (0,1), and consider the mapping Tt defined by
T (x) = (1 —t)z + tT(x), xeK.

Since K is convex, Tt:K — K. Moreover, T has Lipschitz constant t < 1. So by
Banach's theorem Tt has a unique fixed point X, € K. Thus

x, = (1—t)z + tT(x,)

and

I, = Txll = (1 = )l = Tx)ll-

Since K is bounded the right hand side of the above approaches 0 as t — 1 and the
conclusion follows.

COROLLARY. If K is a nonempty, compact, and convez subset of a Banach space
and if T:K — K is nonezpansive, then T has at least one fized point in K.

As we shall see, the above corollary is a special case of Schauder's theorem,
discussed in the next section. However, their are positive results for nonexpansive
mappings which are not included in Schauder's theorem. We begin by looking at a
property commom to all Hilbert spaces. Recall that Hilbert spaces are characterized
among all Banach spaces by the fact that any such space H satisfies the so—called
parallelogram law:

2 2 2 2
I + ylI” + lx = ylI™ = 2lIx|1 + llylI"), xy € H.

Now suppose H is a given Hilbert space (e.g., take H to be Q2 — the space of all
sequences of real numbers x = (xl,x2, ...) for which




2 e 2\1/2
i?= (2 ] 12 < w)
1 =

Now suppose x,y € H satisfy ||x|| <1, |ly]| <1, and ||x —y|| = ¢ > 0. Calculating from
the parallelogram law we obtain

3) U+ 3l < (1= (/D)2

Next define the function &:[0,2] — [0,1] by setting

(4) &) = inf{1 —Jix +yll : x| < 1, fiyll € 1, [Ix =yl 2 €}, ~
and observe that (1) implies that

Ko > 1-(1-(¢/2H)2
Since equality holds if ||x|| = ||y|| = 1, it follows that

(5) &) =1—(1— (/212

It should be noted that the function é as defined in (4) is defined for any Banach
space X. If 6(¢) > whenever ¢ > 0 then X is said to be uniformly convez. In view of
(5) any Hilbert space is uniformly convex.

The fundamental fixed point theorem for nonexpansive mappings is the following.

THEOREM (Browder, Gohde, Kirk, 1965). Suppose K is a nonempty, bounded,
closed, and conver subset of a uniformly convex Banach space X, and suppose T:K — K
is nonezpansive. Then T has at least one fized point.

The theorem, as stated, is actually a special case of a much more abstract result,
proved first by J. Penot in 1979 and later, constructively, by Kirk in 1981. We refer the
reader to the survey [13] for this more abstract treatment of the theory.

The Browder—Gohde—Kirk theorem also follows from another important result
which asserts that in such a setting the mapping f = I- T is demiclosed on K. (A
mapping f:K — X is demiclosedon K if the conditions (i) {x } converges weakly to x
€X and (ii) {f(x;)} converges strongly to y € X together imply x € K and f(x) =y.)

The demiclosedness result, first formulated in 1967 and stated below, has not been
significantly extended to any wider class of spaces.

THOEREM (Browder—Go6hde Demiclosedness Principle). Let X be a uniformly
convexr Banach space and K a nonempty closed and convez subset of X. Then if T:K —
X is nonezxpansive, the mapping f =1—T is demiclosed on K.

In order to see that the existence theorem follows from the above recall that if K is



bounded then, as we have seen above,
inf{||x — T(x)||: x € K} = 0.

Also, since X is uniformly convex, X is reflexive. Therefore K is compact in the
topology of weak sequential convergence. These two facts enable one to select a sequence
{x,} m K suchthat (i) {x } converges weaklyto x € K and (ii) [x, —T(x )[[—0

as n — w. Since I—T is demiclosed on K, it follows that x — T(x) = 0.

3. TOPOLOGICAL FIXED POINT THEORY. Suppose X is a topological space
and M C X. Then a continuous map r:X — M is called a retraction if r(x) = x for all
x € M. When this is the case M is said to be a retract of X. .

At this point, in order to streamline the exposition, we take the following as axioms.
While both are intuitively clear in R™, the proof of (B) is highly nontrivial.

RETRACTION PRINCIPLES

(A) Every closed conver subset M of a normed linear space X is a retract of X.

(B) The boundary, 9B, of a nontrivial closed ball B in R" is not a retract of B.

REMARK. In an infinite dimensional Banach space (B) fails. 'The famous
collection of mathematical problems known as The Scottish Book (named after the Scottish
Cafe in what was Lwow, Poland) contains a question (Problem 36) raised around 1935 by
S. Ulam. It reads: "Can one transform continuously the solid sphere of a Hilbert space into
its boundary such that the transformation should be the identity on the boundary of the
ball?" An addendum indicates that Tychonoff provided an example which answered the
question affirmatively.

Another nice solution to Ulam's problem, and one that holds in an arbitrary Banach
space, was given by Victor Klee in 1953. Klee [15] proved that any Banach space X is
homeomorphic with the 'punctured' space X\{OL. Let h:X — X\{0} besucha
homeomorphism and assume (as one may) that h(x) = x for x € X, ||xJ| > 1. Now define
T:X — X by taking

T(x) = b (-h(x)).

Then T2 =1 on the ball B(0;1) = {x € X : ||lx]| <1} and, moreover, T does not have
any fixed points since T(x) = x implies h(x) = —h(x) = 0. The required retraction is
now given by the mapping R:X — B(0;1) defined by

R(x) = h(x)/|[(x)|.

(In 1979, Nowak [19] proved that for any infinite dimensional Banach space there exists a
lipschitzian retraction of the unit ball onto the unit sphere.)



BROUWER'S FIXED POINT THEOREM (1912). Suppose M is a nonempty,
compact, convez subset of R" and suppose f:M — M is continuous. Then f has a fized
point.

Proof. First take M = B(0;p). If f(xt) # x for each x € B(0;p) then one could
construce a retraction r:B(0;p) — S(0;p) as tollows. For each x follow the directed line
segment from f(x) through x to its intersection with S(0;1), and let this intersection
point be r(x). The existence of such a retraction contradicts (B).

Now, for a general M select p sufficiently large that M C B(0;p). By (A) there
exists a retraction r: B(0;0) — M. Then the composition map for is a continuous
mapping of B(0;p) into itself and therefore must have a fixed point x. Moreover, x
must lie in M. Since r(x) = x for points in M, we have

x = f(r(x)) = f(x).
REMARK. For the special case M = [0,1] in IRl, the intermediate value theorem

yields a proof of Brouwer's Theorem.

THE SCHAUDER FIXED POINT THEOREM (1938). Let M be a nonempty,
compact, conver subset of a Banach space X, and suppose T:-M — M is continuous.
Then T has a fized point.

Proof. Since T(M) is relatively compact, for each n there exist elements
y; € T(M), i=1,.. ;N such that for any x € M,

minl|T(x) -yl < 1/n
1

Now define the so—called Schauder operator PIl by taking
Ny Ny
Pn(x) =[Z lai(x)yi]/[. X la’i(x)]’
1 = 1=

where ai(x) = max(n_1 — ||T(x) —yll, 0). (Note that for each x, ai(x) 0 for at least
one i. Also, the functions a, are continuous.) Let M = conv({y,, ... .y })- Then
n
M, € conv(T(M)) C M

and P n:Mn — Mn is continuous. By Brouwer's Theorem each mapping P 1 has a fixed
point X, €M €M and,since M is compact {x } hasa convergent subsequence {x_}
k

—say X, —x€M as k— .

Now observe that



IP(x) = Tl = I[Ea;(x)(y; — T/ Ssas (0l € [Sas(on ™)/ Spa,(x) <7t
We now conclude that x is a fixed point of T since
g = TN € 1P (x,) = T + IT(x,) = T,

and the right side vanishes as n — .

LERAY-SCHAUDER DEGREE. One of the principal tools in nonlinear functional
analysis is the concept of a degree of a mapping. Classical degree theory, in its most
general sense, is the study of mapping degree for various classes of continuous mappings
with domains contained in one Banach space X which take values in a (possibly different)
Banach space Y. Such a theory consists of the algebraic count of the number of solutions

of the equation f(x) = Yor where { is defined on the closure G of anopenset G in X
and Yo is a given point in Y which is assumed to lie in the complement of the image of

the boundary 4G of G in Y (i.e, Yo # f(0G)). The value of the degree function for any
such count is an ordinary integer, either positive or negative.

Degree theory in R™ was introduced by L. E. J. Brouwer in 1912 ([4]). We begin
with the case n = 2. Consider a continuous mapping f defined on the closed disk D =

B(0;p) of radius p centered at the origin in R% and taking values in RZ. As x travels
once around the boundary of the disk in a counterclockwise sense f(x) travels along an

oriented curve C. Assume 0 ¢ C, and let w " and w_ denote the number of respective

windings C makes about 0 in the counterclockwise and clockwise sense, and defing the
degree of f (at ) by

deg(f,D) = Wy —w_.

It is intuitively clear that the function deg has two important properties:

(i)  Kronecker's ezistence principle. If deg(f,D) # 0 then there exists an Xp € D such
that f(x,) = 0. '

(i)  Homotopy invariance. If f is changed continuously in such a way that none of the
corresponding curves C pass through the origin, then deg(f,D) remains
unchanged.

REMARK. The above principles yield an interesting geometric proof of the
fundamental theorem of algebra. Let

n—1

—— n ¢« o0
h(zt) =z" + (a, 17z ~ + + ag)t,

where z € € and 0<t<1. If R issufficiently large, then it is the case that for all z
with |z] = R and all t € [0,1],



|h(z,t)] 2 R® — (lay_; IR™™ + +ov + |ag]) > 0.

n—l1 |

As z traverses the boundary of the disk D = {z € C: |z| < R} in a counterclockwise

sense, h(z,0) = z" winds about the origin n times in the same sense. As t varies from
0 to1l, h(z,0) is transformed continuously into h(z,1) without touching the origin (since
|h(z,t)| > 0). Thus is follows from (ii) that

deg(h,,D) = deg(hy,D) =n, where h,(z) = h(z).
(i) now implies that there exists zo € D for which h(zO,l) = 0. This is the fundamental
theorem of algebra.

MAPPING DEGREE INR. Suppose —w» < a <b < o and let f:[a,b] CR—R be
continuous with f(a) # 0 # f(b). By perturbing f an arbitrarily small amount one may

obtain ( by Weierstrauss's approximation theorem) a function f such that

(a) T is continuously differentiable on [a,b];

(b) T has at most a finite number of zeros, x;, . in (a,b) and T'(x;)#0 for

all i.

o Xy
Now set
m
deg(f,G) = X sgn(f’(x;)
1=1
where G = (a,b), and define

deg(f,G) = deg(T,G).

If T has no zeros on (a,b), let deg(f,G) = 0. It is possible to show that deg(f,G) is

independent of the choice of the approximating function f. In fact, in general:

deg(f,G) = 0 if f(a)f(b) > 0;
deg(f,G) =1 if f(a) <0, f(b) > 0;
deg(f,G) = -1 if f(a) >0, f(b) < 0.

Example: Let [a,b] = [-1,1] and consider, respectively, f(x) = x2; f(x) = x; f(x)

MAPPING DEGREE IN R™. For a fixed y € R" deg(f,G,y) is the number of
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solutions of the equation

f(x) =y, (xeG),
With positive and negative values assigned according to whether orientation is preserved or
reversed. When y =0, we simply write deg(f,G).
Let G be a bounded open subset of R® with f:G — R™ continuous. As in the

case n = 1, it is possible to approximate f with a function T which is continuously
differentiable on G and which has at most finitely many zeros, X1 in (G, each of

which is regular (detf’ (x;) # 0). Then define

ooy X

deg(f,G,y) = deg(f,G,y)

where
m
deg(T,G,y) = T sgn(detf’ (x;)).
i=1

Specifically, set deg(f,G,y) =0 if G = ¢ and assume
(a) f(x) # y for x € 0G,

and approximate f with a mapping :G — R" which is C1 on G and which satisfies
(b) sup _ [If(x) — T(x)ll < inf_ [If(x) —yll,
x € 0G x € 0G

and so that the equation

fx)=y
either has no solutions or it has finitely many solutions each of which is regular. Note that
(b) insures f(x)#y forall x € 8G. If there are no solutions, set deg(f,G,y) = 0.
It is possible to show that the number deg(f,G,y) is independent of the
approximating function T and that the function deg is the unique function defined for
all continuous £:G — R™ which satisfies:

1) If y¢ dG, deg(f,G,y) is an integer, and if deg(f,G,y) # 0 then the equation
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f(x) = y has a solution.
2) If f=1, deg(f,G,y)=1 if y€ G and deg(f,G,y) =0if y ¢ G.

3) (Additivity): deg(f,UGi,y) = Eideg(f,Giy) if Gy, i=1,..,m, aredisjoint open
sets with y ¢ BGi.

4)  (Homotopy): If h:[0,1] x G —R" is continuous, and if h (x) = h(t,x) #y for all
x € 0G, then

deg(hy,G,y) = deg(h;,G,y).

5) (Excision): If K is a closed subset of G and if y ¢ f(K), then
deg(f,G,y) = deg(¥,G\K.y)

where T denotes the restriction of f to g\K.

We now use degree theory to prove the following simple extension of the Brouwer
fixed point theorem.

THEOREM. Suppose B is the unit ball in R" and suppose T:B — R" isa
continuous mapping which satisfies

(LS) T(x) # Ax forall xe B and A > 0.
Then T has a fized point in B.

Proof. For t € [0,1] let h; be the mapping defined by taking h,(x) = x — tT(x),
x € B, ie, h, =T—tT. First note that h,(x) #0 for x€ 9B and t € [0,1] since h, (x)

= 0 implies tT(x) = x, i.e.,, T(x) = t_lx, and this contradicts (LS). Therefore
OzhtaB and by 1) deg(ht,B,O) is defined. By 4) and 2)

1 = deg(h;,B,0) = deg(h,,B,0),
and again by 1) 0 € hl(B)' Clearly this implies that T has a fixed point in B.

MAPPING DEGREE IN INFINITE DIMENSIONS. We now turn to the theory
developed by Leray and Schauder. Let X be an arbitrary Banach space. A mapping T
defined on a subset D of X and taking valuesin X is said to be compactif T is
continuous and if T maps bounded sets into sets whose closures are compact. Using
approximations similar to the one used in the proof of the Schauder fixed point theorem it
is possible to extend degree theory to mappings of the form I —T where T is a compact

mappings. This degree theory inherets all the properties of the degree function in R" and
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yields the following theorem.
THE LERAY-SCHAUDER THEOREM (1934). Let G be a nonempty bounded

open subset of a Banach space X and let T:G — X be a compact mapping which satisfies
for some ,
X, € G the condition

(LS) | T(x) —x # A(x —x) for all x€ 0G and A > 1.

Then T has a fized point in G.

Proof. By a simple translation there is no loss in generality in assuming Xy = 0.
The proof now follows precisely the one given above for Brouwer's thoerem.

A GENERALIZATION OF SCHAUDER'S THEOREM. We now turn to a result
which bridges the gap between the geometric and the topological theory.

Definition. Let M be a bounded subset of a complete metric space (X,d). The
Kuratowski measure of noncompactness x(M) of M is defined as follows:

n
x(M) = inf{e > 0:3 n such that MC U

A; where diam(A;) < €}.
i=1

Note in particular that x(M) = x(M) and that y(M) = 0 if and only if M is
compact. Also, if M is a subset of a Banach space it is possible to show that

x(convM) = x(M) = x(convcIM).

We use these facts to prove a theorem which includes both Schauder's theorem as
well as the existence part of Banach's theorem.

Let D be a subset of a Banach space X. A mapping T:D — X is said to be a
k—set contraction, k > 0, if T is bounded and continuous, and for all bounded subsets M
M of D:

x(T(M)) < kx(M).

T is said to be condensing if T is bounded and continuous, and for all bounded subsets
M of D for which x(M) > 0:

x(T(M)) < x(M).
Example: Suppose Tl:D — X is a contraction mapping with Lipschitz constant

k <1 and suppose T2:D — X is a compact mapping. Then the mapping T = T1 + T2

is a k—set contraction and hence also condensing. The following generalization of
Schauder's theorem was proved for k—set contractions, k < 1, by Darbo in 1955.



13

SADOVSKII'S THEOREM (1976). Suppose K is a nonempty bounded closed and
%onvez subset of a Banach space X and suppose T:K — K is condensing. Then T has a
zed point.

Proof. Let x € K and let ¥ denote the family of all subsets D of K for which x
€D and T:D — D. Now set

and let |
C = convel{T(B) U {x}}.

.

First we show that B = C. Since x € B and T:B — B we have C C B. This implies
that T(C) C T(B) C C. Hence, since x € C, C € £. Therefore B C C.

In view of the above, TéC) =T(B) C C =B. Also, x(C) = x(T(C)). Since T is
condensing, it follows that x(C) = 0. Therefore C is compact and convex with
T:C — C continuous. By Schauder's theorem, T has a fixed point in C.

4. SET THEORETIC FIXED POINT THEORY. A set M is said to be ordered if
M is nonempty and for certain pairs (x,y) in MxM there is a relation < which satisfies:

i x <x for all x € M;
i1) if x<{y and y <{x then x=y;
ii1) if x<Y and y <z then x<z.

The notation x <y means x<y and x#y.)

Let N be a subset of an ordered set M. N is said to be a chain if N is nonempty
and for all x,y € N, either x{y or y <x. Anelement x € N is said to be a largest
(respectively, smallest) element of N if y < x (respectively, x y) for every y € N, and
x € N is said to be marimal if there isno y € N such that x < y. An ordered set M is
said to be well ordered if every nonempty subset of M has a smallest element. ,

Note in particular that maximal elements need not be unique. Every greatest
element of a set is also a maximal element. If M is an ordered set and N C M, then an
element y € M is said to be the supremum (least upper bound) of N if (i) x <y for all
x € N and (ii) x<u forall xe N implies y <u. When this occurs we write y =
sup(N). The infimum, inf(N), is defined analogously as the greatest lower bound of N.

A lattice is an ordered set M with the property that inf{x,y} and sup{x,y} exist
for all x,y € M. A lattice M is said to be complete if inf(N) and sup(N) exist for all
nonempty subsets N of M.

Examples. The set R of real numbers with the usual < relation is ordered but not
well ordered. Moreover, R is a chain. Also, R is a lattice but not a complete lattice.
The set N of natural numbers is a well ordered chain. If X is any set then the set M =

ZX of all subsets of X with the order relation: A <B iff ACB, A,B€ 2X, isa
complete lattice. If NCM, then inf(N)= n A and sup(N)= U A
AeM AeM

THE BOURBAKI-KNESER THEOREM (1940/1950). Suppose M is an ordered
set and suppose M — M satisfies:
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b every chain of M has a supremum.

a} x <f(x) forall x e M;
Then f has a fized point.

The above theorem is trivial if one uses Zorn's Lemma. However a constructive
proof (one that does not require the Axiom of Choice) exists. This proof is rather detailed,
but the general idea is the following. A chain A in M is constructed with the properties

f(A) C A and sup(A) € A.

Then if u = sup(A), f(u) < u because f(u) € A. On the other hand, u < f(u) by (a). By
(ii) of the definition of <, u = f(u).

Remark. The Bourbaki—Kneser Theorem remains true if one replaces x < f(x) with
f(x) <x in (a) and "supremum" with "infimum" in (B).

THEOREM (Amann, 1977). Suppose X is an ordered set and f:X — X satisfies:
a f is monotone increasing (x <y implies {(x) < {(y));
b every chain in X has a supremum;
c) Xg < f(xO) Jor some x, € M.

Then f has a smallest fized point in the set {x € X : X < x}.

Proof. We set

M={xeX:x,<x<f(x)},

0

and apply the Bourbaki—Kneser Theorem. M # § because X, € M. Also, if x €M then

by monoticity f(x) < f(f(x)), i.e., f(x) € M.

Now let C be a chainin M. Then C has a supremum in X by (b). Since x<u
for all x € C implies x < f(x) < f(u) for all x € M. Therefore f(u) is an upper bound for
C and since u = sup(C), we have u < f(u). And since Xy €M, Xy S u, we conclude

ueM.
The existence of a fixed point for f now follows from the Bourbaki—Kneser

Theorem.
Next let F denote the fixed point set of f in M. Set

N={yeM:y<z foreach z € F}.

N # 0 again because Xg € N. It is now possible to repeat the above argument to conclude

that f has a fixed point in N. Obviously this is the smallest fixed point in M and hence
in {xeX:xy<x}

Remark. Amann's Theorem may be modified to show that f has a greatest fixed
point in the set {x € X : x <x} if one replaces "supremum" with "infimum" in (b) and

Xy 5 f(xg) with f(x) <xg in (c).

TARSKI'S THEOREM (1955). Let X be a complete lattice and £ X — X a
monotone increasing mapping. Then f has a smallest and a greatest fized point in X.



Proof. Since X is a complete lattice every nonempty subset of X has both an
infimum and a supremum. Let uj = inf(X) and vy =sup(X). Then u < f(u,) and

f(vO) Yy The conclusion now follows from Amann's Theorem.

15



[1]
[2]

3l
[4]

6]
[
8]
9
[10]
1]
12]
13
14

[15]

[16]
ikl

[18]

16

BIBLIOGRAPHY

Amann, H., Order Structures and Fized Points, Ruhr Universitit Lecture Notes,
Bochum, 1977.

Banach, S., Sur les opérations dans les ensembles abstraits et leur applications aux
équations intégrales, Fund. Math. 3(1922), 133—181.

Bourbaki, N., Topologie générale, Hermann, Paris, 1940.

Brouwer, L., Uber Abbildungen von Mannnigfaltigkeiten, Math. Ann. 70(1912),
97—-115.

Browder, F., Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad.
Sci. USA 54(1965), 1041—1044.

Browder, F., Nonlinear Operators and Nonlinear Equations of Evolution, Proc. AMS
Symp Pure Math., vol. 18, pt2, Providence, RI, 1976.

Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions,
Trans. Amer. Math. Soc. 215(1976), 241-251.

Clarkson, J. A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40(1936),
396—414.

Darbo, G., Punti uniti in transformazioni a codominio non compatto, Rend. Sem.
Univ. Padua 24(1955), 84—92.

Edelstein, M., On fixed and periodic points under contractive mappings, J. London
Math. Soc. 37(1962), 74—79.

Gohde, D., Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30(1965),
251—-258.

Kirk, W. A., A fixed point theorem for mappings which do not increase distances,
Amer. Math. Monthly 72(1965), 1004—1006.

Kirk, W. A., Metric fixed point theory: Nonexpasive mappings, Proceedings of the
Fourth International Workshop in Analysis, Dubrovnik, 1990.

Kneser, H., Eine direkte Ableitung des Zornschen Lemmas aus dem Auswahlaxiom,
Math. Z. 53(1950), 110-113.

Klee, V., Some topological properties of convex sets, Trans. Amer. Math. Soc.
78(1955), 3045.

Kuratowski, C., Topologie, PWN, Warsaw, 1940.

Leray, J. and Schauder, J., Topologie et équations fonctionelles Ann. Sci. Ecole
Norm. Sup. 51(1934), 45—78.

Mauldin, D. (ed.), The Scottish Book: Mathematical Problems from the Scottish



9]
[20]
21
[22]
23

[24]

17

Cafe, Birkhauser, Boston, 1981.

Nowak, B., On the Lipschitz retraction of the unit ball in infinite dimensional
Banach spaces onto boundary, Bull. Acad. Polon. Sci. 27(1979), 861—864.

Sadovskii, B., On a fixed—point principle, Analiz i Prilozen. 1(1967), 74—76
(Russian).

Schauder, J., Der fixpunktsatz in Funktionalraumen, Studia Math. 2(1930),
171-180.

Tarski, A., A lattice—theoretical fixed—point theorem and its applications, Pacific J.
Math. 5(1955), 285—309. .

Zabrieko, P. and Krasnoselskii, M., Iteration of operators and fixed points, Doklady
Akad. Nauk SSSR 196(1971), 1006—1009 (Russian).

Zeidler, E., Nonlinear Functional Analysis and its Applications 1. Fized Point
Theorems, Springer—Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.



