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PRESENTATION

These notes are part of a series of lectures On Descriptive Set The-
ory” given by professor Joseph Diestel, from Kent State University, during
his visit to our Department on January 1993. Before finishing this presen-
tation we would like to thank professor Diestel for sharing his mathematical
knowledge and valuable time with our comunity.
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1 A THEOREM OF TALAGRAND

In the spring of the 1979, Michel Talagrand proved the following:

Theorem 1.1 [Talagrand] If X is a separable Banach space which contains
an isomorphic copy of every separable Banach space with the Radon-Nikodym
property, then X does not have the Radon-Nikodym property.

His proof is, so far as I know, unpublished to this very day and since it
hints at the variety of open problems in measure theory and Banach spaces
theary that are derived from techniques peculiar to descriptive set theory, it
seems an apt-take-off point for these lectures.

Let X be a separable Banach space, C' be a non-empty closed bounded
convex subset of X and € > 0.

We define T'(C, ¢) to be the subset of C' that remains after we remove all
open slices of C' having norm — diameter < €. More precisely, an open slice
of C is a set of the form

S(Ci;z",a) ={z € C|z"(z) > a}

where z* € X* and a € R; we assume, too, that we are working only in real
Banach spaces. So

T(C,e) = N {zeC|2"(z) <a}.

diam S{C,z*,a)<e
It follows that T'(C,¢) is a closed bounded convex subset of C .

Now we start our task throught the ordinals:

Ty(C,e) = T(C,¢)
Ty(C,e) = T(Ti(C,e),¢)

T5+1(Cve) = T(Tg(C,E),é‘)
and should « be a limit ordinal, then

T.(Cre) = () Ts(C,e).

<o

Naturally, certain stability properties are almost transparent.
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Proposition 1.2 Let C and D be closed bounded conver subsets ofX.
1) If C C D, then T,(C,e) C To(D,¢).
1) For A > 0, T,(AC, Xe) = AT, (C,¢).
wi) Forz € X, To(z + Cie) = 2 + T,(C,¢).

Since X is separable and (T,(C,¢€))q is decreasing in «, there is a first
ordinal 7(C,e) < w; (= I*" uncountable ordinal) such that for any ¢ >

7(C,e),
TQ(C, 6) = Tf(cye)(o, 6).

Denote by 7,(X) := 7(Bx,1/n) and let 7(X) = sup, 7,(X). Notice that
T(X) < wg.
Lemma 1.3 (a) If Y s a closed linear subspace of X, then

(YY) < 7 (X) for each n and so T_(Y) < 7(X).

(b) If X and Y. are isomorphic, then 7(X) = 7(Y).

Proof. (a) follows easily from the fact that for any ¢ > 0, T(By,e) C
T(B)(,EI).

(b) takes a bit more thought about what’s going on. To start notice that
whenever V : X — Y is a bounded linear operator, then for any C C X,

diam V(C) < ||V|| diam (C).

Next, suppose V : X — Y is an isomorphism of X on Y and suppose
p € N satisfies
IVI[<p and [V <p.

If C is any non-empty closed bounded convex subset of X, then V((') is a
non-empty closed bounded convex subset of Y'; what’s more,

S:=SV(C),y",a)=V (S(C,Vy",a)).

It is now easy to justify the following chain of inclusions:



T(v(C)e) = N V(C)\ S

diamS(V(C),y*,a)<e

= A VIC)\V(S)

diamV (S(C,V* y*,a))<e

(which, since V' is an isomorphism, is )

=V ( N C'\ S)
diamS(C,V* y*,a)<e

(which because diamV (S) < e implies diam(S) < pe )

2V ( N C\ S)
)<pe

diamS(C,z*,a
= V(T(C,pe)).
Summarily we have \
V(T(C,pe)) CT(V(C),e).
Start with C' = By. Then
V(T'(Bx,e)) S T(V(Bx),¢/p)
g T(pBY,E/p)
pT(By,&/p).

So,
V(Tx(Bx,e)) = V(T(T(Bx,e),¢))

C T(V(T(Bx,¢)),e/p)
= T(T(V(Bx),£/p)),c/p)

= Ty(V(Bx),</p)
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C Ty(pBx,¢/p)

= pTa(By,¢/p),
trala, trala, trala,... For any o !

V(T.(Bx,e) C pTo(By,e/p*). :

Consequently,
Ta(X) < men(Y),
and so
T(X) < 7(Y).
Turn about is fair play and so (b) is proved. [ )

All this 1s a general abstract nonsense of the finest sort which gains con-
siderable import if we assume, as we will, that X has the Radon- Nikodym
property. For our present purposes, a Banach space has the Radon-
Nikodym property if every non-empty closed bounded convex
subset of X has non-empty open slices of arbitrarily small diame-
ter. It is a deep and beautiful theorem of Messrs Bill Davis, Bob Huff, Hugh
Maynard, Bob Phelps and Mark Rieffel that relates the property so defined
with the classical Radon-Nikodym theorem in basic measure theory.

Of course, in the present context, X having the Radon-Nikodym property
is tantamount to saying that for a closed bounded conver set C C X that’s
non-empty, T(C,e) C C. 1t follow that if C is a non-empty closed bounded
convex subset of X with the Radon-Nikodym property, then

Tren(Cie) = 0.

Now we’re in plain to prove Talagrand’s theorem.

First, we need to recall a few “facts-of-the-life” regarding spaces with the
Radon-Nikodym property. These facts are not difficult to prove if one has the
measure theoretic formulation of the Radon-Nikodym property well-in-hand.
They are typical of the kinds of stability one needs to apply the technique
present by being employed. The facts are these:



(I) If X;,X,,...,X, are Banach spaces with the Radon-Nikodym
property and 1 < p < oo, then

o)
k=1 4

has the Radon-Nikodym property, too.
(IT) If (X,)4 is a family of Banach spaces with the Radon-Nikodym
property and 1 < p < oo, then

(Zov)

¢p
has the Radon-Nikodym property, too.

Magical step ! We claim that for every ordinal o < w; there is
a separable Banach space X, having the Radon-Nikodym property
such that 73(X,) > a.

To start, let X; = IR. Then Bg = [—1, 1]. Open slices of Br of diameter
<1/3 are [-1,—2/3) and (2/3,1]. Hence, T(Bgr,1/3) is just [—~2/3,2/3] and
Tg(B) 2 1.

Let’s see how to continue. Let v < w;. Suppose we're taken each magical
step 73(X4) > o for each o < 7.

If 4 1s a limit ordinal, then let

X, = (Z @Xa) :
&

a<y

Since each X, is a separable Banach space, (II) assures us X, has the
Radon-Nikodym property. Since each of the X,’s satisfies 73(X,) > «, then
13(X,) 2 13(X,s) > @, too; but this is so for every a < 7, so

m(X,) > 7.

What if v = 8+ 1 for some 8 7. Then we let

Xy = (Xﬁ D R)zoo :



By (I) X,, has the Radon-Nikodym property since Xj is supposed to; X, is
also separable, simile Xz is. Of course, we have inductively hipothesized that
73(Xg) > B so, for any § < S one has

Ty(Bx,,1/3) # 0.

May be 3 is itself a limit ordinal. In this case we know 0 € T5(Bx,,1/3)
for each 6 < B8 and so

L]

0€ ﬂ Tg(BXﬁ,1/3) = Tg(BXﬁ,1/3).
5<p

But j: X3 — X, via z — (z,0) is an isometric inclusion, so

(0,0) € Tp(Bx.,1/3) and 73(X,)>2p8+1=nr.

Alas! we're left with the possibility that 3 is itself = §+1. But our inductive
posturing ensures us that Ts(Bx,,1/3) # 0. Take t € Bg = [—1,1]. Then

Ts(Bx,,1/3) x {t} = Ts(Bx, x {0},1/3) + (0, 1)
= Ts(Bx, x {0} + (0,¢),1/3)

T5(Bx, x {t},1/3)

Ts(Bx,,1/3).

N

But 0 € T5(Bx,,1/3), so (0,t) € T5(Bx.,,1/3) for every t € [—1,1]; that is,
{0} X [—17 1] - T5(BX~,7 1/3)
Hence

(0,0) € T({0} x [-1,1},1/3) C T(Ts(Bx,,1/3))
= Ts(Bx,,1/3).

Hence m3(X,) > 64+ 2 =+. ')



2 POLISH SPACES

A Polish space is a topological space that’s homeomorphic to a complete
separable metric space.

EXAMPLES:
1.) Separable Banach spaces and their non-empty closed subsets
are Polish. .

2.) Compact meric spaces are Polish.

3.) If S is a compact metric space and K(S) denotes the collection
of non-empty closed ( hence compact ) subsets of S, then X(S) can
be realized as a Polish space.

Here’s how. Let S be a compact metric space and let

K(S)={K CS: K is compact, K # 0}.

Equip K(S) with the following Hausdorff topology: basis for this topology is
generated by open sets U, V;,...,V, in S as follow:

OWU,Vi,...,V))={K€K(S): KCU, KNV, #0,..., KNV, #0}.

Denote by 7 the topology generated by the O(U, Vi,...,V,)’s. (K(S),7) is

plainly a Hausdorff space. In fact we have

Theorem 2.1 (K(S), ) is a compact metric space. Denoting by d the metric
of S, the metric generating 7 is given by

D(K,L) = supl|d(z, K) — d(z, L)|.
z€S

Proof. For K € K(S), denote by di the function di(z) = d(z, K) for all
z € S. Since |dg(z) — dx(y)| < d(z,y), {dx : K € K(S)} is bounded
and equicontinuous set in C(S). By the Arzela-Ascoli theorem, we see that -
{dk : K € K(S)} is relatively compact in C(5). '

More is so. If (K,), is a sequence in K(S) and dg, — f in the norm of
C(S), then f = dg where K = {z € S: f(z) = 0}. In fact, if z € S is fixed
then for every v,

[f(2) = f(y)] < d(z,y),



so, if y € K we have

If (@) =1f(z) = f(W)| < d(z,y)

ensuring |f(z)| £ dk(z), - of course f > 0 so this is just saying f(z) < dr(z).
On the other hand, if from each K, we pick a y, so that d(z,y,) = d(z, K,.)
then, by passing to a subsequence if necessary, we can suppose y, — y for
some y € S. It’s plain ( or close to it ) that d(z,y) = f(z) and this is so
for every z € S !. In particular, f(y) = d(y,y) = 0, so y € K. Finally,
f(z) = d(z,y) > dr(x) and f = di! In this way, we see that K(S) is a
compact subset of C'(.S); when we realize that the metric D is what it is, we
see that (K(S), D) is isometrically inside C(S), too.
Alas notice that ( with proper ID’s in hand )

{[X’ K g L} = {d[( : d}\ Z dL}
and
{K: K0 L#0}={dg : dx Ady = 0}.

Then we see that D generates a bigger topology than 7, hence D generates
y .

4.) Closed subspaces of Polish spaces are Polish.
5.) Open subspaces of Polish spaces are Polish.

Proof. Let X be a Polish space and d be a complete metric on X that
generates its separable topology. Let U a non-empty open subset of X, with
U # X. Define the distance D on U by

1 1
D = dfu, - '
(u,v) = d(u,v) + d(u, Ue) — d(v,U)

It is easy to see that D and d enjoy the same sets of convergent sequences
(with limits ) in U. Indeed, D > d so should u, 2 u, u, > u, too. If
Un > u, then, as u,, u € U , 1/d(u,,U°) and 1/d(u,U*®) are real and
d(tn,U®) — d(u,U°) so d(u,,U)™t — d(u,U°)"!, too. It follows that u, 5,

u.
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The issue, of course, is that D is a complete metric on U. If (u,), is
D-Cauchy, then (u,), is d-Cauchy and so converges to some z € X in the
d-metric. The point is z € U.

* In fact, if £ € U° then d(z,U¢) = 0. So lim, d(ux,,U¢) = 0. It follows that
we can find a subsequence (un, )i of (un), such that

1 1
- >k ) =1,2,...,k—1.
d(unk,Uc) d(un]’Uc) = J y s 3

-

From this lim; g D(tnk, un;) = 00, contradicting (u,, )r’s D-Cauchyness. &

6.) Countable disjoint sums of Polish spaces are Polish.
Here if (X,), is a countable family of metric spaces ( assumed to be
disjoint ) we give @ ; X, the metric

d(z,y) = { 1 if x,y are in different X, ’s.

7.) Countable products of Polish spaces are Polish.

8.) Theorem ( Alexandrov ). Let X be a Polish space. S C X is Polish
if and only if S is a G5 in X.

Proof. Suppose S = N, U, where U, is open in X for all n € IN. By 5.),
each U, is Polish. Hence [], U, is Polish. Look to

A:{(un)ne HUn:uj:ukforallj,kEW}.
n=1

A is a closed subspace of the Polish space [],, U,, so A is a Polish space. But
S is homeomorphic to A, so S is Polish, too.

Now suppose S is a Polsih subspace of the complete separable metric
space (X, d). Let D be a complete metric that generates S’s topology. For
each n let

Vo=(){W C X:Wisopen, WNS #0, D—diam(WnS)<1/n}.

§=5n (ﬁ Vn>.

n=1

We claim that
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Take s € S. Look at U = {z € S : D(z,s) < 1/3n}. U is d-open in S ( D
and d generate the same topology of S ) and D — diam(U) < 2/3n. Now
U=WnNS for some open set W C X so s € V,,. It follows that

Now suppose

Since z € N,V, there is for each n a d-open W, in X that contains z,
intersects S and with D — diam(W,, N S) < 1/n. Replacing W,, with W; N
-+ -NW,, if necesary, we may suppose W,,’s are decreasing. Further, by looking
to d-open balls centered at z we may assume that d — diam(W,,) < 1/n, too.
Keep in mind that z € S so z € W, still ensures W,,NS # §. Cantor’s nested
interval theorem tell us there is a unique s € S common to all W, NS °. But
x is the only element common to ﬂnm(x’d).

Ah ha! Notice

N
3 =
=
B

W, g (5 D)

sos =z and z € 5 !. For this
S=5n (ﬂ Vn>.
n=1

But S is closed in the metrizable space X so S is a G it soon follows that
S as the intersection of two Gg’s 1s a Gs. [

9.) Locally compact Hausdorff spaces that satisfy the second
axiom of countability are Polish.

Indeed, such spaces have compact metrizable one point compactification
and are open, therein:

10.) N = INV is Polish.

11.) I, the set of irrational numbers, is Polish.
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12.) @, the set of rational numbers, is not Polish.

13.) Let C be a non-empty complete separable metrizable convex subset
of a locally convex space E. Then ezt C, the set of extreme points of C,
is Polish.

Indeed, a point z of C is extreme if and only if whenever z = Q—P
with ¢;,co € C, 2 = ¢; = .
Hence,

(et C)° = | {CI;LC? eryer € C, dler,ca) > l/n}

n=1

making (ext C)¢ an Fj,-set and ext C' a Gj.

NOTE: This last example is of some importance in abstract analysis. A
famous theorem of Choquet says that if /' is a compact metrizable convex
subset of a locally convex space F, then every point of K s the baricenter
of a regular Borel probability measure on K that’s supported by the extreme
potints of K. In efforts to generalize Choquet’s theorem, the Polish nature of
extreme points plays a central role. Another key role is the following famous
theorem of K. Kuratowski and Cz. Ryll-Nardzewski.

Theorem 2.2 | Kuratowski — —Ryll — Nardzewski]. Let (,%) be a mea-
surable space and S be a Polish space. Let F(S) be the collection of non-empty
closed subsets of S, and suppose F' : Q — F(S) is such that for each open
set' V in S,

{weQ: Flw)NV #£0} e X.

Then there exists an f : Q@ — S such that
i) f7Y(B) € ¥ for each Borel set BC S,
and

i) f(w) € F(w) for each w € Q.

Proof. Suppose d is a complete metric on S with d — diam(S) < 1 such that
d generates S’s separable Polish topology. We plan to construct a sequence
(fr)22, of functions from § such that

(a) each f, is ¥ — Bo(S) measurable;

(b) d(fu(w), F(w)) < 27 for each n and each w;
and .

(¢) d(fu(w), fao1(w)) < 27! for each n > 1 and each w.
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Once done, (c) ensures us that (f,(w))n>0 is pointwise d-Cauchy in S.
Hence f(w) := lim, f,(w) exist in S and is ¥ — Bo(S) measurable by (a). (b)
kicks in to assure that f(w) € F—(w—)d = F(w) and we’re done.

Let (s,)n>1 be dense in S. Dedine fo : @ — S by fo(w) = s1. (a) through
(c) follow by default.
To get fi; we proceed as follows: for j > 1 set

C, = {weﬂ:d(sj,F(w))< %} ~

D; = {w € Q:d(sj, fo(w)) < 1}.
Let U,(s) = {z € S : d(s,z) < r} be the open r-ball centered at s. Then
Cj={weQ: Fw)Nly(s;) #0} and D; = fo" (Ui(s;))

are each in ¥, C; by hypothesis and D; by design.
Let A; = C; N D;. Then

A; € and Q=] A

i=1

Define f1 : 8 = S by fi(w) = si(.) where is the first positive integer such
that w € Ak(w) \ U A;j.

J<k(w)
If B is a Borel set in .5, then

T(B) = U M ({se})

sx€EB
= U (Ak\ U A]') € X.
sx€B i<k

(a) follows from this. (b) and (c) hold simply because w € Ay) = Ciw) N
Dk(w).

Now to build f; : Q@ — 5 set
C? = {weN:d(s;, F(w) < 1/2%}

J

= {we: Flw)NUyp(s;) #0}
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and
D} = [N (Uija(s)).

Notice C?,D? € ¥ and set A2 = C?n D3 So A} € £, too. Note once
again that 0 = U;A3. In fact, if w € Q and s € F(w) N Uyja(fi(w)), then the
open set U

U = Upyaa(s) N Urpa( (@)
must contain a point si; let k(w) be the first k£ so that sy € U and notice
that w € A,
As before, ifw € Q, w € Ak(w \ U AJ, set fy(w) = Sk and continue.
J<k(w)

o

Theorem 2.3 Let (X, d) be a metric space and p be a Borel probability mea-
sure on X. Then for any Borel set B C X and any € > 0 there is a closed
set F'C B and a open set G 2 B for which u(G\ F) < ¢.

If (X,d) is a Polish space, then each Borel probability measure p on X
satisfies: given any Borel set B C X and any € > 0 there is a compact set
K C B for which u(B\ K) < e.

Proof. Let B denote the collection of p-approximable Borel subsets of X;
i.e., B € B if given € > 0 there’s a closed set ¥ C B and an open set G O B
with u(G\ F) < e.

Closed sets belong to B. In fact, if ' is closed and we let f(z) = d(z,C)
for all z € X, then f is a continuous real-valued function for which C' =
Z(f)i={ze X : flz)=0} =N {z € X : f(z) <1/n}.

B is plainly permanent under the taking of complements.

Finally, N, B, belongs to B whenever B,, does for each n > 1. To see this,
let ¢ > 0 be given and choose closed sets F,, C B, and open sets G,, O B,
so that u(Gy \ F,.) < ¢/2"*!. Noticing that N2, F, = U2, Ur_, Fi we can
find an ng for which

n=1

,u(@ F.\ @ Fk> <e/2.

LetF—UFk ThenF1saclosedsetFCUBCUG~G(—an
k=1 n=1
open set ). Of course, u(G \ F) <
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This proves the first assertion. |

To prove the second we need only show that given an ¢ > 0 there is a
compact set K C X such that u(K) > 1 — ¢; this is a benefit drawn from
the first assertion.

Polish spaces are homeomorphic to complete separable metric spaces and
so we may just as well assume (X, d) is a complete separable metric space.
Separability ensures the existence for each n of a sequence {Bi(n) : k > 1}
of open 1/n — balls that covers X. We can ( and do ) assume that the center
of (Bk(n))k>1 and those of (Bi(m))x>1 coincide for any m,n.

‘Now there are only so many Bj(1)’s needed to eat up all but /2 of X;
say

k(1)

7 (X\ Bi(l)) < ef2.

=1
There are only so many Bi(2)’s needed to eat up all but €/4 of X; say B,(2),
ooy Br1y(2), ..., Biz)(2) are all that’s needed. Generally, only so many
Bi(n)’s ( say Bi(n), ..., Bra)(n), ..., Bra)(n), ..., Bim)(n) ) are needed
to eat up all but /2™ of X.

Two conclusions can be drawn: first we conclude that

Fﬁ (Bl(n) U---u Bk(n)(n))

is totally bounded, leading us to second conclusion that the closure K of

[e] k(n)
(g
n=1 \i=1

is a compact set for which u(h') > 1 —«¢. [ )
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3 ANALYTIC SETS

Let X be a Polish space. A subset A of X is analytic if there is a Polish
space Z and a continuous function f: Z — X such that f(Z) = A.

EXAMPLES:

1.) Every closed subset of a Polish space is analytic.
2.) Every open subset of a Polish space is analytic. .

3.) The union of a countable collection of analytic subsets of a Polish
space is analytic.

Indeed, suppose (A,). is a countable collection of analytic subsets of a
Polish space. For each n, let Z, be a Polish space and f, : Z, — X be a
continuous function such that f,(Z,) = A,. Let Z = @, Z, be the disjoint
sum of Z,’s. Z is Polish. Define f : Z — X by taking z € Z, searching
to locate z € Z, and letting f(z) = f.(z). Plainly f is continuous and

£(2) = An.

4.) The intersection of a countable collection of analytic subsets of a
Polish space is analytic.

Again, suppose (Ay), is a countable collection of analytic subsets of a
Polish space X, Z, are Polish spaces accompanied by continuous functions
fn: Zn — X such that f,(Z,) = A,. Then [], Z, is Polish and A = {(2}) €
[k Zk : fi(z:) = fi(zx) for each ¢, k} is closed in [],, Z,, hence Polish. If we
define f : A — X by f((zx)) = f(21), then f is continuous and f(A) = (") A,.

5.) Suppose X is a Hausdorff space. Then the Borel o-algebra, Bo(X),
of X is the smallest family 7 of subsets of X such that
(a) Every open set is in 7.
(b) Every closed set is in 7.
(¢) If (Fu)n is a countable collection of members of 7', then [ | F, € T
(d) If

d) If (Fy,)» is a countable collection of disjoint members of 7, then | J F, € 7.

n

Let S be the smallest collection of subsets of X that satisty (a) through
(d). Let So = {S € S§:85°¢S}. Plainly So €S C Bo(X). Further, (a) and
(b) combine to ensure Sy contains every open set of X; Sy is closed under
taking complements.
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Suppose (E,), is a sequence of members of Sg. Then

-
=
[

EiU(E,NES)U(EsNESNE)U-- €8

and N e o

(05) =5 es.

n=1 n=1
) UEn € Sp. Sp is a o- field of subsets of X that contains all the open
seté,nhence So 2 Bo(X) ! and §o € S C Bo(X) C So.

6.) Corollary. Every Borel subset of a Polish space is analytic.

7.) Let (X,). be a countable collection of Polish spaces. Suppose A, is
an analytic subset of X, for each n. Then [],, A, is an analytic subset of
[1n Xn.

Of course, [], X, is Polish and so we’re in position to test [], A, for
analyticity. For each n pick down a Polish space Z,, and a continuous function
fn : Zn — X, such that f,(Z,) = An. [, Z. is Polish. Define f : ], Z, —
[T, X» by f((2.)) = (fu(zs)). Plainly f is continuous and f([1, Z.) = 1, Ax.

8.) Theorem. Every Polish space is the continuous image of N' = IN%.

Proof. Let X be a non-empty Polish space and suppose d is a complete
metric on X that generates the Polish topology of X.
We plan to construct a family of non-empty closed subsets of X,

{C(ny,...,nk)},

indexed by the set of all finite tuples (nq,...,n;) of positive integers, in such
a way that
(a) d — ditam(C(nq,...,nk)) < 1/k;
(6) C(n, ... ,nk~1) = | JCO(n1y ooy mpmr, i)
ng

and

(c)szC(nl)(z U Cri,ng) =+ = UnkC(nl,...,nk)z--->

1 ny,m2 N1yeony
Start with ¥ = 1. Let (z,,) be a countable dense set in X. For each
ni, let C(ny) be the closed ball centered at z,, with radius 1/2. (It may be

16



that (z,,) is but a finite collection. Not to worry; repeat the C'’s - we never
claimed they’d be disjoint !).

Next, for each C'(n;) locate a countable dense set, place the points of this
set at the center of closed balls of radius 1/4 and list those closed balls as
(C(n1,n2))n,. The procedure should be clear.

Now to define f : N — X. Take n = (n;) € N. The sequence

(C(n1,...,nk)) is a decreasing sequence of non-empty closed subsets of the

complete metric space (X,d) such that d — diam(C(ny,...,ng)) — 0 as
k — 0. Cantor’s nested interval theorem assures us that there is a unique z,
common to the sets C'(ny,...,ni). Set

f(n) =,

Ifm,neN and m; =n;fort=1,...,k then
C(mi,...,mg) = C(ny,...,ng) and so f(m), f(n) € C(ny,...,nk).

It follows that d(f(m), f(n)) < 1/k; but this just says close points m,n € N
have close images f(m), f(n) in X. So f is continuous.

Now if z € X, then z € C(n,) for some ny ( by (¢) ) and so z € C(ny,ns)
for some ny,n2 and so z € C(ny,nq,n3) for some ny, nq, ng, ete., ete., etc. by

(b) ( and (c) ). In this way we find an n = (n;) € NV such that
z€()C(ny,...,nk) andso f(n)=uz.

o

9.) Corollary. Every non-empty analytic subset of a Polish space is the
continuous image of V.

We're ready to the fundamental separation theorem for analytic sets.

10.) Fundamental Separation Theorem. Let X be a Polish space
and A; and A, be disjoint analytic subsets of X. Then there exist disjoint
Borel sets By and B, in X such that A; C B; and A, C B,.

For convenience we say the disjoint sets A; and A, are separated if there
are disjoint Borel sets B; and B; such that A; C B; for 2 = 1, 2.

(I) If Cy,C,, ... and D are subsets of X such that for each n, C,, and D are
separated, then U Cn and D are separated.
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In fact, for each n there is a Borel set B, such that C C B, and D C B{.
Now UB is a Borel set, UC - U B, and D C ﬂ = ({J B»)° a Borel

set d1SJ01nt from U B,.

(II) If Ey, E,,. .. and Fy, Fy, ... are subsets of X such that for each m and
n, £, and F, are separated, then U E, and U F, are separated, too.

In fact, by repeated application of (I) we see that for each m, E,, and
UFn are separated. Apply (/) once again to get UE" and U F, separated.

Preliminaries are out of the way.

Proof of the Fundamental Separation Theorem. Let A; and A; be
non-empty analytic subsets of X with A; N A, =# 0. By Corollary 9.,
there are continuous functions f,¢g : N/ — X such that f(M) = A; and
gWN) = 4,.

We will suppose contrarily that A; and A; cannot be separated. For each
k€ IN and ny,...,n, € IV, set

Nny,...ong)={(m;) e N :my =nq,....,mp = n,}.

Notice
Uf (m1)) and Ay =|Jg(N(n;

By (II), there are m;,n; so f(N(m,;)) and g(N(n1)) cannot be separated.
But

Uf (mi,my)) and g(N Ug (n1,n2))

mo

so there are my, ny so that f(N(my,m2)) and g(N(n1,n2)) cannot be sepa-
rated.

In this manner we trace out m = (m;),n = (n;) € N such that for each
k

bl

f(N(mq,...,mg)) and g(N(nq,...,n))

cannot be separated.
It follows that f(m) = ¢g(n)! In fact, if f(m) # g(n) then there’d be

disjoint open sets in X one containing f(m), the other g(n). The preimages
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of these open sets would be disjoint open sets in A" one containing m the other
n. But the sequence (M (mj,...,my;)) of open sets about m is a neighborhood
basis in M of m as is the sequence (A (ny,...,n;)) a neighborhood basis in
N of n. Hence we eventually will find A (my,...,m;) inside the open set
about m and NM(ny,...,n;) inside that about n. It follows that

f(N(my,...,my)) and g(N(ny,...,nk))

-

are separated by open sets |. OOPS.

Now we’re really in a quandary. Our hypothesis that A4; and A, can not
be separated has lead us to conclude that f(m) = g(n), where f(m) € A,
and g(n) € A,. Something smells in Denmark. [ )

11.) Corollary. Let X be a Polish space. If A and A° are both analytic,
then A is Borel.

Theorem 3.1 [ Mauldin] In C[0,1], the collection of nowhere differentiable
functions is analytic.

Proof. f € C[0,1] is differentiable at some point = of [0, 1] precisely when
for all n there is m such that:

if 0 < b, lhol < 1/m and x4+ hy,z+ hy €[0,1]

(%) -
then |[EH M) = @) _ @t ha) = f(z)

< .
h1 s <1/n

For m,n € IN, let
Eon={(f,z) € (C[0,1]) x [0,1] : (%) holds}.

The somewhere differentiable functions of C'[0, 1] are, then, precisely those
in

Pepa; = [ U Emn-

m=1n=1
But E.,. . is closed in (C[0,1]) x [0,1] for each m,n: if (f;,z;) € E,,» and
(fi,zi) = (f,z), then || fi = f|lo — 0 and |z; — z| — 0; hence, fi(z;) — f(z)
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and should 0 < |hq], |h2| < 1/m and z + A1, z + hy € [0, 1]

flath) - fz) flz+h)—f(2)

hl h2

filz + h1) — fiz)  fiz + ha) — fi()
hl h2

filwi + ha) = f(@i)  filzi + ha) — f(2)
]1,1 hg




4 THE KURATOWSKI-TARSKI
SYMBOLIC DESCRIPTION CLASSES.
A Brief Introduction

Let X be a variable symbol designating a property of a class of sets. For
example, X = G refers to open sets, X = F to closed sets, X = K compact
sets, X = A analytic sets, ... X, denote sets that are countable union of
sets having X; Xj refers to sets that are countable intersection of sets having
X.. CX denotes sets whose complements have X while PX refers to sets
that are projections of sets with X. X UY consist of sets that are the union
of a set with X a set with Y; X NY consist of sets that are the intersection
of a set with X and a set with Y. (Be careful in this regard: X UY is not
the class of sets that are in either X or Y. Likewise X NY is not the class
of sets enjoiying both X and Y.)

One more thing. We only deal with properties X such that if M has
property X in S, then M x T does too in S x T.

RULES

Suppose «(t),B(s,t),... are propositional functions where t € T,s €

S,

(X) If {t:a(t)} has X, then {t :~ «(t)} has CX.
Next, to clarify our notation X UY and X NY we have

(IT) If {t : a(t)} has X and {¢ : &'(¢)} has Y, then {t : a(t) or &'(t)} has
XUY and {t:aft) and &'} has X NY.

(III) If for e\.fery n € IN, {t: a,(t)} has X, then {¢ : In, a,(t)} has X, and
{t : Vn, a,(t)} has X;.

(IV) If {t: a(t)} has X, then {(¢,s) : a(t)} has X.

(V) If {(t,s) : B(t,s)} has X, then {t : Is, B(¢,s)} is PX and {t :
Vs, B(t,s)} is CPCX.

21



There are many other RULES that can be formulated and indeed facility
at deriving such is what makes the Kuratowski-Tarski calculus useful.

To highlight the calculus, we recall the Hausdorff metric on £(S). Sis a
non-empty compact metric space, K(.S) is the space of all non-empty compact
subsets of S and d(K,J) = ||d(- , K) — d(- ,J)||co Where d(- ,K) € C(S5) is
the function d(z, K) (z € 5).

Here is a list of useful information involving K(S).

1. The following sets are compact:

o {(s,K)e SxK(S):5¢€ S5}
o {(K,L)e K(S)xK(S): K C L}
{(K,L) e K(S)x K(S): KNL#0}

2. The following are continuous functions:

e S — K(5)
s — {s}.
e K(S)x K(S) - K(S5)
(K,L) > KnNL
o K(SxT)— K(S)
K — [Is(K)
o K(S)— [0,00)
K — diam K

Now we’ll give an example of how a clever description of a particular
property leads to a precise determination of the character of this property
via Kuratowski-Tarski calculus.

Theorem 4.1 (Banach) The non-empty perfect subsets of a non-empty
compact metric space S constitute a Gg-subset of K(5).

Proof. For a solid basis of comparison, fix a countable open basis {U, : n €
IN} for the topology of S. Let K" € K(S5).

K is not perfect <= K has isolated points
<> In3dz:zeK, zel, : KC{z}UU;

[ O]
[ o)



Now {(z,K) : z € K, K C {2} UU:} is a compact set in S x K(S) so
here’s the Kuratowski-Tarski depiction of what’s going on:

K isnotperfect < Indx : z2€ K, ze€U, : KC{z}UuUS
DECODING

| Y
[P |, In 3Ja .
 [P(KNGNK)], dn 3z, xe€ N, velU,, KC{z}uU;
So ,
[P(KNGNK), = [P(KNK,NK)],
= [P(Ko)],
(Ks)e = K,

o

Corollary 4.2 (Hurewicz) The collection of uncountable compact subsets
of an uncountable compact metric space S is an analytic subset of K(S).

Proof. Let U denote the collection of compact subsets of S that are un-
countable and let P denote the Gs-subsets of K(S) consisting of non-empty
perfect subsets of S. The classical Cantor-Bendixon theorem warns us that

Keld<=dLeP : LCKH.
Hence U is P(Gs N K) = P(Gs) = A. [ )

REMARK. Hurewicz also showed the much more difficult and subtle fact
U is not a Borel set . This is of real importance in our next example’s
application.

Let A denote the Cantor set and KX(A) denote the space of non-empty
compact subsets of A. Let X be a separable Banach space and suppose

some C(K') embeds in X wiht K € K(A). If
K(X):={K € K(A) : C(K) embedsisomorphically in X},
then '



Theorem 4.3 (Bourgain) K(X) is analytic.

Proof. Our first step is to position ourselves to apply our calculus. Here is

how a K € K(A) gets to be in K£(X).

(*){ KeK(X)<> 36>037T:C(A)— X, ||T||] £1 such that
ITfI 2 6 |lfill Ve C(A)

Let us suppose (*) to be so. Then take D to be a countable dense subset
of the closed unit ball of C(A). Notice that Br(c(a),x), closed unit ball of
L(C(A), X), when equipped with the (strong) topology of pointwise conver-
gence is homeomorphic to a closed subset of XP. Hence (Br(c(a) x), Strong)
is Polish (hence Gjs). Let

Z = }C(A) X (BL((_"(A)..\’)v St?'O?’I,g) X (0, ]]
Z is K x (s x GGg hence Gs. Look to
Q={(K,T,6)€ Z 5 IITf| 26 IIfie
@ 1is closed in Z, so G5 and

K(X) = Pxa)(Q) = P(Gs) = A.

, Vfe C(A)}.

So it remains to show (x) characterizes those K € K(A) that belong to
K(X). If K € K(X), then there is an isomorphic embedding u : C(K) — X;
we can scale u to suppose ||u|| = 1. T : C(A) — X can now be defined
by T(f) = u(f,); because u an isomorphism, ||ug|| > [[u™"]|* ||g|| for each
g € C(K) and so § = ||u™?||7'. On the other hand, if T : C(A) —» X
satisfies ||T|| <1 and ||[Tf|| > é ||f,.|| for each f € C(A), then an appeal
to the Borsuk-Dugundji extension theorem is in order; recall that if M and.
N are metric spaces with M C N, then there is a bounded linear operator
E : Cy(M) — Cy(N) between the spaces of bounded continuous real-valued
functions on M and N respectively such that ||E|| =1, Ef >0, if f >0
and, most strinkingly, £ f},, = f, foreach f € C,(M). Let E be the Borsuk-
Dugundji extension operator from C(A) to C(A). Then ToE : C(K) — X
is an isomorphic embedding.

Comment. Now let’s suppose we have the full force of Hurewicz’s de-
scriptions in hand; that is, that the collection of non-empty countable
compact subsets of A is a non-Borel, co-analytic subset of K(A).
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Suppose X is a separable Banach space such that C'(K) — X for every
countable compact set I\'. Then, of course, C(K) < X for every countable
compact subset K of A. Hence K(X), a known analytic set, contain every
countable compact subset of A. It must contain at least one uncountable
compact set, too. If not, X(X) would be an analytic and co-analytic subset
of K(A) making it a Borel set which thanks to Heruwicz we kirow not to be
the case.

Now here’s the kicker: a famous theorem of Milutin states that any
C(K), K an uncountable compact metric space, is isomorphic
to C(A). Hence, if the separable Banach space X has the property that
C(K) — X for every countable compact metric space K, then C(A) — X,
too. But C'(A) is itself universal for all separable Banach spaces so X must
be, too. [



5 UNIVERSAL MEASURABILITY

Recall that if (2, %, ) is a probability space and A C Q we define u*,
the outer measure generated by p, via the formula

p(A) =inf{u(B) : AC BeX}
further, we define u., the inner measure generated by g, via the formula
po(A) = sup{u(B) : A2 BeX). ‘
The.o-field ¥, of y-measurable sets then turns out be determined by:
E € ¥, precesily when p.(E) = p*(E).

So, ¥, consists of those £ C  such that thereexist S ,Be £, SCFE C
B such that u(B\ S) = 0.

While neither p* nor p,. are typically measures they do exhibit some
measure-like properties. Here’s one we’ll need.

Lemma 5.1 Let (Q,%, 1) be a probability space and (A,), be an increasing
sequence of subsets of Q. Then

pH(Unly An) = lim p”(Ayg).

Proof. u* is monotone so bigger sets are assigned bigger values by p*. It
follows that in our present set-up, lim, g*(A,) exists and is < p*(U,A,).
Epsilonies to yhe rescue. Let ¢ > 0 be given. For each n, choose B, €
Y, A, € B,so u(B,) < pu*(A,) +e¢. If we replace B, by B, N By N -+,
then we still have a member of ¥ that contains A, and is assigned by yx a value
< p*(A,) + &; what’s more, the new sequence is increasing, too. Let it be
done. Now p’s countable additivity kicks in to give us p(U, B,,) = lim,, pu(B,).
So

/"‘*(U'Zozl A")

IN

/'I‘(U'Zozl Bn)
lim u(B,)

im (1 (A4) + 9
Jim w(A,) + €.

IA

Done. [ Y
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Theorem 5.2 Let X be a Polish space and p be a (regular) Borel probability
on X. Then every analytic subset of X is p-measurable.

Proof. Let A be an analytic subset of X. We will show that regardless of
€ > 0 there is a compact K C A such that u(K) > u*(A) — e. From this it
is easy to conclude that u.(A) = u*(A).
We need only look to non-empty A. Since A is a non-empty analytic set
inside X, there is a continuous function f: ' — X such that f(N) = A.
Some notation: for k,nq,...,n, € IN, let

L(ny,...,ng):={meN : m;y <ny, my <ng,...,my < ng).
Let € > 0. We plan to construct n € A such that
WL, ) > p(A) — ¢

for each k. Here’s how we construct n:
(L(n1))n, is an increasing sequence of sets whose union is A and so
(f(L(n1)))n, is an increasing sequence whose union is A. Hence,

p(A) = lim p"(fL(n1))),
thanks to our Lemma. We can, therefore, pick n; so
W (L)) > w7 (A) —e.

But (£(n1,n2))n, is an increasing sequence of sets and

L(ny) = U£(711,712) s f(L(m)) = Uf(ﬁ(”lam));

n2

so as before we can pick n, so
W (fL(n1,n2))
is close enough to p*(f(L(ny))) = lim,, *(f(L(n1,n,))) that
$(f(L(n1,n2))) > p™(A) —&.

The way is clear. Follow the way. n soon emerges.
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Let L = g L(n1,.:.,nx). L is a compact subset of N. f(L) = K is a
compact subset of A. We claim that

p(K) = p*(A) —e.

To establish our claim we start by showing that K is bigger than one
might expect. After all

K=f(L) = f((k]ﬁ(nu---v”k)>
Of([,(nl,...,nk))
C Qf(ﬁ(nl,...,nk));

N

actually,

K = mf(ll(nl, ey ).

Indeed, suppose d is a complete metric that generates the Polish toplogy
of X. Take z € N f(L(ny,...,ng)). Then = € f(L(ny,...,nx)) for each
k; so we can choose my from L(ny,...,n.) such that d(f(my),z) < 1/k.
A simple diagonal argument, avaible through the good graces of the form
of L(ni,...,n;), allows us to pass to a subsequence (m}) of (my) which
converges to some m € N. m must be in (N f(L(n1,...,nk)) and f(m)
must be limg f(m}) = z. So

z=f(m)€ f<ﬂ£(n1,...,nk)) = f(L) =K.

k

Now we’ll in business:

f(L(n1,...,nk)) is a closed set containing f(L(ni,...,nt)) so

u (FZ(ny, ) (f(L(ra, -, )))
(A) ¢

AV

ﬂ*
#*

for each k. Further, (f(L(n1,...,nk)))s is a decreasing sequence with inter-

section K. Hence
() > pr(A) <,
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too. We're done. r

Let X be a Polish space and Bo(X) denote the o-field of Borel subsets
of X. Let U(X) be defined by

UX)= () Bo(X),
wEM, (X)

where M;(X) are the probability measures on Bo(.X'). Members of U(X) are
called universally measurable.

Coi‘ollary 5.3 If X is a Polish space and A is an anaytic subset of X, then
- A is universally measurable subset of X.

More generally, if X is a topological space we define the o-field of uni-
versally measurable sets with respect to probabilities on Bo(X) or with
respect to the regular probabilities on Bo(X) (= M,.,(X)) by

UX) = ﬂ Bo(X),
weEM;(X)
or

Ueg(X)= [} Bo(X),.
MEMreg(-X)
Here’s a useful fact that says that in a sense "bigger is better”.

Proposition 5.4 Let X and Y be Polish spaces and f: X — 'Y be a Borel
function. Then f is U(X) — U(Y") measurable.

Proof. Let U € U(Y) and u be a (regular) Borel probability on X. Look to
the image measure go f~! on Y,
po fUE) = p(f(E)  E € Bo(X).
po f~' is a probability on Bo(X) and U € U(Y) so U € Bo(Y'),05-1. Hence
there exist S, B € Bo(Y), S C U C B, so that po f7'(B\ S) = 0. But
f7Y(S), f~Y(B) are Borel subsets of X, f~}(S) C f~(U) C f~}(B) and
p(fTUBINSTHS) = w(fTH(B\S)
= pofTH(B\S)
= 0
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Hence f~1(U) € Bo(X),.
This is so for each probability x on X so U € U(X). '

'This Proposition has many variations and ensures a rich collection of
U(X) — U(Y) measurable functions.

A brief foray into Banach spaces indicates some quicks in the study of
universally measurable sets. First, a.delicious tid bit about separable Banach
spaces. .

Theorem 5.5 If X is a separable banach space, then
Bo(X,||-]]) = Bo(X,weak).

Proof. Since the weak toplogy of a Banach space is smaller than the norm
topology, Bo(X,weak) C Bo(X, || -|]).

Mazur’s theorem ensures us that closed balls are weakly closed hence
weakly Borel. Open balls are countable unions of closed balls hence weakly
Borel. In separable spaces, open sets are countable unions of open balls so
weakly Borel. But now it follow that norm Borel sets ( in separable spaces )
are weakly Borel, too. [ )

Generally, Bo(X,weak) C Bo(X,|| - ||) though there are lots of spaces
that are non-separable in which Bo(X,weak) = Bo(X,|| -|]), including the
reflexive spaces. Nevertheless, '

Theorem 5.6 (G. Edgar) U, (X, ||-|]) = Upey(X, weak) for every Banach
space X. »
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