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A DIRECT PROOF OF A THEOREM ON
REPRESENTABILITY OF OPERATORS !

IVAN DOBRAKOV AND T.V.PANCHAPAGESAN

ABSTRACT. Let T be a locally compact Hausdorff space and let X
be a Banach space which contains no copy of c,. Then it is well known
that every bounded linear operator U : Co(T) — X is weakly compact

and hence is representable with respect to a unique X-valued o-additive

.

regular Borel measure on T. The object of the present note is to provide
_ a simple, direct and elegant proof of the representability of U and then
" to deduce that U is weakly compact.

Suppose T is a locally compact Hausdorff space and let Co(T') be the Banach space

of all complex valued continuous functions on T vanishing at infinity, with the supre-

mum norm ||.||,, given by ||fl|, = iqulf(t)l
€

Let U : C,(T) — X be a bounded linear operator, where X is a complex Banach
space containing no copy of ¢, (in symbols, ¢, ¢ X). Then by Theorems 5.1 and 5.3 of
Thomas [12] and by Theorem 5 of Bessaga and Pelczytiski [2] it follows that U is weakly
compact. This can also be deduced from Theorem 5 of Pelczynski [10], by considering
the bounded linear operator U/ : C(T) — X, where T is the Alexandroff compacti-
fication of T by adjunction of the point {co}, C(T) = {f : T — C, f continuous}
and U (f) = U(f — f(c0)). Then by Lemma 2 of Kluvének [9] there exists a unique
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X-valued o-additive regular Borel measure G on T such that

Uf:/deG, f€C,(T) (*)

and thus the representability of U is obtained. Alternatively, following the ideas in the
proof of Theorems 3.1 and 3.2 of [1], (*) can be deduced from the weak compactness of
U as fbllows: Let G(E) =U*(X,), E € B(T). Then U™C,(T)* C X, as U is weakly
compact. Since G is g-additive in o(X™*, X*)-topology,by the Orlicz-Pettis theorem G
is o-additive on B(T') in norm topology of X and consequently (*) holds. Moreover, by
Theorem 2 of [7] and Appendix 1 of [12] it follows that G is a regular X-valued Borel

measure.

In the study of representation of bounded multilinear operators on )j( C,(T;), where
T:,i=1,2,..,d, are locally compact Hausdorff spaces, it has been shown in Dobrakov
[5] that every bounded multilinear operator V : j‘:(CO(T,-) — X admits a multilin-
ear integral representaﬁon with respect to a unique X-valued Baire multimeasure T
on )‘11(3,,(7}), whenever the complex Banach space X contains no copy of ¢,. More-
over, as observed in Dobrakov and Panchapagesan [6], the example given in Pelczynski
[11,p.385] serves to give a non weakly compact multilinear operator V with range in
a Banach space containing no copy of ¢,. Thus, for bounded multilinear operators,
the concepts of weak compactness and representability are not equivalent, even though
these coincide for bounded linear operators on Co(T'). The latter fact is exploited above
to obtain the representability of a bounded linear operator U : C,(T) — X, whenever

the Banach space X contans no copy of c,.

Because of the above situation in the case of multilinear operators, the following
question arises naturally: Can the representability of U be proved without using its
weak compactness? The object of the present note is to answer the question affirma-

tively; and it turns out that the present direct proof is quite simple and elegant.
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Let K (resp. K,) be the family of all compacts (resp. compact Gss) in T. Let
B,(T) be the o-ring generated by K,. The members of B,(T') are called the Baire sets
in T'. The o-algebra of all Borel sets in T is the o-algebra B(T') generated by the class

of all open sets in T'.

Let R be a ring of sets in T and let X be a complex Banach space. f m: R — X
is an additive set function, then m is said to be an (X-valued) vector measure. More-

over, the vector measure m is said to be g-additive if it countably additive in the norm

topology of X. The dual of X is denoted by X* and the second dual (of X) by X**.

Definition 1. An X -valued vector measure m on B,(T) (resp. B(T)) is said to be
reqular, if, given € > 0 and E € B,(T)(resp. E € B(T)), there exists C € K, (resp.
C € K)) and an open set U € B,(T) (resp. an open set U in T ) such that C C EC U
and ||m(F)|| < € for al F e B,(T) (resp. F € B(T)) with F C U\C.

Definition 2. A wvector measure m : B,(T) — X (resp. B(T) — X) is called an

X -valued Baire (resp. Borel) measure on T.

Lemma 3. Every X -valued o-additive Baire measure on T s regular and admits a

unique X -valued o-additive reqular Borel extension on B(T).
The above lemma is the same as Lemma 1 of Kluvédnek [9)].

Lemma 4. Let U : Co(T) — X be a bounded linear operator. ' Then there exists a

weak* g-additive vector measure G defined on B(T') with values in X** such that

(1) £*G(.) is a regular o-additive complex valued Borel measure on T for z* € X*;



(7i) the mapping z* — z*G(.) of X* into Co(T)* is weak*- to weak*-continuous;
(i) U f = / fd(z*G), for each f € C,(T) and each z* € X*; and
T

(w) WUl = HG||(T'), where ||G]] is the semi-variation of the vector measure G, and
by definition

NGINT) = sup{|| > wG(E:)|| : lu} < 1, (E:); C B(T) with E;NE; =0 fori # j}

i=1
L3

Moreover, the vector measure G : B(T') — X** satisfying (i)-(iii) is unique.

Proof. The proof of the first part of Theorem VI.2.1. of [3] holds here verbatim to
prove (i)-(iv) if we replace Q, C(Q?) and ¥ there by T, C,(T') and B(T), respectively.

Now, let us prove the uniqueness of G. If G; : B(T') — X** is another vector mea-
sure satisfying (1)-(iil), then, for each z* € X*, the regular o-additive complex valued
Borel measures z*G and z*G, represent the same bounded inear functional z*U on
C,(T) and hence z*G(E) = z*G1(E) for E € B(T). Since this holds for each z*in X",
it follows that G = G;.

Now we shall state and prove the principal result.

Theorem 5.Let U : Co(T) — X be a bounded linear operator and let us suppose that
the Banach space X contains no copy of ¢,. Let G, = G|B,(T), where G is as in
Lemma 4. Then:

(i) G, has range in X and G, is o-additive.

(12) G is an X -valued o-additive regular Borel measure.



(i) Uf = / £4G, f € C,(T).
T
(w) JJUIl = IGII(T)-
(v) G is uniquely determined by (i) and (iii).

Consequently, U s weakly compact.

Proof. By Lemma 4 there exists a unique weak* o-additive X**-valued Borel measure

G on B(T) such that .
:r*Uf=/;fd(x*G), feC,(T) (1)

for each z* € X*, "G is a regular o-additive complex valued Borel measure and
the mapping 2* — 2*G satisfies (ii) of Lemma 4. Moreover, by Lemma 4 (iv),

Ul = |G||(T)-Thus (v) holds.

Let C € K,(T). By Theorem 55.B of Halmos [8] there exists a decreasing sequence
(fu) in C,(T) such that f, \, X_ pointwise on T. Then by (1) and by the Lebesgue

dominated convergence theorem
#*G(C) = lim / £.d(z*G) = lmz*U f, (2
n T n

for each z* € X*. Let U f,, = z,,.

For £* € X*, 2*G is o-additive and hence there exist g-additive positive measures

por ;2 B(T) — [0,00), j =1,2,3,4, such that

x*G = (Mm*,l - y’x*ﬂ) + i(l’l’x*,li - u‘x*,‘i)'

Again by (1) and by the Lebesgue dominated convergence theorem we have



(& (= 2ap0))= Zl [ - fanMG)
<Z(Z/(fn fn+1)d,u,x*j)

Jln—

< 2( / frdtan ;s + 1n,(C))
< 0.

Hence
(o)
Jz*(z1)| + Z |£"(2ni1 — z4)] < 00
n=1

for each z* € X*. Since ¢o ¢ X, by Theorem 5 of [2] or by Corollary 1.4.5 of [3] the

formal series z; + E (xn+1 t,) converges unconditionally in norm to some vector

z, € X. In other words hm €, = z, (in norm topology). Then by (2) we have
¢*G(C) =limz*Uf, =limz"z, = 2"z,

for each z* € X*. Since G(C) € X**, it follows that G(C) = z, € X. Thus we have
proved that G(K,) C X.

Now let ¥ = {F € B,(T) : G(E) € X}. As K, C %, it follows that R(K,), the
ring generated by K,, is contained in ¥. Let {E,}{° be a monotone sequence in &
with lin!nEn = E. When E, / put F, = E,\E,_; with E, = § for n= 1,2,..., and
when E \\ put F,, = E,\E,4; for n=1 ,2,.... Clearly, G(F,) € X for all n. Then
FE = UF when E,, / and E}\E = UF when E, \,. Since z*G is g-additive on

B(T), 1t follows that
z*G(E) =Y  «*G(F,) when E, /
1

and
o0

x*G(E) =z"G(E,) — Zx*G(Fn) when E, .

1
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Thus in both the cases, Z |t*G(F,)} < oo for each z* € X*. As ¢, ¢ X, by Theorem

n=1
5 of [2]} or by Corollary 1.4.5 of [3] the series Z G(F,) is unconditionally convergent in
1

norm to some vector in X. Then it follows in both the cases that lim G(E,,) = w, € X.

Since z*G is o-additive,
¢"G(E) =limz*G(E,) = z"w,

for all z* € X* and hence G(E) = w, € X. This shows that E € ¥ and that X is a
monotone class. Then by Theorem 6.B of Halmos [8] we conclude that ¥ = B,(T), so
that G,(B,(T)) = G(B,(T)) C X.

Since z*G, is o-additive on B,(T') for each z* € X* and since the range of G, is
contained in X, by the Orlicz-Pettis theorem it follows that G, is s-additive (in the

norm topology of X) on B,(T). This proves (i).

By Lemma 3, there exists a unique X-valued o-additive regular Borel measure G’
on B(T') such that G’'|B,(T) = G,. Since each f € Co(T') is G,-integrable by Theorem
8 of [4], it follows that

[ 146, e x, recym), ©

Then by (1), (3) and the discussion on p. 526 of [4] we have

x*/ fdG, = / fdz*G, = / fd(z*Gy=z"Uf = / fd(z*G")
T T T T
for z* € X* and f € C,(T).
Thus the bounded linear functional X*U is represented by g-additive complex val-

ued regular Borel measures *G and z*G’ and hence £*G = z*G’. Since this holds

for all z* € X*, G' is X-valued and G is X**-valued, we conclude that G' = G. This



proves (ii).
Since G, = G|B,(T), (iii) follows from (3).

If G : B(T) — X satisfies (ii) and (iii), then z*G and z*G are o-additive regular
complex valued Borel measures representing the bounded linear functional z*U and

hence z*G = z*G for each z* € X*. Consequently, by the Hahn-Banach theorem
G = G. This proves (v).

L]

The weak compactness of U is immediate from (ii) and (iii) and from Theorem

VLL.1 of [3)].
This completes the proof.

The following sufficiency part of Theorem 5.3 of Thomas [12], restricted to Banach

spaces, follows as a corollary of the above theorem.

Corollary 6. Every bounded linear operator U : C,(T) — X 1is weakly compact, when-

ever the Banach space X contains no copy of c,.
The following extends Corollary VI.2.16 of [3] to C,(T).

Corollary 7. A complemented infinite dimensional subspace of C,(T") contains a copy

of ¢,.

Proof. Suppose X is a complemented infinite dimensional subspace of Co(T") and let
P be a bounded projection of C,(T) onto X. If ¢, ¢ X, then by Corollary 6, P is
weakly compact. Then the proof of Corollary V1.2.16 of |3} applies here to show that
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P is compact and hence that X is finite dimensional.
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