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Abstract

In the present paper we study the effect of the diffusion on the stability of the endemic
equilibrium in a SIS epidemiological model with disease-induced mortality and nonlinear
incidence rate, and see under which parameter values Turing instability can occur giving rise
to non-uniform stationary solutions.

1 Introduction

The role of spatial dispersal on epidemic systems and the study of the spatio-temporal dynamics
of a population during an epidemic have been the subject of research for many scientists, see for
instance [?, ?, ?, ?, ?, ?].

As stated by Mollison [?], one of the key questions in the study of mathematical models for
animal and plant diseases concerns endemic patterns. Motivated by this question, the focus of this
work is to find out if spatial pattern formation can be a dynamical feature of an epidemiological
model.

In this paper, we examine the geotemporal evolution of a population in a SIS epidemiological
model, in which the population is assumed to be divided in two interacting classes of individuals,
namely susceptibles S and infectives I. To introduce the spatial dispersal of the population
in the model, we assume that the susceptible and infective individuals are diffusing randomly
through space with diffusion coefficients d1 and d2, respectively. The validity and the importance
of investigating the spatial effect in epidemic systems modelled with a diffusion or random walk
mechanism has been asserted by Murray [?], Capasso [?, ?], and Metz and van den Bosch [?].
The approach of modelling the spatial spread of a population with the diffusion equation was
introduced by Skellam [?], and has been found to be a useful tool in population dynamics and
epidemics [?, ?, ?, ?, ?, ?, ?, ?, ?]. In this paper, we focus on the study of the effect of spatial
diffusion on the stability of the endemic equilibrium of the population, and answer the question
of whether or not the model exhibits pattern formation. The mechanism by which diffusion
can have a destabilizing effect that might result in heterogeneous space-dependent structures is
usually called Turing instability or diffusion-driven instability [?, ?], and the idea dates back to
Turing’s work, [?], in the 1950’s.

The epidemiological model to be considered assumes that infectives can die from the disease
with a disease-induced mortality rate αI, where 1/α is the life expectancy of an infective. The
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effect of the disease-induced mortality in the dynamics of epidemiological models was studied
by Anderson and May [?], and the consideration of this rate causes the total population of the
epidemic system not to be constant, but rather a dynamical variable [?, ?, ?].

The standard incidence rate considered in epidemic models is bilinear, and is given by βSI,
where β is the transmission rate. In this paper, we consider a more general nonlinear incidence rate
of the disease, namely βSqIp, where q and p are constant parameters describing the incidence
rate. This type of incidence rate was first considered by Severo [?]. Capasso and Serio [?]
suggested that the bilinear case should be regarded as a special case of an infection rate of
the form g(I)S, where the force of infection g(I) is constrained such that g′(0) is positive and
finite, but this excludes the form βSIp if p 6= 1. It was Liu et al. [?, ?] who provided a
thorough analysis of the dynamical behaviour of epidemiological models with nonlinear incidence
rate βSqIp, and explained the possible mechanisms leading to such incidence rates. After their
work, many scientists have considered this type of incidence rate in the study of the dynamics of
epidemiological models, for example, [?, ?, ?, ?].

With the assumptions explained above in mind, we propose the following system of reaction-
diffusion equations subject to Neumann boundary conditions as a model for the spatial spread of
the disease

∂S(t, x)

∂t
= d1ΔS − βS

qIp − bS + γI + a(S + I) ,

∂I(t, x)

∂t
= d2ΔI + βS

qIp − (α+ b+ γ)I ,

∂S

∂η
=
∂I

∂η
= 0 on ∂Ω ,

(1.1)

where p ≥ 1 and q ≥ 1 are constants describing the incidence rate of the disease; a is the birth
rate of the population and the model is assuming that new individuals are born in the susceptible
class; b is the mortality rate of the population affecting both the susceptibles and infected; γ is
the recovery rate and α represents the mortality caused by the disease. Here Δ is the Laplacian
operator, Ω ⊂ Rn is a bounded region with a smooth boundary ∂Ω, η is the outer normal vector to
∂Ω, and (t, x) ∈ R+×Ω. The Neumann boundary condition indicates that there is no population
flux on the boundary.

The goal of this paper is to describe a possible mechanism for the existence of endemic geo-
graphical foci during the disease. In particular, we study the conditions under which the intrinsic
epidemiological parameters and the diffusion of the population destabilize the homogeneous en-
demic equilibrium, giving rise to nonhomogeneous steady-state solutions (pattern formation).

The main results of this paper are stated in Theorem 4.1, where we prove the destabilizing
effect of the diffusion on the homogeneous endemic equilibrium, and in Theorems 5.1 and 6.1,
where we prove the existence of heterogeneous steady-state solutions via Turing bifurcation, and
analize their stability.



2 Preliminaries

In this section we show that the reaction-diffusion system (1.1) generates a dynamical system
and is biologically well posed on a suitable Banach space.

Let

F1(S, I) = −βS
qIp − bS + γI + a(S + I) , F2(S, I) = βS

qIp − (α+ b+ γ)I , (2.1)

U = (S, I) , F = (F1, F2) , and D = diag[d1, d2]. System (1.1) can be rewritten as

∂U(t, x)

∂t
= DΔU(t, x) + F (U), t > 0 , x ∈ Ω ,

∂U

∂η
= 0, t > 0 , x ∈ ∂Ω ,

U(0, x) = ϕ(x), x ∈ Ω ,

(2.2)

where we have included the initial condition U(0, x) = ϕ(x). We let X be the Banach space
X1 ×X2, where Xi = C(Ω̄), i = 1, 2. The norm on X is defined by |ϕ| = |ϕ1|+ |ϕ2|. Let A0S and
A0I be the differential operators A

0
SS = d1ΔS and A0II = d2ΔI defined on the domains D(A0S)

and D(A0I), respectively, where

D(A0S) = {S ∈ C2(Ω) ∩ C1(Ω̄) : A0SS ∈ C(Ω̄),
∂S

∂η
(x) = 0, x ∈ ∂Ω} ,

D(A0I) = {I ∈ C2(Ω) ∩ C1(Ω̄) : A0II ∈ C(Ω̄),
∂I

∂η
(x) = 0, x ∈ ∂Ω} .

The closures AS of A0S , and AI of A0I in Xi generate analytic semigroups of bounded linear
operators TS(t) and TI(t) for t ≥ 0.

Moreover, if T (t) = TS(t) × TI(t) : X → X, then T (t) is a semigroup of operators on X
generated by the operator A = AS × AI defined on D(A) = D(AS) × D(AI) and U(t, x) =
[T (t)ϕ](x) is a classical solution of the initial boundary value problem (2.2) with F1 = F2 = 0.

The nonlinear term F is twice continuously differentiable in U since p, q ≥ 1. Therefore, we
can define the map [F ∗(ϕ)](x) = F (ϕ(x)) which maps X into itself and equation (2.2) can be
viewed as the abstract O.D.E. in X given by

u′(t) = Au(t) + F ∗(u(t)) , u(0) = ϕ . (2.3)

While a solution u(t) of (2.3) can be obtained under the restriction that ϕ ∈ D(A), a mild
solution can be obtained for every ϕ ∈ X by requiring only that u(t) is a continuous solution of
the integral equation

u(t) = T (t)ϕ+
∫ t

0
T (t− s)F ∗(u(s))ds . (2.4)

Restricting our attention to functions ϕ in the set

XΛ = {ϕ ∈ X : ϕ(x) ∈ Λ , x ∈ Ω̄} ,



where Λ = {U = (S, I) ∈ R2 : S ≥ 0 , I ≥ 0} , and taking into account the definition of the
functions Fi, we obtain that F1(0, I) ≥ 0 and F2(S, 0) = 0 for U ∈ Λ. Thus, corollary 3.2, p.129
in [?] implies that the Nagumo condition for the positive invariance of Λ is satisfied, i.e.,

lim
h→0+

h−1dist(Λ, v + hF (v)) = 0 , v ∈ Λ , (2.5)

and that the linear semigroup T (t) leaves XΛ positively invariant, i.e.,

T (t)XΛ ⊂ XΛ , t ≥ 0 . (2.6)

Finally, Nagumo condition (2.5) together with (2.6) allow us to apply theorem 3.1, p.127 in [?],
to obtain

Theorem 2.1

For each ϕ ∈ XΛ, (2.2) has a unique mild solution u(t) = u(t, ϕ) ∈ XΛ and a classical solution
U(t, x) = [u(t)](x). Moreover, the set XΛ is positively invariant under the flow Ψt(ϕ) = u(t, ϕ)
induced by (2.2).

Thus, the model (1.1) is biologically well posed and its relevant dynamic is concentrated in XΛ .

3 Endemic equilibrium

In this section we will study system (1.1) without diffusion, i.e.,

S′(t) = F1(S, I) , I ′(t) = F2(S, I) , (3.1)

where F1(S, I) and F2(S, I) are as in (2.1), and focus our attention on the existence of endemic
equilibria (nontrivial equilibria with positive I), and their local stability.

Summing the two equations in (3.1) provides the equation for the total population

N ′(t) = (a− b)N − αI . (3.2)

Thus, the total population is not a constant, as traditionally assumed. Epidemiological models
with population of varying size have been studied, for example, by Busenberg and van den
Driessche [?], and by Derrick and van den Driessche [?]. Also, it is worthwhile to mention
that system (3.1) with a bilinear incidence rate β SI was proposed by Anderson and May [?],
and is presented by Capasso [?] as a basic example for epidemic models with nonconstant total
population.

In the absence of a mortality rate caused by the disease, and assuming a greater birth rate
than a mortality rate, i.e., α = 0 and a > b, the population will grow indefinitely. Therefore, we
could think of the disease as regulating the growth of the population. For this reason, we will
assume from here on that α > a− b > 0.

By equating the right hand side of both equations in (3.1) to zero, it becomes clear that there
is a trivial equilibrium (S0, I0) = (0, 0), and a direct computation shows that this equilibrium is
a saddle point. Also, we note that the nullclines of (3.1) change depending on the parameter p.
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Figure 1: Endemic Equilibrium.

For p = 1 the system has a unique endemic equilibrium (S∗, I∗), determined by the intersection
of the curves

S =

(
α+ b+ γ

β

)1/q
, I = S

a− b
α+ b− a

,

in the (S, I) plane (Figure 1A), whereas for p > 1, the unique endemic equilibrium (S∗, I∗) is
determined by the intersection of the following curves (Figure 1B) :

I =

[
α+ b+ γ

βSq

] 1
p−1

, I = S
a− b

α+ b− a
,

where a−b
α+b−a is the ratio of two positive numbers.

To study the local stability of the endemic equilibrium, we denote A(p) = (Aij(p))i,j=1,2 =
F ′(S∗, I∗), where F ′(S∗, I∗) is the Jacobian matrix of F evaluated at (S∗, I∗), i.e.,

A(p) =








−q
a− b

α+ b− a
(α+ b+ γ) + a− b −p(α+ b+ γ) + a+ γ

q
a− b

α+ b− a
(α+ b+ γ) (p− 1)(α+ b+ γ)







. (3.3)

The equilibrium (S∗, I∗) is locally asymptotically stable if the zeroes of the characteristic poly-
nomial

λ2 − traceA(p)λ+ detA(p) = 0 (3.4)

have negative real part.

Case p = 1
For this case,

traceA(1) = A11(1) = −q
a− b

α+ b− a
(α+ b+ γ) + a− b < 0 ,

and

detA(1) = −A12(1)A21(1) = −q
a− b

α+ b− a
(α+ b+ γ)(a− b− α) > 0 .



Therefore, the zeroes of the characteristic polynomial (3.4) have negative real part, and the unique
endemic equilibrium (S∗, I∗) is asymptotically stable.

This result can be strengthened to global stability in the region G = {(S, I) : S ≥ 0, I > 0}.
To prove this, we will

(i) rule out the existence of periodic orbits in G, and

(ii) show that any positive orbit Γ+ in G is bounded.

To prove (i), let us assume that (3.1) with p = 1 admits a ω periodic solution (S(t), I(t)). It
is known that one multiplier is 1 and the other is given by ρ = exp(

∫ ω
0 divF (S(t), I(t))dt), where

divF (S(t), I(t)) = −βqSq−1I + (a− b) + βSq − (α+ b+ γ) .

From (3.1), we obtain
I ′/I = βSq − (α+ b+ γ) .

Integrating from 0 to ω the previous equation and taking into account that
∫ ω
0 dI/I = 0, it follows

that ∫ ω

0
βSqdt = (α+ b+ γ)ω .

Thus, ∫ ω

0
divF (S(t), I(t))dt = −βq

∫ ω

0
Sq−1I + (a− b)ω .

Also, from (3.1),
S′/S = −βSq−1I + (a− b) + (a+ γ)I/S .

Denoting M = min{I(t)/S(t), t ∈ [0, ω]} > 0, and using q ≥ 1, we obtain that

S′/S ≥ −βqSq−1I + (a− b) + (a+ γ)M.

Integrating the last inequality from 0 to ω, and taking into account that
∫ ω
0 S

′/S = 0, it follows
that

−βq
∫ ω

0
Sq−1Idt+ (a− b)ω ≤ −(a+ γ)Δω.

This implies that
∫ ω
0 divF (S(t), I(t))dt < 0 , and ρ < 1 .

Therefore, if the system (3.1) with p = 1 admits a periodic solution, it will be orbitally
asymptotically stable. Assuming that such periodic solution exists, the endemic equilibrium
(proved to be asymptotically stable) must lie in the region bounded by the periodic orbit. This
forces the existence of an unstable periodic solution in that region, which is a contradiction.
Therefore, the system (3.1) with p = 1 does not admit periodic solutions.

We now provide a geometrical dynamical argument, illustrated in Figure 2, to prove (ii).
Throughout the argument, the nonexistence of periodic orbits is assumed. Let

C1 : S = S
∗ , C2 : I = f(S) , C3 : I = g(S) ,
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C1 : S = S
∗ =
(
α +b+ γ
β

) 1/q

C2 : I = f(S) = S
a − b
α +b − a

C3 : I = g(S) =
b − a

γ +a − β S qS

Figure 2: If the positive orbit Γ+(x0) attempted to become unbounded, the worst-case scenario
would be described by a bounded trajectory that passes through x1, x2, x3, x4 and x5. See text
for details.

denote the nullcline I ′ = 0, the curve determined by N ′ = 0, and the nullcline S′ = 0, respectively,

where S∗ =
(
α+b+γ
β

)1/q
, f(S) = S a−b

α+b−a and g(S) =
b−a

γ+a−β SqS (Figure 2). Consider, without

loss of generality, an initial condition x0 = (S0, I0) such that S0 < S∗, and I0 < g(S). Since
I ′ < 0 whenever S < S∗, either the positive orbit Γ+(x0) = {(S(t;x0), I(t;x0)) : t ≥ 0} stays
to the left of C1 and limt→∞(S(t;x0), I(t;x0)) = (S∗, I∗), in which case (ii) is proved, or the
orbit crosses C1 at a point x1 (Figure 2). If the latter happens, we note that because I ′ > 0
whenever S > S∗ and limS→∞ b−a

γ+a−β SqS = 0, either the positive orbit stays below C3 and
limt→∞(S(t;x0), I(t;x0)) = (S

∗, I∗) ( and (ii) will be proved), or the orbit crosses C3 at a point
x2

(Figure 2). If this last case happens, note that because S′ < 0 whenever I > g(S), either
limt→∞(S(t;x0), I(t;x0)) = (S

∗, I∗), in which case (ii) is proved, or the positive orbit Γ+(x0)
crosses the straight line C2 at a point x3 (Figure 2). If the latter is the case, we denote the
value of the total population N = S + I at x3 by K, and use the fact that for (S, I) above C2,
N ′ = (S + I)′ < 0, to show that the positive orbit Γ+(x0) lies below I = K − S and therefore
has to cross again C1 at a point x4 (Figure 2). Now, using again the fact that I ′ < 0 whenever
S < S∗, the orbit either goes from x4 to the endemic equilibrium without crossing C1 (and (ii)
will be proved), or it crosses again at a point x5. If x5 is above x1 then the positive orbit will
be bound, and that would end our proof of (ii) (Figure 2). To see that this is, indeed, the case,
we assume that x5 is below x1, and consider the α-limit set α(Λ) of an orbit Λ of any point
lying in the segment of line joining x5 and x1, and conclude that α(Λ) = {(S∗, I∗)}, which is a
contradiction because the endemic equilibrium is locally asymptotically stable.

Thus, by using the Poincaré-Bendixon theorem [?], we conclude that since there are no pe-
riodic orbits and any positive orbit Γ+ in G = {(S, I) : S ≥ 0, I > 0} of (3.1) with p = 1 is
bounded, the ω-limit set ω(Γ+) = {(S∗, I∗)}, i.e., the endemic equilibrium is globally asymptot-
ically stable.

Case p > 1



For this case,

detA(p) = q
b− a

a− b− α
(α+ b+ γ)(α+ b− a) + (a− b)(p− 1)(α+ b+ γ) > 0 ,

Therefore, the endemic equilibrium (S∗, I∗) will be locally asymptotically stable if traceA(p) < 0,
which is the case iff

q > q∗ = (p− 1)
α+ b− a
a− b

+
α+ b− a
α+ b+ γ

,

and traceA(p) = 0 at q = q∗ , where the system undergoes a Hopf bifurcation. We can summarize
these results as follows

Theorem 3.1

Let us assume α > a− b > 0.

i) If p = 1, the system (3.1) has a unique endemic equilibrium (S∗, I∗) and it is globally
asymptotically stable in the region G = {(S, I) : S ≥ 0, I > 0}.

ii) If p > 1, the system (3.1) has a unique endemic equilibrium (S∗, I∗) and it is asymptotically
stable if q > q∗ and unstable if q < q∗, where

q∗ = (p− 1)
α+ b− a
a− b

+
α+ b− a
α+ b+ γ

.

4 Turing instability

Hereafter, we will assume that x ∈ R. Hence, the system (2.2) becomes

Ut = DUxx + F (U) ,

Ux(t, 0) = Ux(t, L) = 0 .
(4.1)

This section will be devoted to analyzing the stability of the family of nontrivial equilibria U∗ =
(S∗, I∗) of system (3.1), understood as homogeneous steady-state solutions of (4.1). The following
definition of Turing instability or diffusion-driven intability [?], will be used throughout this paper.

Definition 4.1 The equilibrium U∗ of (4.1) is said to be diffusionally (Turing) unstable if it is
an asymptotically stable equilibrium of (3.1) but it is unstable with respect to (4.1) .

The stability of a homogeneous stationary solution U∗ of (3.1) will be studied via linearized
stability analysis. According to Casten & Holland [?], the steady-state solution U∗ is an asymp-
totically stable solution of (4.1) if for each integer n ≥ 0 the eigenvalues of

Bn(p) = A(p)− λnD (4.2)

have negative real parts, where A(p) is as defined in (3.3), and λn =
(
nπ
L

)2 are the eigenvalues of
the scalar equation

Φ′′ = −λΦ , Φ′(0) = Φ′(L) = 0 , (4.3)
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Figure 3: Turing instabity. If a pair (d1, d2) lies below a hyperbola Hλn , the homogeneous steady-
state U∗ = (S∗, I∗) is unstable. When d2 < D∗, the uniform steady-state solution U∗ of (4.1)
undergoes a Turing bifurcation at d1 = d∗1.

where prime denotes differentiation with respect to x. Following the idea in [?] of keeping all the
parameters constant except the diffusion coefficients, we will study the stability in the (d1, d2)
plane. The following theorem gives detailed information on the stability of the homogeneous
stationary solution U∗.

Theorem 4.1

Let us assume that α > a− b > 0.

i) If p = 1 and q ≥ 1, then the unique homogeneous stationary solution U∗ of (4.1) is asymp-
totically stable for both systems (3.1) and (4.1).

ii) If

(a) p > 1 ,

(b) q > q∗ = (p− 1)
α+ b− a
a− b

+
α+ b− a
α+ b+ γ

, and

(c) 0 < d2 < D∗, where D∗ = (p− 1)(α+ b+ γ)L
2

π2
,

then d1 > d2 can be chosen such that the homogeneous steady-state solution U∗ of (4.1) is
diffusionally unstable. Moreover, there exists a k ∈ N such that the homogeneous stationary
solution U∗ becomes unstable for perturbations in the kth eigenmode, i.e. with wavenumber√
λk = kπ/L, as d1 passes through

d∗1 =
A12(p)A21(p) +A11(p)(λkd2 −A22(p))

λ2kd2 −A22(p)λk
. (4.4)

iii) If p > 1 and 1 ≤ q < q∗ , then the homogeneous steady-state solution U∗ is unstable for
both systems (3.1) and (4.1).

Proof.-
Case p = 1



From (3.3), we know that A22(1) = 0 , traceA(1) = A11(1) < 0 and detA(1) = −A12(1)A21(1) >
0. Taking this into account, we obtain that traceBn(1) = A11(1) − λn(d1 + d2) < 0 and
detBn(1) = (A11(1)− λnd1)(−λnd2)−A21(1)A12(1) > 0 for any n ≥ 0. Therefore, U∗ is asymp-
totically stable for both systems (3.1) and (4.1), no matter what the values of the diffusion
coefficients are.

Case p > 1
From Theorem 3.1, we know that the traceA(p) > 0, for q < q∗. Hence, traceB0(p) = traceA(p) >
0, which implies that the homogeneous steady-state solution U∗ is unstable for both systems (3.1)
and (4.1), for q < q∗.

Also from Theorem 3.1, detA(p) > 0, traceA(p) < 0 and A11(p) < 0, for q > q∗. Therefore,

traceBn(p) = traceA(p)− λn(d1 + d2) < 0 , (4.5)

and Turing instability may occur only if

detBn(p) = (λnd1 −A11(p))(λnd2 −A22(p))−A21(p)A12(p) ≤ 0 , (4.6)

for some n ≥ 1. Let

Hλn : (λnd1 −A11(p))(λnd2 −A22(p))−A21(p)A12(p) = 0 (4.7)

denote the family of hyperbolas in the (d1, d2) plane (Figure 3). Isolating d2 in (4.7), we obtain

d2 =
A12(p)A21(p) + (λnd1 −A11(p))A22(p)

λn(λnd1 −A11(p))
. (4.8)

Now, if d1 → ∞ the right hand side of (4.8) will increase and tend to A22(p)λn
= (p−1)(α+b+γ)L2

(nπ)2
.

Thus, for n = 1, A22(p)λ1
= D∗ (see Figure 3). It is clear that the set of (d1, d2) ∈ R2+ satisfying

(4.6) for some n ∈ N consists of all points which are below the graph of the hyperbola Hλn (Figure
3). Since 0 < d2 < D∗, there exists a k ∈ N such that (d∗1, d2) belongs to the hyperbola Hλk ,
where d∗1 is as in Eq. (4.4). Moreover, if d1 > d∗1 then (d1, d2) will lie below of the graph of Hλk
and the homogeneous steady-state solution U∗ = (S∗, I∗) will be diffusionally unstable. 2

For the purpose of performing numerical simulations and showing that the results of Theorem
4.1 are relevant for diseases, we choose realistic parameter values. In particular, we choose the
estimations obtained by Anderson and May [?], who fitted real data obtained by Greenwood et
al. [?, ?] in their experiments on the maintenance of pasteurellosis, Pasteurella muris, in mouse
populations. The parameter values are as follows:

α = 0.06 , β = 0.0056 , γ = 0.04 , a = 0.05 , b = 0.006 days−1 .

We choose the values p = 2 and q = 1 for the incidence rate βSqIp. These are the standard
values for p and q that are used by Liu et al. [?, ?], and Derrick and van den Driessche [?, ?]
for their numerical simulations of epidemic models with nonlinear incidence rate. The possible
mechanisms leading to this type of incidence rate are discussed in Liu et al. [?, ?]. With this
choice of parameter values, we obtain that q∗ = 0.515 and D∗ = 4.3, where q∗ and D∗ are as
in Theorem 4.1. To ensure that diffusion driven instability is possible, conditions (a), (b) and
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Figure 5: Evolution of (S, I) after perturbating the unstable steady-state (S∗, I∗) = (2.624, 7.215).
Initial condition (S0, I0) = (S∗ + 0.01 cos(2πx/20), I∗ + 0.01 cos(2πx/20)); d1 = 20 , d2 = 0.7 .

(c) in Theorem 4.1 ii) must be satisfied. Since p = 2 and q = 1, conditions (a) and (b) are
satisfied. To guarantee that condition (c) is satisfied, we will assume that infective individuals
move randomly with a diffusion coefficient less than D∗. This is a reasonable assumption because
one can think of the disease as weakening the mobility of infective individuals. Moreover, since
the objective of this paper is not to obtain a measurement for the spatial dispersal of the specific
disease studied by Anderson and May [?], or any other particular disease, but rather to present a
possible dynamical mechanism for the existence of epidemic spatial patterns, we assume, without
loss of generality, a diffusion coefficient d2 = 0.7 < D∗ for the infectives and a space of 20 units
of longitude. To illustrate the destabilizing effect of the diffusion in model (1.1), we perturb the
homogeneous steady-state found for our choice of parameter values, (S∗, I∗) = (2.624, 7.215) ,
with a cosine mode of wave number

√
λk =

kπ
L , where k = 2. For this particular mode, d

∗
1 = 7.25

(Eq. (4.4)). Thus, by choosing d1 = 5 < d∗1, we see from Figure 4, that the homogeneous steady-
state (S∗, I∗) is stable, while a choice of d1 = 20 > d∗1 (Figure 5) causes the stationary solution
to become unstable. Note that if a need of a realistic interpretation of the numerical simulations
is felt, it suffices to assign units to the space and diffusion coefficients.



5 Pattern Formation

In this section we study the mechanism by which the diffusion-driven instability phenomenon
gives rise to nonhomogeneous steady-state solutions of (4.1) that bifurcate from the uniform
stationary solution. Consider the following reaction diffusion system

Ut = D(μ)Uxx + F
∗(U, μ) ,

Ux(t, 0) = Ux(t, L) = 0 ,
(5.1)

where U ∈ R2, D is a 2×2 nonnegative diagonal matrix depending smoothly on the real parameter
μ ∈ [0,∞) and F ∗ : R2 × [0,∞) → R2 is a smooth function. Assume that U∗ is a uniform
stationary solution of (5.1), i.e. F ∗(U∗, μ) = 0 for all μ ∈ [0,∞).

Definition 5.1 We say that U∗ undergoes a Turing bifurcation at μ0 ∈ (0,∞) if the solution
U∗ changes its stability at μ0 and in some neighborhood of μ0 there exists a one-parameter family
of nonconstant stationary solutions of system (5.1).

Having shown in Theorem 4.1 that U∗ becomes unstable as d1 passes through d∗1, we will prove
in Theorem 5.1 that the bifurcation is a Turing bifurcation. To obtain the nonhomogeneous
stationary solutions of (4.1) we will apply the results regarding the bifurcation from a simple
eigenvalue found in [?, ?] and summarized in theorems 13.4 and 13.5 in [?].

Following the notation in system (5.1) we take d1 as the bifurcation parameter and set F ∗ = F .
The following result holds:

Theorem 5.1

Let Bn(p) be as in (4.2). Let us denote their eigenvalues by λ1n and λ2n, and the corresponding
eigenvectors by v1n and v2n. Assume that

(a) α > a− b > 0 , p > 1 and q > q∗ (where q∗ is as in Theorem 3.1), i.e., restrict parameters
where diffusion-driven instability might occur, and

(b) 0 < d2 < D∗, where D∗ = (p− 1)(α+ b+ γ)
L2

π2
.

Then there exists a k ∈ N such that if v2k is not parallel to (ξ1, 0)T , where v1k = (ξ1, ξ2)T , the
uniform steady-state solution U∗ of (4.1) undergoes a Turing bifurcation at (see Figure 3)

d∗1 =
A12(p)A21(p) +A11(p)(λkd2 −A22(p))

λ2kd2 −A22(p)λk
. (5.2)

Proof.-

By setting W = U −U∗, where U∗ is a nontrivial homogeneous steady-state solution of (4.1),
system (4.1) can be rewritten as

Wt = DWxx +A(p)W +G(W ) ,

Wx(t, 0) =Wx(t, L) = 0 .
(5.3)



where A(p) is the Jacobian matrix of F at U∗, and G(W ) = F (U∗ +W ) − A(p)W . With this
notation, the nontrivial homogeneous steady-state has been translated to a trivial homogeneous
steady-state, and the reaction term has been split into its linear and nonlinear components.

For any non-homogeneous stationary solution U∗ of (4.1), W = U − U∗ satisfies the elliptic
equation

DWxx +A(p)W +G(W ) = 0 ,

Wx(t, 0) =Wx(t, L) = 0 .
(5.4)

Taking into account this observation, we define the function f : R×X → Y as follows

f(d1,W ) = DWxx +A(p)W +G(W ) ,

where X = {W ∈ C2([0, L],R2) ; Wx(0) = Wx(L) = 0} is a Banach space with the usual
supremum norm involving the first and second derivatives, Y = C([0, L],R2) is a Banach space
with the usual supremum norm, and d1 is the diffusion coefficient of the susceptible class.

Note that since 0 < d2 < D∗, there exists a k ∈ N such that (d∗1, d2) belongs to the hyperbola
Hλk and is above the hyperbolas Hλn for n 6= k (see Figure 3), where d∗1 is given precisely by
(5.2).

Now, we define the linear operators L0 and L1 as follows

L0 = D2f(d
∗
1, 0) =

∂f(d∗1, 0)

∂W
, L1 = D1D2f(d

∗
1, 0) =

∂

∂d1

(
∂f

∂W

)

(d∗1, 0) .

In order to apply theorem 13.5 in [?], we need to prove that the following conditions hold:

(i) The null subspace N(L0) is one-dimensional, spanned by u0.

(ii) The range R(L0) has codimension 1; i.e., dim[Y/R(L0)] = 1

(iii) L1u0 /∈ R(L0).

The spectrum of the linear operator L0 is given by the eigenvalues λin of the matrices Bn(p) =
A(p)−λnD evaluated at d1 = d∗1, where i = 1, 2 and n = 0, 1, 2, . . . . We know that (d

∗
1, d2) belongs

to the hyperbola Hλk and is above the hyperbolas Hλn for n 6= k (Figure 3). This implies, using
that Hλn : detBn(p) = 0 (Eq. (4.7)), that detBn(p) > 0 for n 6= k and detBk(p) = 0. Noticing
that the eigenvalues λ1n and λ2n of Bn(p) are given by the zeroes of the characteristic polynomial

λ2 − traceBn(p)λ+ detBn(p) = 0 , (5.5)

and that traceBn(p) < 0 (Eq. (4.5)), we conclude that for i = 1, 2 and n = 0, 1, 2, . . . , k − 1, k +
1, . . . all eigenvalues λin have negative real part, and for n = k, one eigenvalue, say λ1k, is zero
and the other one is negative, i.e., λ2k < 0.

Recalling that v1k is the eigenvector of Bk(p) corresponding to the zero eigenvalue λ1k, the
eigenfunction of the linear operator L0 corresponding to λ1k = 0 is given by ψk = v1k cos

(
kπx
L

)
,

which is a non-uniform stationary solution of the linearized system

Wt = DWxx +A(p)W ,

Wx(t, 0) =Wx(t, L) = 0 .
(5.6)



Therefore, the null subspace N(L0) of the operator D2f(d∗1, 0) is one-dimensional, spanned by
ψk. Because of the orthogonality of the system,

Φm = cos
(mπx

L

)
, m = 0, 1, 2, . . . ,

obtained by solving the eigenvalue problem (4.3), the range R(L0) of this operator is given by

R(L0) =
{
U ∈ C([0, L],R2) : The Fourier expansion of U does not contain

the term cos
(
kπx
L

)}
∪
{
v2k cos

(
kπx
L

)}
,

and has codimension one. So conditions (i) and (ii) are satisfied.

Note that

L1ψk =







∂2

∂x2
0

0 0





 v1k cos

(
kπx

L

)

= −

(
kπ

L

)2 (
ξ1
0

)

cos

(
kπx

L

)

,

with ξ1 6= 0, and

(
ξ1
0

)

not being parallel to v2k . Therefore, L1ψ1k /∈ R(L0) and condition (iii)

is also satisfied.

Now, by choosing Z = R(L0) we apply theorems 13.4 and 13.5 in [?] to conclude that there
exists a δ > 0 and a C1 curve (d, φ) : (−δ, δ)→ R× Z with d(0) = d∗1 and φ(0) = 0 such that

W (s, x) = sv1k cos

(
kπx

L

)

+ sφ(s, x)

is a one-parameter family of solutions of the elliptic equation (5.4) with d1 = d(s) , s ∈ (−δ, δ) .
Finally, taking into account that W = U − U∗, we obtain that

U(s, x) = U∗ + sv1k cos

(
kπx

L

)

+O(s2) (5.7)

is a family of non-uniform stationary solutions of (4.1) with d1 = d(s), and s ∈ (−δ, δ). Therefore,
at d1 = d∗1, the uniform steady-state solution U∗ undergoes a Turing bifurcation.2

6 Stability of bifurcating solutions

In this section we will study the stability of the one-parameter family of non-uniform stationary
solutions U(s, x) given by (5.7) that bifurcate from the homogeneous steady-state U∗. For this
purpose we shall apply the results on perturbation of simple eigenvalues due to Crandall and
Rabinowitz [?] to our case.

Definition 6.1 Let X and Y be Banach spaces and let L0 and K ∈ B(X,Y ), the set of bounded
linear operators. We say that μ ∈ is a K-simple eigenvalue of L0 with eigenfunction ψ if (i)
dimN(L0−μK) = codimR(L0−μK) = 1, (ii) ψ spans N(L0−μK), and (iii) Kψ /∈ R(L0−μK),
where N and R stand for the nullspace and range of an operator (see Crandall and Rabinowitz
[?]).



The importance of this definition stems from the fact that one can determine the sign of K-
simple eigenvalues that persist along the bifurcating branches. More concretely, in the proof of
Theorem 5.1, we showed that λ1k = 0 is a L1-simple eigenvalue of L0, where L1 = D1D2f(d∗1, 0)
and L0 = D2f(d

∗
1, 0). Thus, for |ε| and |s| small enough, the operators D2f(d∗1 + ε, 0) and

D2f(d(s), sψk + sφ(s, x)) are close to L0, and we can apply lemma 1.3 in [?] (or lemma 13.7 in
[?]) to conclude that there exist smooth functions

d→ (λ(d), ψc(d)) , s→ (η(s), ψb(s))

defined on neighborhoods of d∗1 and 0, respectively, such that

D2f(d, 0)ψc(d) = λ(d)ψc(d) ,

D2f(d(s), sψk + sφ(s, x))ψb(s) = η(s)ψb(s) ,

and (λ(d∗1), ψc(d
∗
1)) = (0, ψk) = (η(0), ψb(0)).

To study the stability of the bifurcating solutions we look for the sign of the family of eigen-
values η(s). We start by applying theorem 1.16 in [?] (or theorem 13.8 in [?]) to conclude that
λ′(d∗1) 6= 0, and

lim
s→ 0
η(s) 6= 0

sd′(s)λ′(d∗1)

η(s)
= −1 . (6.1)

Now, we are ready to state the stability result.

Theorem 6.1

Let (d(s), U(s, x)) be the one-parameter family of bifurcating solutions given by (5.7). Assume
that the conditions of Theorem 5.1 are satisfied, d′(0) 6= 0, and that the eigenvalues η(s) of the
nonhomogeneous steady-state bifurcating from the critical value λ1k = 0 are nonzero for small
|s| 6= 0 . Then if d(s) < d∗1, the corresponding solution U(s, x) is unstable and if d(s) > d∗1, the
corresponding solution U(s, x) is stable.

Proof.- We first determine the sign of λ′(d∗1). It is known that λ(d1) satisfies the equation

λ2(d1)− traceBk(p)λ(d1) + detBk(p) = 0 .

Differentiating implicitly the former equation with respect to d1 and evaluating at d∗1, we obtain

λ′(d∗1) =
λkA22(p)− λ2kd2

(d∗1 + d2)λk − traceA(p)
,

where traceA(p) < 0, and 0 < d2 < (p− 1)(α+ b+ γ) L
2

(kπ)2
. Since λkA22(p) =

(
kπ
L

)2
(p− 1)(α+

b+ γ) > 0 and λ2kd2 <
(
kπ
L

)2
(p− 1)(α+ b+ γ), we obtain that λ′(d∗1) > 0.

Let us determine the sign of η(s). Since d′(0) 6= 0, we may assume that d′(0) > 0. Then
by continuity we have that d′(s) > 0 for |s| small enough. Therefore, using (6.1), it follows
that η(s) > 0 for s < 0 small enough, which in turn implies that the bifurcating solution is
unstable. For small s > 0, η(s) < 0, and the bifurcating nonhomogeneous stationary solution is
asymptotically stable. If d′(0) < 0 the same result holds. This completes the proof of our claim.2



7 Discussion

In this paper, we discussed the main mathematical features exhibited by the reaction-diffusion
system (1.1). We showed that when the host population is taken to be a dynamic variable and
the spatial dispersal of the population is modelled as a diffusion process, nontrivial geotemporal
dynamics of the population of infectious can be obtained. In the case when the disease-induced
mortality rate α is greater than the difference between the birth rate a and the mortality rate
b, we showed that for a wide range of parameter values and diffusion coefficients d1 and d2,
the nonlinear system (1.1) can exhibit stable spatially heterogeneous solutions which arise from
Turing bifurcations. More specifically, if a disease has a simple bilinear incidence rate (βSI),
and is described with the SIS model (1.1), then it is not possible to obtain pattern formation,
via Turing instability, as a feature of the geotemporal dynamics. On the other hand, if a disease
has a strong nonlinear incidence rate (βSpIq, with p > 1 and q ≥ 1), then the system (1.1) may
admit spatially heterogeneous steady-state solutions (pattern formation). Also, we showed that
if the mobility of the infective population is sufficiently weakened by the disease, the conditions
for the system to exhibit spatial patterns will be favored.

In conclusion, the mathematical analysis of model (1.1) shows how an infectious disease,
characterized by a nonlinear incidence rate, can stably regulate its host population around either
spatially homogeneous or heterogeneous solutions through a Turing instability mechanism.
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