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Exact Controllability of the Suspension Bridge Model Proposed
by Lazer and McKenna

H. LEIVA

Abstract

In this paper we give a sufficient condition for the exact controllability of the following model
of the suspension bridge equation proposed by Lazer and McKenna in [7]

Wyt + Wy + dWygee + kwt = p(t, z) + u(t,z) + f(t,w,u(t,z)), 0<z<1
w(t,0) = w(t,1) = wer(£,0) = wee(¢,1) =0, t€ R

where t > 0,d > 0, ¢ > 0, k > 0, the distributed control u € L?(0,t1; L?(0,1)), p : Rx[0,1] —
IR is continuous and bounded, and the non-linear term

f:[0,t1] x R x R — IR is a continuous function on ¢ and globally Lipschitz in the other
variables. i.e., there exists a constant [ > 0 such that for all 1, zs2,u1,us € IR we have

[ f(t, za,u2) — f(t, 21, un) || < U{{|z2 — 21| + |lug —will}, t€[0,t1].

To this end, we prove that the linear part of the system is exactly controllable on [0,¢;]. Then,
we prove that the non-linear system is exactly controllable on [0,¢;] for ¢; small enough. That
is to say, the controllability of the linear system is preserved under the non-linear perturbation
—kw + p(t, @) + f(t w, ut, 2)).

Key words. suspension bridge equation, strongly continuous groups, exact controllability.
AMS(MOS) subject classifications. primary: 34G10; secondary: 37B37.

Running Title: Exact Controllability of the suspension B.Eq.
1 Introduction

After The Tacoma Narrows Bridge collapsed on November 7, 1940 a lot of work have been done
in the study of suspension bridge models. An important contribution is the work done by A.C.
Lazer and P.J. McKenna in [7] and J. Glover, A.C. Lazer and P.J. McKenna in [6] who proposed

the following mathematical model for suspension bridges

Wy + W + dWyzee + kw™ =p(t,x), 0<z <1, te R,
(1.1)
w(t,0) =w(t,1) = wm(t,O)lz Wez(t,1) =0, t€ R



where d > 0, ¢ > 0, k > 0 and p: IR x [0,1] — IR is continuous and bounded function acting as

an external force.

The existence of bounded solutions of this model (1.1) and other similar equations has been
carried out recently in [2], [3], [1], [8], [9] and [5]. To our knowledge, the exact controllability of
this model under non-linear action of the control has not been studied before. So, in this paper
we give a sufficient condition for the exact controllability of the following controlled suspension

bridge equation

{ Wit + Wt + dWgzrr + kw™ = p(t, z) + u(t, z) + f(t,w,u(t,z)),0 <z <1 (12)

w(t,0) = w(t,1) = wye(t,0) = wye(t,1) =0, t € R

where the distributed control u belong to L2(0,t1; L?(0,1)) and f : [0,t1] x R x IR — IR is a
continuous function on t and globally Lipschitz in the other variables. i.e., there exists a constant

[ > 0 such that for all 1, x2,u1,us € IR we have

1f(E, z2,u) — F(t, 1, w)l| < H{l[ze — 21l + [luz —wl[}, ¢ €[0,41]. (1.3)
To this end, we prove that the linear part of this system

{ Wy + cwp + dWygey + kw™ =u(t,z),0 <z <1 (1.4)

w(t,0) = w(t,1) = wez(t,0) = wee(t,1) =0, t€ R

is exactly controllable on [0,¢1] for all ¢ > 0; moreover, we find the formula(4.31) to compute
explicitly the control uw € L2(0,t1;L?(0,1)) steering an initial state zg = [wo,vp]? to a final
state z; = [w1,v1]? in time t; > 0 for the the linear system (1.4). Then, we use this formula
to construct a sequence of controls u, that converges to a control u that steers an initial state
2o to a final state z; for the non-linear system (1.2), which proves the exact controllability of
this system. That is to say, the controllability of the linear system (1.4) is preserved under the

non-linear perturbation —kw™ + p(t, z) + f(t, w,u(t, z)).



2 Abstract Formulation of the Problem

The system(1.2) can be written as an abstract second order equation on the Hilbert Space X =

L?(0,1) as follows:
W+ b + dAw + kwt = P(t) + u(t) + f(t,w,u(t)),t € R,

where the unbounded operator A is given by A¢ = ¢ppze with domain

(2.5)

D(A) = {¢ € X : ¢, bz, Pzz, Pzax are absolutely continuous, @rpze € X; ¢(0) = ¢(1) =

¢22(0) = ¢z(1) = 1}, and has the following spectral decomposition:

a) For all x € D(A) we have

(e.) (0. ]
Az = Z)\n < TP > Pp = Z)\nEnxa
n=1 n=1
where \, = n*r?, ¢,(z) = sinnwz, < -,- > is the inner product in X and

Epx =< x,¢n > on.

So, {E,} is a family of complete orthogonal projections in X and

r=Y . Ex, zeX.
b) —A generates an analytic semigroup {e~4*} given by

e.)
e Aty = g e*/\"tEnx.
n=1

¢) The fractional powered spaces X" are given by:
o0
X" =D(A) ={z € X: Y (A)”|Enz|* < o0}, r>0,
n=1
with the norm

o 1/2
]l = [[A"2] = {Z A%’"\IEnﬂ:HZ} , z€X,

n=1

(2.6)

(2.8)



and
A’z =Y A B (2.9)
n=1

Also, for r > 0 we define Z,, = X" x X, which is a Hilbert Space with norm given by:

]

Using the change of variables w’ = v, the second order equation (2.5) can be written as a first

2
= [wlf? + [[v]I*.
Zy

order system of ordinary differential equations in the Hilbert space

Zyj3 = D(AY?) x X = XY2 x X as:
7' =Az+ Bu+ F(t,z,u(t)) z€ Zyp, t>0, (2.10)

where

z:[ﬁ],B:[—g{},A:[_dj _Cg], (2.11)

A is an unbounded linear operator with domain D(A) = D(A) x X, P(t)(z) = p(t,z), z € [0,1]

and the function F' : [0,t1] X Z1/5 X X — Z) 5 is given by
F(t,2,u) = [ 0 ] . (2.12)
P(t) — kw™ + f(t,w,u)
Since X1/2 is continuously included in X, we obtain (for all 21, 29 € Z1/2 and up,uz € X) that
|F(t, z2,us) — F(t,zl,ul)HZl/z <L {||22 — 21||1/2 + ||lug — u1||} , te€0,t1], (2.13)
where L = k + [. Throughout this paper, without lost of generality we will assume that,

¢? < 4d\;.
3 The Uncontrolled Linear Equation

In this section we shall study the well-posedness of the following abstract linear Cauchy initial
value problem

2 =Az, (teR) z(0) =2 € D(A), (3.14)



which is equivalent to prove that the operator A generates a strongly continuous group. To this

end, we shall use the following Lemma from [10].

Lemma 3.1 Let Z be a separable Hilbert space and {Ap}n>1, {Pn}ln>1 two families of bounded

linear operators in Z with { Py }n>1 being a complete family of orthogonal projections such that

A P, =P, A,, n=123,... (3.15)

Define the following family of linear operators

o0

T(t)z=) e*' Pz, t>0. (3.16)
n=1
Then:
(a) T(t) is a linear bounded operator if
le*] < g(t), n=1,2,3,... (3.17)

for some continuous real-valued function g(t).

(b) under the condition (3.17) {T'(t) }+>0 ts a Co-semigroup in the Hilbert space Z whose infinites-

imal generator A is given by

Az =) AnPnz, z€D(A) (3.18)
n=1
with
D(A) ={z€Z:) ||AnPoz|* < oo} (3.19)
n=1

(c) the spectrum o(A) of A is given by

o(A) = | | o(4y), (3.20)

n=1

where A,, = A, P,.



Theorem 3.1 The operator A given by (2.11), is the infinitesimal generator of a strongly con-

tinuous group {T'(t)},.r given by
T(t)z=Y e* Pz, z€Zys, t>0 (3.21)
n=1

where { Py}, s a complete family of orthogonal projections in the Hilbert space Zy 5 given by

P, =diag|[En,E,] ,n>1, (3.22)
and
A, =B,P,, B,= 0 1 n>1 (3.23)
n — n+ n n — _d)\n —c ) - . .

This group {T'(t)},cr decays exzponentially to zero. In fact, we have the following estimate

IT@I| < M(e,d)e5t, >0, (3.24)

M(C,d)_ )\n
o —7511;1;{2 (2+d)“4d>\n—c2 }

Proof Computing Az yields,

[0 I w
Az = | —dA —c}[v}

B v
| —dAw -

220:1 Env
=AY MmEyw —cd 0 Equ

o —d\, E,w — cEv

n=1

- LT e[V

where
ctv4dN, — 2
V2 —4d,

Y

It is clear that A, P, = P,A,. Now, we need to check condition (3.17) from Lemma 3.1. To

this end, we compute the spectrum of the matrix B,. The characteristic equation of B, is given



A4+ ed+d\, =0,
and the eigenvalues o1(n), o2(n) of the matrix B,, are given by
o1(n) = —p+il,, o2(n)=—p—ily,

where,
1
= g and [, = 5\/4d)\n — 2.

Therefore,

1
ebrt = emmt {cos Lptl + T (Bn + uI)}
n

n

ot cos Int + 57— sinlyt %l”t
= e
—dS(mA sin 1t cos Int — 55 sinlypt |

From the above formulas we obtain that

eBnt — o—nt a(n) %7)
—dS(n)A2c(n) d(n

~—

where

a(n) = cosl,t + % sinlyt, b(n) = sinl,t,

c(n) =sinlyt, d(n) = coslyt — % sin l,t,

An
S =\ 1an, —

Now, consider z = (21, 22)" € Z /3 such that 2]z, ,, = 1. Then,

and

o0 o0
I21ll3), = D NI Esal? <1 and Jzolk =Y | Bzl <1.
j=1 j=1

Therefore, A\}/?|| Ejz1|| < 1, |Ejzall <1, j=1,2,....



and so,
a(n)Enzl + ( )EnZQ
[—dS( Ye(n ))\ E zl—i—d( )Enz2
b(n)
In

HeAn ZHZ1/2 =

Z1)2

= e *a(n)En

EnZQHQ% + e

1
— dS(n)c(n)A, Enzy + d(n)Enze|/%

- —QWZ)\ |E; ( E.z + bg”)E Z2> [&
I —2utZHE ( n)e(n ))\ E,z +d(n )En22) ||2

b(n
e 2P\, |la(n)E,z1 + —E )Ean||2 + e 2|
n

1
— dS(n)c(n)A2 Epzy + d(n)Enz)?

1

A
< e (Ja(n)| + [Sb()])? + e (S (n)e(n)] + |d(n) )2,

where

A2 \/7

b 4d\
If we set,

M(c,d) AdAn —c An
= 2 ——_ I 2 + d AT _ 2 ’
2/2 i‘é‘i{ ve—aan, |'|¢+? 4%_62}

we have,

et < M(c,d)e ™, t>0 n=1,2,....

Hence, applying Lemma 3.1 we obtain that A generates a strongly continuous group given by

(3.21). Next, we will prove this group decays exponentially to zero. In fact,

)
IT@)=* < > lle" Pozl
n=1

)
An
< D [l Pz
n=1
oo
< M, d)e” Y || Pz

= M*(c,d)e”"|z|%.



Therefore,

IT(#)]| < M(c,d)e ", t>0.

4 Exact Controllability of the Linear System

Now, we shall give the definition of controllability in terms of the linear system
2 =Az+Bu z¢€ Zij, t20,

where
| w B 0 . 0 Ix
I P B P |

For all 29 € Z; /5 equation (4.25) has a unique mild solution given by

z2(t) =T(t)zo + /Ot T(t — s)Bu(s)ds, 0<t<t.

(4.25)

(4.26)

(4.27)

Definition 4.1 (Exact Controllability) We say that system (4.25) is exactly controllable on

[0,t1], t1 >0, if for all 29,21 € Z, there exists a control u € L?(0,t1; X) such that the solution

z(t) of (4.27) corresponding to u, verifies: z(t1) = z1.

Consider the following bounded linear operator

t1
G:L*0,t1;U) — Zij9, Gu= / T(—s)B(s)u(s)ds.
0

(4.28)

Then, the following proposition is a characterization of the exact controllability of the system

(4.25).

Proposition 4.1 The system (4.25) is exactly controllable on [0,t1] if and only if, the operator

G is surjective, that is to say

G(L*(0,t15 X)) = Range(G) = Zy 5.



Now, consider the following family of finite dimensional systems
y = AjPjy+ PjBu, yeR(FP;); j=1,2,...,00, (4.29)
where R(P;) = Range(P;).
Then, the following proposition can be shown the same way as Lemma 1 from [11].
Proposition 4.2 The following statements are equivalent:
(a) System (4.29) is controllable on [0,t1].
(b) B*Pre’ily =0, wte[0,t1], =y=0,
(¢) Rank [PjBfAijB} =2
(d) The operator W;(t1) : R(Pj) — R(P;) given by:
t1 .
W;(t1) = / e 4 BB*e 4i%ds, (4.30)
0
15 tnvertible.
Now, we are ready to formulate the main result on exact controllability of the linear system
(4.25).

Theorem 4.1 The system (4.25) is exactly controllable on [0,t1]. Moreover, the control u €
L?(0,t1; X) that steers an initial state zy to a final state z; at time t; > 0 is given by the

following formula:

u(t) = B*T*(—t) Y W; ' (t)) Pj(T(—t1)z1 — 20). (4.31)
7j=1

Proof . First, we shall prove that each of the following finite dimensional systems is controllable
on [0, tl]

v = A;jPjy+ PjBu, yeR(P;); j=1,2,...,00. (4.32)
In fact, we can check the condition for controllability of the systems

B*Pretily =0, vte[0,t1], =y=0.



In this case the operators A; = B;P; and A are given by

T o0 1 70 Iy
B]_[d)\j c]’A_[dA CI:|’

and the eigenvalues o1(j), 02(j) of the matrix B; are given by
o1(j) = —p+ily, o2(j) = —p —ilj,

where,

Therefore, A; = BJ*PJ with

and
eBit = {cosl tI+ —|—cI)}
coslt+2l sin l;t Sl—rlllLt
= J
—dS(j sml t cosl;t — 2lv sin [;t
J
eBit = emt {cosl tI+ B*+uI)}
coslt+2l sin [;t —%ﬁt
B ds /\ /2 sinl;jt  cosl;t — %jsinljt

0 . ., [0 o0
B_[IX], B*=0,Ix] and BB _[0 Ix]'

Now, let y = (y1,92)T € R(P;) such that

B*Pretity =0, vte[0,t).

Then,

e M dS(j))\;/2 sinlty; + (cos Lt — % sin lﬂf) yg] =0, Vte|[0,t],
J

which implies that y = 0.



From Proposition 4.2 the operator Wj(t1) : R(P;) — R(FP;) given by:
t1 N 31 « N
Wj(tl) = / e_AjSBB*eiAjst = Pj/ E_BJSBB*eiBJ' sdsljj = Pjo(tl)Pj
0 0

is invertible.
Since
le™ %)l < M(c,d)e™, [|e= || < M(c, d)e,
e~ BBt < M2(e,d) | BB,

we have

IWj(t)ll < M?(c,d)|BB*[|e**" < L(c,d), j=1,2,....

Now, we shall prove that the family of linear operators,
_ —
W] 1(t1) = W] (t]_)P] . Z1/2 — Z1/2

is bounded and HVVj_l(tl)H is uniformly bounded. To this end, we shall compute explicitly the

matrix Wj_l(tl). From the above formulas we obtain that

J

Bt _ it [ a(j)  b(j) ] = — [ Z(j) —b(7) ] ’

—a(j) (j) (G) <)
where
inl;t
a(j) = coslt + isinljt, b(j) = e ,
20, I
c(j) = (1“5’(‘7'))\]14/2 sinljt, d(j) = cosl;t — % sinl;t,
J
and
N DY
S =\1ar, —e
Then



Therefore,
dS(j)NL/? , .
Wi(t1) = I, Ll/k;l(J) %ku(j)
_dS(J))‘] ka1 (.]) kzg(])

where

t1
ki1(j) = /0 e2cssin2ljsds
t1 : 2l,
ki2(j) = _/o e%es [sin@scos@s—%} ds
J

t1 : 2l‘
kar(j) = /0 e%es [sinljs cosljs — %} ds
j

o, csinl;s]?
kzg(j) = /0 e~ |:COSljS— 2['] ] ds.
J

The determinant A(j) of the matrix W;(t1) is given by

dS(j)\Y/?

A(j) = T] (k11 (5)k22(5) — k12(7)ka1(5)]

dS(j)A? t t1 inl:s]?
= —(]) J 25 gin? [ sds €M |coslis — csmlys ds
J J
Lj 0 0 2l

t1 : 2[, 2
- (/ e2Hs [Sinljscosljs - M] ds) 1.
0 2L

Passing to the limit as j goes to co, we obtain,

_ L (e — 1) (1 — ettt 4 e2Hin)
]lggo Al = 2443 '

Therefore, there exist constants Ry, Re > 0 such that

0< Ry <|A(j)| < Re, 7=1,2,3,...

Hence,




where by m(j), n=1,2;m =1,2;5 =1,2,... are bounded. Using the same computation as in

Theorem 3.1 we can prove the existence of constant Ly(c,d) such that
||Wj*1(151)|\zl/2 < Ls(c,d), j=1,2,....
Now, we define the following linear bounded operators

W(t1): Zijg = Zija, W HtL) 2 Zijg — Zypo,

[e.9]

W(tl)z = Z Wj(tl)sz, Wﬁl(tl)z = Z Wj_l(tl)PjZ.
j=1 j=1
Using the definition we see that, W (t;)W ~1(t1)z = 2z and
t1
W (t1)z :/ T(—s)BB*T*(—s)zds.
0

Next, we will show that given z € Z;/5 there exists a control u € L?(0,t1; X) such that Gu = z.

In fact, let u be the following control
u(t) = B*T*(—t) W Y(t1)z, t€[0,t1].

Then,

Then, the control steering an initial state zg to a final state z; in time ¢; > 0 is given by
u(t) = B*T*(—t)W L (t1)(T(~t1)z1 — 20)

= B*T*(—t) Z Wj_l(tl)Pj(T(—tl)Zl — Zo).
j=1



5 Exact Controllability of the Non-Linear System

Now, we shall give the definition of controllability in terms of the non-linear systems

2 =Az+ Bu+ F(t,z,u(t)) z€ Zy, t>0, (5.33)
z(0) = zp. '
For all 2z € Z; /5 equation (5.33) has a unique mild solution given by
t
z(t) =T(t)zo + / T(t)T(—s)[Bu(s) + F(s, z(s),u(s))]ds. (5.34)
0

Definition 5.1 (Exact Controllability) We say that system (5.33) is exactly controllable on
[0,21], t1 >0, if for all 20,21 € Zy 5 there exists a control u € L?(0,t1; X) such that the solution

z(t) of (5.34) corresponding to u, verifies: z(t1) = z1.

Consider the following non-linear operator
Gp : L*(0,t1;U) — Zy o, (5.35)
given by
t1 t1
Gru = / T(—s)B(s)u(s)ds +/ T(—s)F(s,z(s),u(s))ds, (5.36)
0 0
where z(t) = z(t; 20, u) is the corresponding solution of (5.34).

Then, the following proposition is a characterization of the exact controllability of the non-

linear system (5.33).

Proposition 5.1 The system (5.33) is exactly controllable on [0,t1] if and only if, the operator

Gr is surjective, that is to say
Gr(L?(0,t1; X)) = Range(Gp) = AWS

Lemma 5.1 Let ui,us € L%(0,t1;X), 2 € Zyis9 and z1(t; 20,u1), 22(t; 20, u2) the corresponding

solutions of (5.84). Then the following estimate holds:

121(8) = 22() | 2, o < M[IB]| + LI Vi ur — w22 (0.40:x), (5.37)



where 0 <t <t and
M= sup {|TOIT(-s)|}- (5.38)

0<s<t<ty

Proof Let z1, zo be solutions of (5.34) corresponding to wuj,ug respectively. Then

a0 =201 < [ 1PN (6) - )]
b [ ITONT .69, 08(5) — Fls 2260, ua(5) s
< Mz -+ us(s) — wa(s) | + ML / las) — (o) ds
< MBI+ LIVl el + ML [ a1(s) = 2as)lds
Using Gronwall’s inequality we obtain

I21(t) = 22(t) 2, ., < MI||B|l + LIeM* Vi [ur — uallr2(0,5x), 0 <t <t

0
Now, we are ready to formulate and prove the main Theorem of this section
Theorem 5.1 If the following estimate holds
|BIIMLIW = (t1) || H (b))t < 1, (5.39)

where H(t1) = M|||B|| + LleME1t; + 1, then the non-linear system (5.33) is exvactly controllable

on [0,t1].

Proof Given the initial state zp and the final state z1, and u; € L?(0,t1; X), there exists ug €

L?(0,t1; X) such that

0=2 — /0 1 T(—s)F(s,21(s),u1(s))ds — /0 1 T(—s)Busa(s)ds,

where z;(t) = z(t; z0,u1) is the corresponding solution of (5.34).



Moreover, us can be chosen as follows:
t1
wlt) = BT -0 o) (21— [ TR a6 u9)ds).
0
For such ug there exists ug € L?(0,¢1; X) such that
t1 t1
0==2x —/ T(—S)F(S,ZQ(S),'LLQ(S))CZS—/ T (—s)Bus(s)ds,
0 0
where z2(t) = z(t; 2, u2) is the corresponding solution of (5.34), and us can be taken as follows:
t1
walt) = BT W () (21— [P0 Fls, (o) alo)ds).
0
Following this process we obtain two sequences
{u,} € L*(0,t1; X), {z,} C L?(0,t1; Z1)2)s (za(t) = 2(t20,un)) n=1,2,...,
such that
t1
Uni1(t) = B*T*(—t)W (1) (zl - / T(—s)F(s, zn(s),un(s))ds) (5.40)
0
t1 t1
0 = 21— / T(—s)F(s,2zn(8),un(s))ds — / T(—s)Bupy1(s)ds. (5.41)
0 0

Now, we shall prove that {z,} is a Cauchy sequence in L2(0,t; Z; /2)- In fact, from formula (5.40)

we obtain that

Unt1(t) — un(t) =

B*T*(—t)W L (t1) (/0 1 T(—38) (F(8,2n-1(8),un-1(8)) — F(8, zn(8),un(s))) ds) )

Hence, using lemma 5.1 we obtain

[un41(t) — un(t)]l

IN

IBIMLIW = (t)] /0 " (l2a(s) = 2n-1(8)]| + lun(s) — war ()] ds
< |BIMLIW = (t)] 01M[||B||+L]eML“\/Ellun(8)—un1(8)||d8

+ ||BHML||W‘1(t1)/01 |tn(8) — tn_1(s)||ds.



Using Hoder’s inequality we obtain
[unt1 = unllL20,65x) < I BIMLIW ™ (#0)[| H (t1)t1][unt1 — nl L2(0,60:x)- (5.42)

Since | B||ML|W ~1(t1)||H (t1)t1 < 1, then {u,} is a Cauchy sequence in L?(0,#1; X) and therefore

there exists u € L?(0,t1; X) such that lim, .o u, = u in L?(0,%1; X).

Let z(t) = z(t; z0,u) be the corresponding solution of (5.34). Then we shall prove that
t1 t1
lim T(—s)F(s,2zn(8),un(s))ds = / T(—s)F(s,z(s),u(s))ds.
0

n—o0 0

In fact, using lemma 5.1 we obtain that

/0 T (=8)[F(, 2n(5), tn(s)) — F(5, 2(5), u(s))]ds

t1

= ML[[|zn(s) = 2(s)[| + [[un(s) — u(s)]|]ds

t1
= ML[M]||B|| + L} V|| un — | L2(0,41;5) + lun(s) — u(s)|]ds
< MLE(t)vVhlun — ullp2(0,45x)-

From here we obtain the result.

Finally, passing to the limit in (5.41) as n goes to co we obtain that

0=z — /0 1 T(—s)F(s,2(s),u(s))ds — /0 1 T (—s)Bu(s)ds.

Gru = z1.

O
Remark 5.1 a) The controllability of the system (1.2) is independent of the external force P(t)
since condition (5.39) does not depend on P(t).
b) If f = 0, the condition for the exact controllability of the system (1.2) can be expressed in
terms of k. i.e.,

| B|| MKW (t1) | H(t1)t1 < 1.
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