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Merging Operators: beyond the finite case

José Luis Chacón and Ramón Pino Pérez

Abstract

We extend the results of Konieczny and Pino Pérez (J. Log. and Comp. 2002) concerning
merging operators in a finite logical framework to the infinite case (countably many propo-
sitional variables). The number of sources we consider remains finite. The main result is
the representation theorem. In order to prove it, we state some results which are interesting
for their own sake. Some postulates had to be restated in a new form. The new form is
equivalent to the old one only in the finite case, but more appropriate to deal with the infi-
nite case. The construction of merging operators starting from distances between valuations
is also generalized. Indeed, we introduce a new kind of operators built upon the so called
Cantor distance.

Keywords: Merging operators, Belief revision, Integrity constraints, syncretic assignment

Introduction

The general problem of merging information is to extract a coherent common information from
several sources of information. The most natural thing to do, which consists in taking the sum
of pieces of information does not work in general because two (or more) sources of information
may be contradictory. In this case, their union will be necessarily contradictory.

A lot of methods have been introduced to merge information in a logical framework [4, 5, 2,
19, 23, 10]. Different sets of logical properties which have to be satisfied by belief merging opera-
tors, have been proposed [23, 18, 19, 11, 12]. These works offer a classification of (logical) merging
operators. In fact, they give some interesting results concerning a semantic characterization of
operators satisfying some postulates of rationality. These results are known as Representation
Theorems. Their basic framework is the finite Propositional Logic. Since then, nothing has been
done to extend these results to infinite logical framework, i.e. Propositional Logic in which the
formulas are built upon a countable set of propositional variables. This is what we do in this work.

The motivations to study the case in which we have countably many propositional variables
-the infinite case- are given now. First of all, in the logical framework used to represent a piece of
information, the propositional variables play an essential role: they represent the factual informa-
tion. For instance, facts like the device is broken, inflation has been stopped, etc., are traditionally
represented by propositional variables. However, to assume that the number of propositional vari-
ables is finite, supposes modeling a situation in which there is no room for new facts. In some
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cases it is interesting to have the possibility of introducing new facts. For instance, when merging
information about the causes of bad performance of a microchip, it can be useful to introduce the
fact that the intensity of the current is always changing, a new variable not considered up to now.
Another situation in which it is very common to introduce new variables, concerns the arguments
about the acceptance or rejection of an article for a conference, a journal, etc. In many cases,
one source -a reviewer- presents a new argument that can be decisive in the final appreciation.

Thus, one way to open the possibility of considering variables not considered until the present
is to have countably many variables from the beginning. One can attach more importance to the
first variables. One can imagine the importance attached to a variable to be smaller as the sub-
script of the variable is bigger. This kind of situation will be captured with some operators built
upon a distance called Cantor distance (see Section 3).

Also, in order to introduce the fact that one source of information can carry out infinite
information, we have to allow infinite propositional variables. This does not mean that a source
has to give always an infinite list of facts or more complex pieces of information. We know that
infinite information can be sometimes encoded by finite information. For instance, the theory
generated by a finite set of formulas is a truly infinite object which is completely encoded by a
finite number of finite objects. The approach used in this work will be to represent the piece of
information of an agent (a source) by a logical theory, i.e. a set of propositional formulas closed
by logical deduction. Of course, the set of propositional variables will be infinite.

The kind of representation of information used here -theories- is not new in the area of dy-
namical reasoning. For instance, in Belief Revision ([1, 8]), the epistemic states are represented
by logical theories. This kind of representation is quite natural and rich enough. Nevertheless,
this is not the richest representation of epistemic states as can be seen in the works of Konieczny,
Pino Pérez and Benferhat et al. ([10, 13, 14, 3]). However, in order to deal with the infinite case,
the representation of information by a logical theory will give us sufficient insight to treat the
problems about postulates and to find a general technique for dealing with the representation
theorems.

There is another dimension that can be considered in order to introduce the infinite in the
framework of merging: it concerns the number of sources of information. This issue is not ad-
dressed in this work. Many are the the reasons for not considering this dimension. The main
reason is that, although we think this problem is very interesting from a theoretical point of
view, we do not have a very clear idea, at the present time, about the meaning of well behaved
operators in this case. Even the meaning of majority in this context is unclear (for a discus-
sion about some problems concerning this issues see [20]). Another reason is that in the most
common situations the number of sources of information is finite. However, this number is not
fixed before the beginning of the operations. So, we may think that, concerning the number of
sources of information, merging information is an operation potentially infinite. It is important
to notice that the nature of the operators can totally change if we impose a bound to the number
of sources of information (see [16]). Thus, for us, this is the natural way in which the infinite can



be introduced in this dimension: the number of sources can be arbitrarily big. This will be the
case of our operators and it is the case of operators considered in [15].

The representation theorems proved here are, roughly speaking, of the following kind (for
more precision see Theorem 4):

A merging operator is represented by an assignment which maps each group of sources
of information to a total pre-order over valuations. The result of merging the group
under the constraints will be the theory of the minimal models of the constraints (min-
imal with respect to the pre-order associated to the group).

The difficult part in this kind of theorem is, on one hand, to find the definition of the assignment
and, on the other hand, to prove that the definition is indeed adequate. We introduce here a
general technique to define this kind of assignments (see Definition 5). We will prove that the
definition can be stated in different equivalent ways, each of them useful to prove some properties.
All this is inspired by a similar technique used to prove representation theorems for nonmonotonic
relations introduced in [21].

This work is organized as follows: in the first Section we present the definitions of merging
operators, quasi-merging operators, majority merging operators and arbitration operators. We
define also their corresponding notions in terms of assignments: syncretic assignments, quasi-
syncretic assignments, majority syncretic assignments and arbitration assignments. For each
family of operators defined we state a representation theorem. In Section 2 we define some
general families of operators starting from a distance (actually pseudo-distance, see Definition
12). We define the family of Σ-operators which turns out to be a family of majority merging
operators. We define the family of Max-operators which turn out to be a family of quasi-merging
operators. We define the family of Gmax-operators which turn out to be a family of arbitration
merging operators. Next, we find Section 3 which is devoted to giving concrete constructions of
the operators defined in the previous Section, using three distances: generalized Dalal distance,
discrete distance and Cantor distance. We give some examples of these operators at work. Before
an Appendix with technical results and proofs, we have Section 4 with some final remarks and
some questions. For the sake of readability, we have put the proofs in the Appendix. However,
the Appendix contains some new results, not stated in previous sections, and a deep study of
relationships between logical postulates of operators and conditions satisfied by assignments.

1 Merging operators and representation theorems

In this section we define merging operators adapting the postulates in [15]. We define the notion
of the syncretic assignment needed to state the representation theorems. This is also a mod-
ification of a similar notion defined in [15] in the finite case. We end the section stating the
representation theorems.

Our logical framework is the infinite propositional calculus. The set of valuations will be
denoted by V . When A is a subset of V , we will denote Th(A), the theory of A, the set



{ϕ ∈ L : ∀M ∈ A,M |= ϕ}. Let T be the set of all the theories. Let T ∗ be the set of con-
sistent theories. Let S = M(T ∗) where M(T ∗) is the set of finite multi-sets with elements in
T ∗. The elements of S will be denoted with uppercase Greek letters Φ,Ψ, . . . (eventually with
subscripts); they are called knowledge multi-sets1, while the elements of T are called knowl-
edge bases. We use the notation K,H,R, S, T (eventually with subscripts) for the theories.
We denote by mod(K) the set of models of K, i.e. the set {M ∈ V :M |= K}. We denote
∪Φ = {α : ∃K ∈ Φ such that α ∈ K}, and ∧∧Φ = Cn(∪Φ), where Cn is the operator of
classical consequences. The union of multi-sets is denoted by the symbol t. For convenience, we
write K t T instead of {K} t {T}, and Kn for the multi-set {K,K . . .K} where K appears n
times. Similarly for Φ a knowledge multi-set we define Φn by induction as follows: Φ1 = Φ and
Φn+1 = Φn t Φ.

The candidates to be merging operators are applications of the following form

Δ : S × T −→ T

Δ(Φ,K) will be denoted by ΔK(Φ). K represents the integrity constraints. Such applications
will be called operators. Such an operator Δ is said to be a merging operator if the following
postulates hold:

(IC0) ΔK(Φ) ⊇ K

(IC1) K 6 ` ⊥ ⇒ ΔK(Φ) 6 ` ⊥

(IC2) K ∪ (∧∧Φ) 6 ` ⊥ ⇒ ΔK(Φ) = Cn(K ∪ (∧∧Φ))

(IC3) [T ⊆ K ∧ T ⊆ K ′ ∧ΔT (K tK
′) ∪K 6 ` ⊥]⇒ ΔT (K tK

′) ∪K ′ 6 ` ⊥

(IC4) Cn(ΔK(Φ1) ∪ΔK(Φ2)) ⊇ ΔK(Φ1 t Φ2)

(IC5) ΔK(Φ1) ∪ΔK(Φ2) 6 ` ⊥ ⇒ ΔK(Φ1 t Φ2) ⊇ Cn(ΔK(Φ1) ∪ΔK(Φ2))

(IC6) Cn(ΔK1(Φ) ∪K2) ⊇ ΔCn(K1∪K2)(Φ)

(IC7) ΔK1(Φ) ∪K2 6 ` ⊥ ⇒ ΔCn(K1∪K2)(Φ) ⊇ Cn(ΔK1(Φ) ∪K2)

The first postulate, (IC0), is the postulate of persistence of constraints: in presence of a
set of constraints K, the result of merging information has to contain the constraints. This
is appropriate when the theory K represents a piece of information that only can be enriched
by adding information, i.e. the information contained in K have to remain. Note that the
instanciation of postulates to the case in which the constraints are the set of tautologies, simulates
pure merging, that is, merging without integrity constrains. The second postulate, (IC1), is the
postulate of consistency: it requires that the result of merging is always consistent unless the
constraints impose the contrary. The third postulate, (IC2), is the postulate of minimality: if the
union of pieces of information together with the constraints is a coherent piece of information,
then the result of merging is the smallest theory containing this last piece of information. The

1This corresponds to the notion of knowledge set in [15]. Here we have change a little the name to avoid
confusion with the notion of knowledge set comming from Belief Revision.



fourth postulate, (IC3), is the fairness postulate: if two sources of information carry out the
information contained in the constraints (eventually more) then the result of merging has to be
fair, in the sense that if the result is consistent with one source it has to be consistent with
the other one. The following two postulates deal with the behavior of the groups of sources
of information and its subgroups. The fifth postulate, (IC4), is the postulate of coherence of
groups: suppose that we make a partition of a group of sources of information in two subgroups,
then the result of merging the whole group of sources of information has to be contained in the
smallest theory which contains the result of merging the subgroups. The sixth postulate, (IC5),
is the postulate of strong coherence of groups: suppose that we make a partition of a group of
sources of information in two subgroups and that the result of putting together the merging
of the subgroups is a consistent set, then the result of merging the whole group contains this
consistent set. Note that (IC4) and (IC5) together say that when the result of putting together
the merging of the subgroups is a consistent set, then the result of merging the whole group is
exactly the smallest theory containing this consistent set. The last two postulates concern the
(iterative) behavior of integrity constraints. The seventh postulate, (IC6), tells us that the result
of merging the information under a set of integrity constraints enriched by a new set of integrity
constraints is contained in the smallest theory containing the new set of integrity constraints and
the merging under the old set of integrity constraints. The last postulate, (IC7), says that if the
smallest theory containing the new set of integrity constraints and the merging under the old set
of integrity constraints is consistent, then it is contained in the result of merging the information
under a set of integrity constraints formed by the old integrity constraints plus the new set of
integrity constraints. The postulates (IC6) and (IC7) are a generalization of postulates (K*7)
and (K*8) in the framework of belief revision (see [8]).

Remark 1

Remember that in the finite case, in which formulas are used to represent a piece of informa-
tion, the postulate expressing the independence of syntax have full meaning: operators have to be
invariant under logical equivalence between formulas and an equivalence between the knowledge
multi-sets. In the current framework there is no postulate corresponding to independence of syntax
because it would be trivial. Actually, two theories are equivalent if and only if they are identical.
Thus, in our framework, the postulate corresponding to independence of syntax is tautological.

However, there is a correspondance one-to-one between the postulates presented here and those
presented in [12, 15]. This correspondance is stated as follows: for i = 0, 1, 2 the postulate ICi
here corresponds to postulate ICi there. For i = 3, 4, 5, 6, 7 the postulate ICi here corresponds to
postulate ICi+1 there. Thus, there is a shift in the enumeration of the postulates with respect to
the works mentioned above.

Next, we are interested in studying mappings (assignments) from S into the collection of total
pre-orders over valuations (i.e. reflexive and transitive relations which are total). Some of these
mappings will be enough to represent our merging operators.

Let us recall some general standard notations concernig a total pre-order ≤ over a set X.
The relation ∼ associated to ≤ is defined by x ∼ y iff x ≤ y and y ≤ x. The relation ∼ is an
equivalence relation. The relation < associated to ≤ is defined by x < y iff x ≤ y and y 6≤ x.
The relation < is transitive, irreflexive and asymmetric.



In order to define the good assignments we need to introduce explicitly a property which is
trivially satisfied in the finite case. This kind of property has been introduced by Kraus et al. in
[17] in order to have representation theorems for Nonmonotonic relations.

Definition 2

A total pre-order ≤Φ over V is said to be smooth if for all K ∈ T and for all M |= K that is
not minimal in mod(K), there exists N |= K such that N is minimal in mod(K) and N <Φ M .

Notice that, for a total pre-order ≤Φ the smoothness condition can be expressed by the following

∀K ∈ T ∗, min(mod(K),≤Φ) 6= ∅

because, by the totality, for any M ∈ mod(K) and N ∈ min(mod(K),≤Φ) we have N ≤Φ.

Notice that a well founded relation is smooth but the converse is not true. For a discussion
about this see [17].

Definition 3

A syncretic assignment is a mapping (Φ 7→≤Φ) that assigns to each knowledge multi-set Φ ∈ S
a total pre-order ≤Φ over the set of valuations V verifying the following conditions:

1) If M |= ∧∧Φ, N |= ∧∧Φ, then M 'Φ N

2) If M |= ∧∧Φ, N 6|= ∧∧Φ, then M <Φ N

3) ∀M |= K ∃N |= T such that N ≤KtT M

4) If M ≤Φ1 N and M ≤Φ2 N, then M ≤Φ1tΦ2 N

5) If M <Φ1 N and M ≤Φ2 N, then M <Φ1tΦ2 N

6) ≤Φ is smooth

The link between these assignments and merging operators is showed in the next (represen-
tation) theorem:

Theorem 4

An application Δ : S × T −→ T is a merging operator if and only if there exists a syncretic
assignment Φ 7→≤Φ such that

ΔK(Φ) = Th(min(mod(K),≤Φ)) (1)

Given a syncretic assignment, it is quite straightforward to see that the operator defined
by the previous equality verifies the postulates of merging operator. The converse is not so
straightforward. The crucial point is the definition of the total pre-order ≤Φ associated to Φ
when we have a merging operator Δ. The next definition, inspired by Pino Pérez and Uzcátegui’s
work about representation of nonmonotonic relations [21], tells us how to proceed.



Definition 5

Let Δ be a mapping of S × T into T . For any Φ ∈ S we define a relation ≤Φ over V by putting

M ≤Φ N
def
⇐⇒ ∀K,T ∈ T [M |= ΔK(Φ) ∧N |= ΔT (Φ)→M |= ΔK∩T (Φ)]

Notice that K ∩ T is a theory if K and T are theories. Thus in the previous definition we do not
need to put Cn(K ∩ T ).

Most of the work will consist in showing that this relation is a total pre-order when Δ is a
merging operator and that in fact this pre-order represents the operator, i.e. the equation 1 holds.

There are other classes of natural operators that can be characterized in terms of some family
of assignments. First define the following postulate:

(IC5′) ΔK(Φ1)∪ΔK(Φ2) 6` ⊥ ⇒ ΔK(Φ1 t Φ2) ⊇ ΔK(Φ1) ∩ΔK(Φ2)

A operatorΔ is said to be quasi-merging operator if the postulates (IC0)-(IC4),(IC5′),(IC6),(IC7)
hold.

The counterpart in terms of assignments is as follows. An assignment Φ 7→≤Φ, where ≤Φ is a
total pre-order over V , is said to be a quasi-syncretic assignment if it satisfies the conditions
1− 4 and 6 given in Definition 3 plus the following:

5′) If M <Φ1 N and M <Φ2 N, then M <Φ1tΦ2 N

Now, we can state our second representation theorem:

Theorem 6

An operator Δ is a quasi-merging operator if and only if there exists a quasi-syncretic assignment
Φ 7→≤Φ such that

ΔK(Φ) = Th(min(mod(K),≤Φ))

Remark 7

In semantical terms (IC5) says that the set of models of ΔK(Φ1 t Φ2) is contained in the inter-
section of the set models of ΔK(Φ1) and the set of models of ΔK(Φ2). On the other hand, (IC5’)
says that the models of ΔK(Φ1tΦ2) is contained in the union of the set of models of ΔK(Φ1) and
the set of models of ΔK(Φ2). It is interesting to point out is that this difference between these two
postulates is reduced to an apparently little difference in terms of assignments. Thus, this little
difference between the condition 5 and the condition 5’ is indeed significant.

Two classes of merging operators: Majority and arbitration

We define in the rest of this section two classes of merging operators. The first one is the class
of majority merging operators. The operators in this class are supposed to give account of some



majority behavior in extracting information from several sources: if many sources give us a piece
of information, this piece of information will persist in the result of merging.

The second class introduced is the class of arbitration merging operators. The operators in
this class are supposed to give account of some consensual behavior in extracting information
from several sources: a piece of information that is unlikely for one source of information will
have a tendency to be rejected in the result of merging. Conversely, a piece of information that
is likely for all the sources will have a tendency to remain in the result after merging.

We define also two classes of assignments corresponding exactly to these classes of operators.
For each class we state the corresponding representation theorem.

A merging operator is said to be a majority merging operator iff the following postulate holds

(Maj) ∀Φ1, ∀Φ2, ∃n such that ∀K ∈ T , ΔK(Φ1 t Φ2
n) ⊇ ΔK(Φ2).

We can paraphrase this postulate in the following way when Φ2 is a singleton: if in the
multiple observation Φ1 t Φ2n the belief (the observation) Φ2 is repeated enough ( n times, n
depending upon Φ1 and Φ2), then the result will contain the information resulting of observing
only Φ2. Note that the postulate do not say which is the size of n in terms of the cardinalities of
the belief sets Φ1 and Φ2. Remember than in terms of Voting Theory an operator of choice has
(strictly) majoritary behavior if when it is applied to a profile in which a candidate have more
than the half of votes, he is choosen. So, we can see the postulate (Maj) as generalization of this
kind of behaviors.

Note that in this new version of (Maj) we write explicitely the quantifiers in order to avoid
any confusion. The version in [15] states

∃n ΔK(Φ1 t Φ2
n) ⊇ ΔK(Φ2)

that, with the usual conventions about quantifiers, means

∀Φ1, ∀Φ2, ∀K ∈ T , ∃n ΔK(Φ1 t Φ2
n) ⊇ ΔK(Φ2) (2)

The version of (Maj) in this paper is clearly stronger than the correspondent postulate in
[15]. Indeed, in the finite case they are equivalent. We conjecture that in the infinite case the
current version of (Maj) does not follow from 2 above.

A syncretic assignment is majority syncretic assignment iff the following condition holds:

7) If M <Φ2 N, then ∃n M <Φ1tΦ2n N

Theorem 8



An operator Δ is a majority merging operator iff there exists a majority syncretic assignment
such that

ΔK(Φ) = Th(min(mod(K),≤Φ)).

In order to establish the postulate characterizing the merging operators having a consensual
behavior we need to introduce some concepts and notation. Let A and B be two sets, we denote
A M B their symmetrical difference, i.e. A M B = (A\B)∪(B\A) where A\B = {x ∈ A : x /∈ B}.
Let K and T be two theories, their symmetrical difference, denoted K � T is defined as follows:

K � T = Th (mod(K) M mod(T )) .

A merging operator is said to be an arbitration merging operator if the following postulate
holds:

(Arb)

K1 6⊆ K2, K2 6⊆ K1,

ΔK1(H1) = ΔK2(H2),

ΔK1�K2(H1 tH2) = K1 �K2





⇒ ΔK1∩K2(H1 tH2) = ΔK1(H1)

This postulate ensures that this is the median possible choices that are preferred. It is much
more intuitive when it is expressed in terms of syncretic assignment (cf.condition 8 below). We
will illustrate this on the following scenario2:

Example 9

Tom and David missed the soccer match yesterday between reds and yellows. So they don’t know
the result of the match. Tom listened in the morning that reds made a very good match. So he
thinks that a win of reds is more plausible than a draw and that a draw is more reliable than a
win of yellows. David was told that after that match yellows have now a lot of chances of winning
the championship. From this information he infers that yellows won the match, or otherwise at
least took a draw. Confronting their points of view, Tom and David agree on the fact that the two
teams are of the same strength, and that they had the same chances of winning the match. What
arbitration demand is that, with those informations, Tom and David have to agree that a draw
between the two teams is the more plausible result.

A syncretic assignment Φ 7→≤Φ is said to be an arbitration syncretic assignment if the
following condition holds

8) If M <H1 N,M <H2 P,N 'H1tH2 P then M <H1tH2 N.

Theorem 10

An operator Δ is an arbitration merging operator if and only if there exists an arbitration syn-
cretic assignment Φ 7→≤Φ such that

ΔK(Φ) = Th(min(mod(K),≤Φ)).

2This example is taken from [16].



Remark 11

We would like finish this section with a little comment about the scope of theorems 4, 6, 8 and 10,
the representation theorems. To build assignments having the required properties of these theorems
is a task less hard in our view that the direct construction of operators and the verification of
postulates. So, the representation theorem give us a power tool for building and studying these
operators. This will be illustrated in sections 2 and 3.

2 General construction of merging operators

In this section we consider three general methods to build merging operators from (pseudo)
distances between valuations (see definition below). In fact we give methods to construct syncretic
assignments and then we use the representation theorems to obtain the operators.

Let R+ be the set {x ∈ R : x ≥ 0} and R+ = R+ ∪{∞} with the usual order ≤ over elements
of R and putting x ≤ ∞, for any x ∈ R+. Remember that for any set A ⊆ R+ which is non empty,
inf(A) denotes the greatest lower bound of A. It is easy to see that the function inf defined over
the non empty subsets of R+ have the following behavior

inf(B) =

{
inf(B ∩ R+) if B ∩ R+ 6= ∅
∞ otherwise

Definition 12

A function d : V × V → R+ is said to be a pseudo-distance if the following conditions hold:

1. d(M,N) = d(N,M).

2. d(M,N) = 0 iff M = N.

3. If K and T are consistent theories, there are M |= T and N |= Ksuch that d(M,N) =
inf{d(Q,P ) : Q |= T, P |= K}.

We can extend d to a function d̄ : V × T → R+ in the following way:

d̄(M,K) = inf
N |=K

d(M,N)

In turn we extend the function d̄ to a function ˉ̄d : T × T → R+ as follows

ˉ̄d(K,S) = inf
N |=K

d̄(N,S)

By an abuse of notation we will write d instead of d̄ and instead of ˉ̄d. It is easy to see that

d(K,S) = inf
N |=K,M |=S

d(M,N) = inf
M |=S

d(M,K)

Notice that, by the condition 3 of the definition of pseudo-distance, the inf above is indeed a
minimum, i.e. it is realized by an element d(M,N) with M |= K and N |= S.



Σ and Max operators

Let d be a pseudo-distance as defined above; we define dΣ : V ×S → R+ and dmax : V ×S → R+

as follows:
dΣ(M,Φ) =

∑
K∈Φ d(M,K)

dmax(M,Φ) = max{d(M,K) : K ∈ Φ}

where, of course, we use the natural extension of + to R+, i.e. r +∞ =∞+ r =∞.

Now for each Φ we define two relations ≤ΣΦ and ≤
max
Φ over V as follows:

M ≤ΣΦ N iff dΣ(M,Φ) ≤ dΣ(N,Φ)
M ≤maxΦ N iff dmax(M,Φ) ≤ dmax(N,Φ)

Proposition 13

(i) Φ 7→≤ΣΦ is a majority syncretic assignment.
(ii) Φ 7→≤maxΦ is a quasi-syncretic assignment.

As a corollary of the previous Proposition and Theorems 6 and 8 we have the following result

Corollary 14

(i) The operator ΔΣ : S × T → T defined by

ΔΣR(Φ) = Th(min(mod(R),≤
Σ
Φ))

is a majority merging operator.
(ii) The operator Δmax : S × T → T defined by

ΔmaxR (Φ) = Th(min(mod(R),≤maxΦ ))

is a quasi-merging operator.

There is an interesting property dealing with the iterative behavior of an operator that is sat-
isfied by ΔΣ and Δmax when d is indeed a distance, i.e. when d satisfies the Triangle Inequality
(d(x, y) ≤ d(x, z)+ d(z, y)). To be more precise let us define first the so called iteration property.

Let R and Tbe knowledge bases, Φ a knowledge multi-set and Δ an operator, we define the
sequence (ΔnR(Φ, T ))n≥1 in the following way:

1) Δ1R(Φ, T ) = ΔR(Φ t T ), and

2) Δn+1R (Φ, T ) = ΔR(Δ
n
R(Φ, T ) t T )

The following property is called the iteration property

(ICit) If T ⊇ R then ∃n ΔnR(Φ, T ) ⊇ T

The intuitive meaning of this property is the following: the result of iterating the operator a
number of times bigger enough with respect the same information T will be reach the information
T . In other words, if the information T is repeated along the time, the operator will go approching
to T until to rech it. We think that is a good and natural property of operators.



Theorem 15

If the pseudo-distance d : V×V → R+ satisfies the Triangle Inequality, i.e. d(M,N) ≤ d(M,P )+
d(P,N), then ΔΣ and Δmax satisfy (ICit).

We do not know if the converse of the previous theorem holds. More generally, we do not
know how to characterize the operators defined via a distance or pseudo-distance.

Gmax operators

Starting from a pseudo-distance d we are going to build an arbitration syncretic assignment which
induces, via the representation theorem 10, an arbitration merging operator that is actually a
refinement of the operator Δmax. The operator Gmax that we are going to define is usually
known in Decision Theory as the leximax operator.

Definition 16

Let Φ = {K1,K2, . . .Kn} be a knowledge multi-set. For any valuation M we put (dM1 , d
M
2 . . . d

M
n )

where dMi = d(M,Ki), for i = 1, . . . , n. Let L
Φ
M be the list (dM1 , d

M
2 . . . d

M
n ) ordered decreasingly.

Let ≤lex be the lexicographical order between lists. Finally we define the following relation:

M ≤GmaxΦ N iff LΦM ≤lex L
Φ
N

We denote dGmax the function mapping a pair (M,Φ) to the list LΦM , and we call this the
distance Gmax between the valuation M and the knowledge multi-set Φ.

Theorem 17

ΔGmax defined by
ΔGmaxK (Φ) = Th(min(mod(K),≤GmaxΦ ))

is an arbitration merging operator. Moreover, if the pseudo-distance d satisfies the Triangle
Inequality, then ΔGmax satisfies (ICit).

3 Concrete merging operators

This section is devoted to defining concrete operators using the techniques explained in the
previous section. Thus, first, we define some distances from which we define our operators.

Remember that in the finite case the Dalal distance [6] between a valuation and a theory is
defined using the Hamming distance between valuations, i.e. the distance between M and N , is
the number of propositional variables in which they differ. For instance, the Hamming distance
between (1, 1, 1, 0, 0) and (1, 0, 1, 1, 0) is equal to 2 because they differ exactly in the second and
in the fourth variables.

In the infinite case (when the number of propositional variables is infinite) we define the
generalized Dalal distance below.



First we adopt the following notation: given a valuation M , we will write M(i) instead of
M(pi) the value of M in the variable pi.

Now, the generalized Dalal distance d1 : V × V → R+ is defined by putting

d1(M,N) =
∞∑

i=1

|M(i)−N(i)|

This function verifies the condition 1 and 2 of pseudo-distance given at the beginning of Sec-
tion 2 in page 10. Moreover as the range of this function is N∪ {∞} we have that for any pair of
theories T,K the set {d(M,P );M |= T, P |= K} has a minimum, so the condition 3 is verified.
Also, it is clear that d satisfies the Triangle Inequality.

Now we define the discrete distance, d2 : V × V → R+ by putting

d2(M,N) =

{
0 if,M = N

1 if,M 6= N.

The verification that d2 satisfies the conditions of pseudo-distance given in 10 is straightfor-
ward. The condition 3 is due to the fact that the range of d2 is the set {0, 1}. Indeed, d2 is a
distance, i.e. it satisfies the Triangle Inequality.

It is quite interesting to notice that starting from this discrete distance we have

≤GmaxΦ =≤ΣΦ

This is because LΦM is a decreasing sequence of 1′s and 0′s, since d(M,K) is 1 or 0 for any val-
uation M and any knowledge base K; indeed it is equal to 1 if M |= K and it is equal to 0 if
M 6|= K. Thus, it is clear that LΦM <lex L

Φ
N if and only if the number of 1

′s in LΦM is less than
the number of 1′s in LΦN, and this is equivalent to

∑
K∈Φ d(M,K) <

∑
K∈Φ d(N,K).

Putting together this observation with Corollary 14, we have the following result

Corollary 18

For the discrete distance we have ΔΣ = ΔGmax. Thus, there are merging operators which are of
arbitration and majority at the same time.

It is still an open problem to know if the unique operator having a majority and an arbitration
behavior at the same time is the previous one. There is some work done in this way in [16]. We
conjecture that there is only one operator which satisfaying (Arb) and (Maj).

The third distance we consider is the so called Cantor distance, d3 : V × V → R+ defined in
the following way:

d3(M,N) =
∞∑

i=1

|M(i)−N(i)|
2i



Notice that this distance gives a hierarchy over the propositional variables: the first variable
is the most important and the importance decreases as the subscript of the variable increases.

First of all, let us remark this well known fact: the set of valuations with the distance d3 (see
below) is in fact isometric to Cantor’s space; this is the reason to call d3 Cantor’s distance.

The conditions 1 and 2 of pseudo-distance are clearly satisfied. Also, it is straightforward to
verify the Triangle Inequality for d3. In order to verify the condition 3, let us notice that d3 is
a continuous function mapping the product of Cantor space by itself in [0, 1] with the topology
inherited of R. But the Cantor space is compact because it is an infinite product of the space
{0, 1} with the discrete topology which is compact, and by the Tychonoff theorem the product of
compact spaces is compact. Since mod(T ) is a closed set for any T , mod(T ) is compact. Therefore
mod(K)×mod(T ) is compact and so, the continuous function d3 takes a minimum value in that
set, that is to say the condition 3 holds.

Examples and observations

In order to distinguish the operators after the distance used to build them we make explicit men-
tion of it. Thus ΔΣ(di), Δmax(dj) and ΔGmax(dk) are the operators Σ, Max and Gmax built from
di, dj and dk respectively where i, j, k ∈ {1, 2, 3}.

The following observation tells us that if two sources of the knowledge multi-set totally dis-
agree, then the Σ operator and the Max operator built from Dalal distance choose exactly the
whole knowledge base representing the integrity constraints. More precisely:

Observation 19

Let Φ = {K1,K2, . . . ,Kn} be a knowledge multi-set such that there are Ki,Kj with d1(Ki,Kj) =
∞. Then for any R

Δ
Σ(d1)
R (Φ) = R = Δ

max(d1)
R (Φ)

To check this observation notice that since d1 satisfies the Triangle Inequality, for any valua-
tion M we have d(M ,Ki) = ∞ or d(M ,Kj) = ∞ . From this, it follows that dΣ(M ,Φ) = ∞
and dmax(M ,Φ) = ∞ . From this and the definitions the equalities above follow.

Thus in case that there is a strong disagreement in the sources of information the operators
ΔΣ(d1),Δmax(d1) ignore these sources of information.

When d(R,Ki) < ∞ for any Ki in Φ, then the operator Gmax might give a result different
of the constraints.

Let us illustrate the behavior of these operators with some examples.

Example 20



Let Φ = {K1,K2} be a knowledge multi-set and R a knowledge base defined by as follows

K1 = Th({M :M(2k + 1) = 0, ∀k ≥ 0})

K2 = Th({M :M(2k + 1) = 1, ∀k ≥ 0})

R = Th({M :M(1) =M(3) = 0,M(5) =M(7) =M(9) = 1})

It is clear that d1(K1,K2) =∞, then, Observation 19, tells us that Δ
Σ(d1)
R (Φ) = R = Δ

max(d1)
R (Φ).

We can also verify that for any M |= R satisfying M(2k+1) = 1, ∀k ≥ 5, we have d1(M,K2) = 2;
so, LΦM = (∞, 2). It is not hard to see that it is the minimum value in the lexicographical order
for LΦM when M |= R. Thus, we can conclude

Δ
Gmax(d1)
R (Φ) = Th({M :M |= R,M(2n+ 1) = 1 ∀n ≥ 5})

For the discrete distance we have that any M |= R verifies d2(M,K1) = d2(M,K2) = 1.
Therefore

Δ
Σ(d2)
R (Φ) = Δ

max(d2)
R (Φ) = Δ

Gmax(d2)
R (Φ) = R.

Now we treat the case of the Cantor distance. To find the distance between M |= R and
the knowledge bases K1 and K2 we proceed as follows: first notice that the unique variables of
models of R affecting the distance to K1 and K2 are the odd variables greater than 9. Now put
AM = {n :M(2n+ 1) = 0, n ≥ 5} and BM = {n :M(2n+ 1) = 1, n ≥ 5}, then

d(M,K1) =
1

25
+
1

27
+
1

29
+
∑

n∈BM

1

22n+1
; d(M,K2) =

1

2
+
1

23
+
∑

n∈AM

1

22n+1

But AM ∪ BM = {n : n ≥ 5} and AM ∩ BM = ∅ so, for any M |= R we have

d(M,K1) + d(M,K2) =
1

2
+
1

23
+
1

25
+
1

27
+
1

29
+
∑

n≥5

1

22n+1

Therefore ΔΣ(d3)R (Φ) = R.

If AM = ∅ then

d(M,K1) =
1

25
+
1

27
+
1

29
+
∑

n≥5

1

22n+1
; d(M,K2) =

1

2
+
1

23

Thus, d(M,K2) > d(M,K1). We can observe that if AM 6= ∅, d(M,K2) increases. This
means that the least value in max{d(M,K1), d(M,K2)} is obtained when AM = ∅. Therefore
min{max{d(M,K1), d(M,K2)} : M ∈ mod(R)} = 5/23, the value of d(M,K2). This holds for
M(2n+ 1) = 1 ∀n ≥ 5. So,

(
5/23, 53/29

)
is the minimum in the lexicographical order. Therefore

Δ
max(d3)
R (Φ) = Δ

Gmax(d3)
R (Φ) = Th{M |= R :M(2n+ 1) = 1∀n ≥ 5}

Example 21



Let Φ = {K1,K2,K3,K4} be a knowledge multi-set, where

K1 = Cn({p2,¬p3,¬p4} ∪ {pi : i ≥ 6})

K2 = Cn({p1,¬p2,¬p3} ∪ {pi : i ≥ 6})

K3 = Cn({¬p1, p3, p4, p5} ∪ {pi : i ≥ 6})

K4 = Cn({p1, p2, p3,¬p4,¬p5} ∪ {pi : i ≥ 6})

That is to say

mod(K1) = (∗, 1, 0, 0, ∗, 1̄)

mod(K2) = (1, 0, 0, ∗, ∗, 1̄)

mod(K3) = (0, ∗, 1, 1, 1, 1̄)

mod(K4) = (1, 1, 1, 0, 0, 1̄)

where 1̄ denotes the sequence equal to 1 and ∗ denotes any value in {0, 1} and by abuse we identify
(∗, 1, 0, 0, ∗, 1̄) with the set of models of this form, etc.

Let R = Cn({p3 ∧ p4 ∧ ¬p5}) so mod(R) = (∗, ∗, 1, 1, 0, ∗̄) We proceed to find the minimum
values for dΣ(M,Φ), dmax(M,Φ) and dGmax(M,Φ) when M |= R and d is one of di for i = 1, 2, 3.
First notice that any model N of Ki verifies N(i) = 1 for all i ≥ 6. So, the modelsM of R realizing
the minimum values have to verify M(i) = 1 for all i ≥ 6. There are four possible cases:

Case 1 M(1) =M(2) = 1, i.e. M = (1, 1, 1, 1, 0, 1̄).

Case 2 M(1) = 0,M(2) = 1, i.e. M = (0, 1, 1, 1, 0, 1̄).

Case 3 M(1) =M(2) = 0, i.e. M = (0, 0, 1, 1, 0, 1̄).

Case 4 M(1) = 1,M(2) = 0, i.e. M = (1, 0, 1, 1, 0, 1̄).

The Table 1 is very useful to calculate the Dalal distance. In the boxes of the table we find a 1 in
the positions in which the models realizing the minimun differ.

In Case 1 we have that the minimum values are

d1(M,K1) = 2 d1(M,K2) = 2 d1(M,K3) = 2 d1(M,K4) = 2

therefore dΣ(M,Φ) = 8, dmax(M,Φ) = 2 and dGmax(M,Φ) = (2, 2, 2, 2).

In Case 2 we have that the minimum values are

d1(M,K1) = 2 d1(M,K2) = 3 d1(M,K3) = 0 d1(M,K4) = 2

therefore dΣ(M,Φ) = 7, dmax(M,Φ) = 3 and dGmax(M,Φ) = (3, 2, 2, 0).



mod(R)
mod(Ki) (1, 1, 1, 1, 0, 1̄) (0, 1, 1, 1, 0, 1̄) (0, 0, 1, 1, 0, 1̄) (1, 0, 1, 1, 0, 1̄)

(∗, 1, 0, 0, ∗, 1̄)

(1, 0, 0, ∗, ∗, 1̄)

(0, ∗, 1, 1, 1, 1̄)

(1, ∗, 1, 0, 0, 1̄)

0, 0, 1, 1, 0, 0̄ 0, 0, 1, 1, 0, 0̄ 0, 1, 1, 1, 0, 0̄ 0, 1, 1, 1, 0, 0̄

0, 1, 1, 0, 0, 0̄ 1, 1, 1, 0, 0, 0̄ 1, 0, 1, 0, 0, 0̄ 0, 0, 1, 0, 0, 0̄

1, 0, 0, 0, 1, 0̄ 0, 0, 0, 0, 0, 0̄ 0, 0, 0, 0, 1, 0̄ 1, 0, 0, 0, 1, 0̄

0, 1, 0, 1, 0, 0̄ 1, 0, 0, 1, 0, 0̄ 1, 0, 0, 1, 0, 0̄ 0, 0, 0, 1, 0, 0̄

Table 1: Calculating Dalal distances.

In Case 3 we have that the minimum values are

d1(M,K1) = 3 d1(M,K2) = 2 d1(M,K3) = 1 d1(M,K4) = 2

therefore dΣ(M,Φ) = 8, dmax(M,Φ) = 3 and dGmax(M,Φ) = (3, 2, 2, 1).

In Case 4 we have that the minimum values are

d1(M,K1) = 3 d1(M,K2) = 1 d1(M,K3) = 2 d1(M,K4) = 1

therefore dΣ(M,Φ) = 7, dmax(M,Φ) = 3 and dGmax(M,Φ) = (3, 2, 1, 1).

From these observations it follows that

mod(Δ
Σ(d1)
R (Φ)) = {(0, 1, 1, 1, 0, 1̄), (1, 0, 1, 1, 0, 1̄)}

mod(Δ
max(d1)
R (Φ)) = mod(Δ

Gmax(d1)
R (Φ)) = {(1, 1, 1, 1, 0, 1̄)}

Now we treat the discrete distance. Notice that the modelM ′ of R defined byM ′ = (0, 1, 1, 1, 0, 1, 1, 1, 1, . . . , 1, . . . )
is a model of K3, but there are no models of R which are models of K1,K2 or K4.

Thus, for any model M of R different to M ′ we have

d(M,K1) = d(M,K2) = d(M,K3) = d(M,K4) = 1

Moreover
d(M ′,K1) = d(M

′,K2) = d(M
′,K4) = 1 d(M ′,K3) = 0

From these observations we obtain

Δ
max(d2)
R (Φ) = R, mod(Δ

Σ(d2)
R (Φ)) = mod(Δ

Gmax(d2)
R (Φ)) = {M ′}

Finally we deal with Cantor distance. Using the previous table we proceed to find the minimum
values.



Case 1 M(2) =M(3) = 1, i.e. M = (1, 1, 1, 1, 0, 1̄). In this case

d3(M,K1) =
1

23
+
1

24
d3(M,K2) =

1

22
+
1

23

d3(M,K3) =
1

2
+
1

25
d3(M,K4) =

1

22
+
1

24

Therefore

dΣ(M,Φ) =
45

25
, dmax(M,Φ) =

17

25
, dGmax(M,Φ) =

(
17

25
,
3

23
,
5

24
,
3

24

)

Case 2 M(2) = 1,M(3) = 0, i.e. M = (0, 1, 1, 1, 0, 1̄). In this case

d3(M,K1) =
1

23
+
1

24
d3(M,K2) =

1

2
+
1

22
+
1

23

d3(M,K3) = 0 d3(M,K4) =
1

2
+
1

24

Therefore

dΣ(M,Φ) =
13

23
, dmax(M,Φ) =

7

23
, dGmax(M,Φ) =

(
7

23
,
9

24
,
3

24
, 0

)

Case 3 M(2) =M(3) = 0, i.e. M = (0, 0, 1, 1, 0, 1̄). In this case

d3(M,K1) =
1

22
+
1

23
+
1

24
d3(M,K2) =

1

2
+
1

23

d3(M,K3) =
1

25
d3(M,K4) =

1

2
+
1

24

Therefore

dΣ(M,Φ) =
53

25
, dmax(M,Φ) =

5

23
, dGmax(M,Φ) =

(
5

23
,
9

24
,
7

24
,
1

25

)

Case 4 M(2) = 0,M(3) = 1, i.e. M = (1, 0, 1, 1, 0, 1̄). In this case

d3(M,K1) =
1

22
+
1

23
+
1

24
d3(M,K2) =

1

23

d3(M,K3) =
1

2
+
1

25
d3(M,K4) =

1

24

Therefore

dΣ(M,Φ) =
37

25
, dmax(M,Φ) =

17

25
, dGmax(M,Φ) =

(
17

25
,
7

24
,
1

23
,
1

24

)

Finally from the previous observations we obtain:

mod(Δ
Σ(d3)
R (Φ)) = {(1, 0, 1, 1, 0, 1̄)}

mod(Δ
max(d3)
R (Φ)) = {(1, 1, 1, 1, 0, 1̄), (1, 0, 1, 1, 0, 1̄)}

mod(Δ
Gmax(d3)
R (Φ)) = {(1, 1, 1, 1, 0, 1̄)}



4 Final remarks and questions

There are two dimensions in which the infinite can be introduced in the framework of logic based
merging. The language and the number of sources. In this work we have introduced the infinite
in the first of these dimensions. That is, we have considered the case of propositional languages
with countably many propositional variables. This is important because in many situations we
do not know in advance how many variables will be involved. So, we need to have mechanisms
to treat these situations. In this setting, the information of one source is a logical theory. In this
sense we have joined the classical AGM tradition in which an epistemic state is a logical theory.
Then, we have done the lifting of the representation results found in [15] to the case of infinite
propositional logic.

The introduction of the infinite in the second dimension, that is, to consider the possibility
of having an infinite number of sources, is an issue not addressed in this work. Although we
think this is an important theoretical issue and that the basic postulates have a generalization
quite straightforward, we do not have a clear idea about what a majority behavior is in this case.
Serious problems arise, inherent to the infinite, when we try to determine the majority; see for
instance the recent work of Pacuit and Salame [20]. In that work, either the set of even numbers
or the set of odd numbers is a majority set in the set of natural numbers. That is quite surprising.
On the other hand, the naive notion of majority, based on cardinality, does not work well either.

A by-product of studying the infinite framework for merging operators is the possibility of
finding the correct and more general formulation for some postulates (e.g. the majority pos-
tulate). The infinite case tells us that the distances used to define operators have to be very
particular: they have to satisfy the condition 3 in Definition 12, i.e. a realization condition which
is satisfied, for instance, by continuous functions over compact spaces. Another very interesting
fact is the necessity of considering the smoothness property which guarantees the consistency of
operators defined by smooth assignments. This kind of property has been introduced by Kraus
et al. in [17] in order to have representation theorems for Nonmonotonic relations.

A challenging question is to study the behaviour of operators when we restrain the co-domain
and the nature of information. For instance, what happens if instead of T (the set of all theories)
we take the set of theories finitely generated? Do the representation theorems hold? What is
not very clear for us is the nature of the assignments which could guarantee that the set of the
minimal models of a finitely generated theory be indeed a set of models whose theory is finitely
generated.

A natural generalization of this work is to consider, instead of theories, more general epistemic
states as the encoding of the information given by a source.

To finish these concluding remarks we would like to say that the treatment of the infinite done
in this work can be viewed as the beginning of a possible extension of merging to the framework
of First Order Logic.
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A Proofs

In order to prove Theorem 4 we state and show some propositions and lemmas. Next proposition
is a useful standard tool in many of the proofs below. It is so standard, that most of the time we
do not even mention it. It is stated without proof.

Proposition 22

Let K and R theories. Then
(i) mod(K ∩R) = mod(K) ∪mod(R)
(ii) mod(Cn(K ∪R)) = mod(K) ∩mod(R)
(iii) K ⊆ R ⇐⇒ mod(K) ⊇ mod(R)

Lemma 23

For any valuation M and any knowledge multi-set Φ, there exists K such that M |= ΔK(Φ).

Proof: Take K = Th({M}). Clearly M is the unique model of K. Now use (IC0) to conclude.

Lemma 24

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then, if ΔK ∩T (Φ) ∪ K ` ⊥ necessarily
ΔK ∩T (Φ) = ΔT (Φ).

Proof: We have by (IC0) that ΔK ∩T (Φ) ⊇ K ∩ T , i.e. mod(ΔK ∩T (Φ)) ⊆ mod (K ∩ T ) =
mod (K)∪mod (T ). By the assumptionmod(ΔK ∩T (Φ))∩mod (K) = ∅. From these two things,
it follows mod(ΔK ∩T (Φ)) ⊆ mod (T ), i.e. ΔK ∩T (Φ) ⊇ T . In particular ΔK ∩T (Φ) ∪ T =
ΔK ∩T (Φ) (because, as is well known mod(ΔK ∩T (Φ) ∪ T ) = mod(ΔK ∩T (Φ)) ∩ mod(T ) and
by the previous observation the last expression is mod(ΔK ∩T (Φ)) which is non empty for IC0).
Therefore ΔK ∩T (Φ) ∪ T is consistent. From this, by (IC6), ( IC7) we have Cn(ΔK ∩T (Φ) ∪ T ) =
ΔCn((K ∩T )∪T )(Φ) that is to say ΔK ∩T (Φ) = ΔT (Φ).

Proposition 25

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then for any valuation M

M |= ΔK(Φ) ∧M |= ΔT (Φ)⇒M |= ΔK ∩T (Φ)

Proof: We consider two cases. First, we suppose that ΔK ∩T (Φ) ∪ K is not consistent. By the
lemma 24 ΔK ∩T (Φ) = ΔT (Φ). From what follows M |= ΔK ∩T (Φ).

In the second case, i.e. ΔK ∩T (Φ) ∪ K is consistent, by (IC6), (IC7) we have Cn(ΔK ∩T (Φ) ∪
K) = ΔCn((K ∩T )∪K)(Φ). Therefore Cn(ΔK ∩T (Φ) ∪ K) = ΔK(Φ). Thus, M |= ΔK ∩T (Φ) ∪



K . In particular M |= ΔK ∩T (Φ).

Next proposition is the trichotomy property for merging operators

Proposition 26

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then

ΔK ∩T (Φ) =






ΔK(Φ) , if ΔK ∩T (Φ) ∪ T ` ⊥

ΔT (Φ) , if ΔK ∩T (Φ) ∪ K ` ⊥

ΔK(Φ) ∩ ΔT (Φ) , otherwise

Proof: The two first cases follow from lemma 24. Thus, let us suppose that ΔK ∩T (Φ) ∪ K 6`
⊥,ΔK ∩T (Φ)∪ T 6` ⊥. By (IC6), (IC7) Cn(ΔK ∩T (Φ)∪K) = ΔK(Φ) and Cn(ΔK ∩T (Φ)∪ T ) =
ΔT (Φ). Therefore

mod(ΔK∩T (Φ) ∪ T ) ∪mod(ΔK∩T (Φ) ∪K) = mod(ΔT (Φ)) ∪mod(ΔK(Φ)) (3)

Now, using the distributivity of ∩ and ∪, it is easy to see that

mod(ΔK∩T (Φ) ∪ T ) ∪mod(ΔK∩T (Φ) ∪K)) = mod(ΔK∩T (Φ)) ∩mod(K ∩ T ) (4)

By (IC0) mod(ΔK ∩T (Φ)) ⊆ (mod(K ∩ T )), so the right hand side of 4 is mod(ΔK∩T (Φ)).
Using equations 3 and 4 and transitivity we get, mod(ΔK ∩R(Φ)) = mod(ΔK(Φ) ∩ ΔR(Φ)), i.e.
ΔK ∩R(Φ) = ΔK(Φ) ∩ ΔR(Φ).

Lemma 27

If Δ satisfies (IC6) then for any valuation M ,

M |= ΔK(Φ) ∧M |= T ⇒M |= ΔCn(K ∪T )(Φ)

Proof: By (IC6) we have Cn(ΔK(Φ)∪T ) ⊇ ΔCn(K ∪T )(Φ), i.e. mod(ΔK(Φ)∪T ) ⊆ mod(ΔCn(K ∪T )(Φ)).
As M |= ΔK(Φ) ∪ T necessarily M |= ΔCn(K ∪T )(Φ).

Lemma 28

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then for any valuations M and N ,

M |= ΔK(Φ) ∧N |= ΔT (Φ)⇒M |= ΔK ∩T (Φ) ∨N |= ΔK ∩T (Φ)

Proof: This follows of Proposition 26. Indeed, we consider the three possible cases for ΔK ∩T (Φ).
If ΔK ∩T (Φ) = ΔK(Φ), then M |= ΔK ∩T (Φ). If ΔK ∩T (Φ) = ΔT (Φ), then N |= ΔK ∩T (Φ).
Finally, if ΔK ∩T (Φ) = ΔK(Φ) ∩ ΔT (Φ), then ΔK∩T (Φ) ⊆ ΔK(Φ) and ΔK∩T (Φ) ⊆ ΔT (Φ).
So, mod(ΔK∩T (Φ)) ⊇ mod(ΔK(Φ)) and mod(ΔK∩T (Φ)) ⊇ mod(ΔT (Φ)). Therefore M,N |=
ΔK∩T (Φ).

Lemma 29

Assume that Δ satisfies (IC7). Then if ΔK(Φ) ∪ T is consistent, then ΔCn(K∪T )(Φ) ⊇ ΔK(Φ).



Proof: By (IC7) we have that ΔCn(K ∪T )(Φ) ⊇ Cn(ΔK(Φ) ∪ T ) . Therefore ΔCn(K∪T )(Φ) ⊇
ΔK(Φ).

The following proposition is the key result for studying the properties of the relation ≤Φ.

Proposition 30

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then

M ≤Φ N ⇔ ∃K, ∃T (M |= ΔK(Φ), N |= ΔT (Φ),M |= ΔK ∩T (Φ))

Proof: The implication (⇒) is straightforward by the Definition 5. For the converse, assume
that M |= ΔK(Φ), N |= ΔT (Φ),M |= ΔK ∩T (Φ) for one K and one T . Let K ′ and T ′ theories
such that M |= ΔK ′(Φ) and N |= ΔT ′(Φ). We want to show that M |= ΔK ′ ∩T ′(Φ). By
Lemma 28, M |= ΔK ′ ∩T ′(Φ) or N |= ΔK ′ ∩T ′(Φ). By the hypothesis M and N are both
models of K ∩ T . Therefore, M or N is a model of ΔK ′ ∩T ′(Φ) ∪ (K ∩ T ) and M or N is a
model of ΔK ∩T (Φ) ∪ (K ′ ∩ T ′). That is, both previous sets are consistent. Thus, by (IC6)-(IC7)
we get:

Cn(ΔK ′ ∩T ′(Φ) ∪ (K ∩ T )) = ΔCn((K ′ ∩T ′)∪ (K ∩T ))(Φ)

Cn(ΔK ∩T (Φ) ∪ (K
′ ∩ T ′)) = ΔCn((K ∩T )∪ (K ′ ∩T ′))(Φ)

From these two equations, by transitivity, we get Cn(ΔK ′ ∩T ′(Φ) ∪ (K ∩ T )) = Cn(ΔK ∩T (Φ) ∪
(K ′ ∩ T ′)). ButM |= ΔK ∩T (Φ) ∪ (K ′ ∩ T ′); so,M |= ΔK ′ ∩T ′ (Φ) ∪ (K ∩ T ). In particular
M |= ΔK ′ ∩T ′(Φ).

In order to see that the relation ≤Φ of Definition 5 is a total pre-order, it is useful to consider
the strict relation <Φ and the indifference relation 'Φ defined in the following way M <Φ N iff
M ≤Φ N and N 6≤Φ M , and M 'Φ N iff M ≤Φ N and N ≤Φ M .

The following lemma is straightforward consequence of the previous proposition and of the
definition of <Φ

Lemma 31

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then

M <Φ N ⇔ ∃K, ∃T (M |= ΔK(Φ), N |= ΔT (Φ),M |= ΔK∩T (Φ), N 6|= ΔK∩T (Φ))

The following result is an important characterization of <Φ

Lemma 32

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then

M <Φ N ⇔ ∀K (N |= ΔK(Φ)⇒M 6|= K)



Proof: (⇒) Suppose that M <Φ N . Towards a contradiction, let K be a theory such that N |=
ΔK(Φ) and M |= K. Let T such that M |= ΔT (Φ) (by virtue of Lemma 23 such a T exists).
By Lemma 27, M |= ΔCn(K ∪T )(Φ). As M <Φ N , by Proposition 30, N 6|= ΔCn(K ∪T )∩K(Φ).
But Cn(K ∪ T ) ∩ K = K so, N 6|= ΔK(Φ) which is a contradiction.

(⇐) Assume that for any R, if N |= ΔR(Φ) thenM 6|= R. Let K and T be theories such that
M |= ΔK(Φ) and N |= ΔT (Φ). We want to show that M |= ΔK ∩T (Φ) and N 6|= ΔK ∩T (Φ).
By Lemma 28, M |= ΔK ∩T (Φ) or N |= ΔK ∩T (Φ). Let us see that N |= ΔK ∩T (Φ) does not
hold. Otherwise, by hypothesis M 6|= K ∩ T , but M |= ΔK(Φ). Thus, by (IC0), M |= K a
contradiction. Then, necessarily, M |= ΔK ∩T (Φ).

Now we are going to begin the proof of the fact that ≤Φ is a total preorder. Note that the
previous lemmas use at most the postulates (IC0), (IC6) and (IC7).

Lemma 33

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then <Φ is transitive.

Proof: Suppose that M <Φ N and N <Φ P . We want to show that M <Φ P . Towards a
contradiction, suppose that M 6<Φ P . By Lemma 32, there is K such that P |= ΔK(Φ) and
M |= K. As N <Φ P , for any T verifying N |= ΔT (Φ), necessarily N |= ΔK ∩T (Φ); as
M <Φ N , by Lemma 32, M 6|= K ∩ T , which contradicts M |= K.

Next lemma says us that the relation <Φ satisfies one of the properties of modular relations.

Lemma 34

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then

(M 6<Φ N ∧ N 6<Φ M ∧ M <Φ P )⇒ N <Φ P

Proof: Let K ,T ,R be theories such that M |= ΔK(Φ), N |= ΔT (Φ), and P |= ΔR(Φ) (the
existence of such theories is guaranteed by Lemma 23). By Lemmas 28 and 31, M ,N |=
ΔK ∩T (Φ). As M <Φ P , by Proposition 30, P 6|= ΔK ∩T ∩R(Φ). By Lemma 28, N |=
ΔK ∩T ∩R(Φ). By Lemma 31, N <Φ P .

The Lemmas 23 and 32 have as a straightforward consequence that <Φ is irreflexive. This is
stated in the following lemma:

Lemma 35

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then for any valuation M , M 6<Φ M .

Lemmas 33, 34 and 35 ensure that <Φ is a modular relation (actually it is a well-known
fact that if a relation < is irreflexive and transitive the conclusion in lemma 34 is equivalent to
say that the relation is modular). Also it is a well-known fact that in this case, the relation �
associated to <Φ by putting M � N iff M <Φ N or M 6<Φ N and N 6<Φ M , is exactly the
relation ≤Φ and moreover it is a total pre-order. Thus, using these observations, we get the
following result:



Proposition 36

Assume that Δ satisfies (IC0), (IC6) and (IC7). Then ≤Φ is a total pre-order.

The following two lemmas are useful proving that an arbitration merging operator induces a
majority syncretic assignment which represents it in the sense of equation 1.

Lemma 37

Assume that Δ satisfies (IC0), (IC4), (IC5), (IC6) and (IC7). If ΔR1(Φ1) ∪ΔR2(Φ2) 6` ⊥, then
ΔCn(R1∪R2)(Φ1 t Φ2) = Cn(ΔR1(Φ1) ∪ΔR2(Φ2)).

Proof: By hypothesis, there exists M |= ΔR1(Φ1) ∪ ΔR2(Φ2). By (IC0), M |= R1, R2, and
therefore M |= ΔR1(Φ1) ∪R2, and M |= ΔR2(Φ2) ∪R1. By (IC6) and (IC7),

Cn(ΔR1(Φ1) ∪R2) = ΔCn(R1∪R2)(Φ1)

Cn(ΔR2(Φ2) ∪R1) = ΔCn(R1∪R2)(Φ2)

Therefore M |= ΔCn(R1∪R2)(Φ1) ∪ΔCn(R1∪R2)(Φ2). By (IC4) and (IC5),

Cn(ΔCn(R1∪R2)(Φ1) ∪ΔCn(R1∪R2)(Φ2)) = ΔCn(R1∪R2)(Φ1 t Φ2) (5)

Since Cn(ΔCn(R1∪R2)(Φ1) ∪ ΔCn(R1∪R2(Φ2)) = Cn(Cn(ΔR1(Φ1) ∪ R2) ∪ Cn(ΔR2(Φ2) ∪ R1)) we
get easily Cn(ΔCn(R1∪R2)(Φ1)∪ΔCn(R1∪R2(Φ2)) = Cn(ΔR1(Φ1)∪R2 ∪ΔR2(Φ2)∪R1). By (IC0),
ΔR1(Φ1) ⊇ R1 and ΔR2(Φ2) ⊇ R2, so,

Cn(ΔCn(R1∪R2)(Φ1) ∪ΔCn(R1∪R2(Φ2)) = Cn(ΔR1(Φ1) ∪ΔR2(Φ2)) (6)

From equations 5, 6, and transitivity of the equality, we get finally

ΔCn(R1∪R2)(Φ1 t Φ2) = Cn(ΔR1(Φ1) ∪ΔR2(Φ2))

Lemma 38

Assume that Δ satisfies (IC0) and (IC1). If M 6= N , then there are R, T ∈ T such that M |=
ΔR(Φ), N |= ΔT (Φ) and ΔR(Φ) ∪ΔT (Φ) ` ⊥

Proof: Just take R = Th({M}) and T = Th({N}).

Lemma 39

If M |= ΔK(Φ), then M ∈ min(mod(K) ,≤Φ).

Proof: Suppose M |= ΔK(Φ). By (IC0) M |= K. Let N |= K. By Lemma 32, N 6<Φ M .
Therefore, by totality of ≤Φ, M ≤Φ N . This finish the proof of the lemma.

Now we are going to prove that Φ 7→≤Φ is a syncretic assignment when Δ is a merging
operator. We have settled that ≤Φ is a total pre-order. It remains to prove the conditions 1-6 of
Definition 3. Actually, we prove a finer result:



Proposition 40

Assume that Δ satisfies (IC0), (IC6) and (IC7). Let Φ 7→≤Φ the assignment induced by Δ using
Definition 5. Then the following conditions hold:

(i) If Δ satisfies (IC2) then M |= ∧∧Φ , N |= ∧∧Φ ⇒ M 'Φ N , i.e. condition 1 of Definition 3
holds. Also condition 2 of Definition 3 holds, i.e. M |= ∧∧Φ , N 6|= ∧∧Φ ⇒M <Φ N .

(ii) If Δ satisfies (IC1) and (IC3) then for any consistent theories K and T ∀M |= K ∃N |=
T such that N ≤KtT M , i.e. condition 3 of Definition 3.

(iii) If Δ satisfies (IC4) then for any M,N,Φ1,Φ2, M ≤Φ1 N and M ≤Φ2 N entail M ≤Φ1tΦ2
N , i.e. condition 4 of Definition 3.

(iv) If Δ satisfies (IC5) then for any M,N,Φ1,Φ2, M <Φ1 N and M ≤Φ2 N entail M <Φ1tΦ2
N , i.e. condition 5 of Definition 3.

(v) If Δ satisfies (IC5’) then for any M,N,Φ1,Φ2, M <Φ1 N and M <Φ2 N entail M <Φ1tΦ2
N , i.e. condition 5’ in the definition of quasi-syncretic assignment.

(vi) ≤Φ is smooth.

(vii) Furthermore, if Δ satisfies (Maj) then the assignment satisfies condition 7 of majority syn-
cretic assignment.

Proof: (i) First we prove the condition 1, i.e. M 'Φ N under the hypothesisM |= ∧∧Φ and N |=
∧∧Φ. Suppose that M |= ΔK(Φ) and N |= ΔT (Φ). We want to show that M,N |= ΔK∩T (Φ),
what, by definition of ≤Φ (Definition 5), entails M 'Φ N . By (IC0) M |= K,N |= T, therefore
M , N |= K ∩ T. This, together with the hypothesis, entails (∧∧Φ) ∪ (K ∩ T ) is consistent,
moreover M , N |= (∧∧Φ) ∪ (K ∩ T ). By (IC2) ΔK ∩T (Φ) = Cn((∧∧Φ) ∪ (K ∩ T )). Therefore
M , N |= ΔK ∩T (Φ) .
Now, we prove the condition 2, i.e. M |= ∧∧Φ , N 6|= ∧∧Φ ⇒M <Φ N . It is enough to see that
N 6|= ΔK ∩T (Φ) under the assumptions M |= ΔK(Φ) and N |= ΔT (Φ). Thus, suppose the
assumptions hold. If ΔK ∩T (Φ) ∪ T is consistent, by (IC7), and the fact that (K ∩T )∪ T = T ,
we have ΔT (Φ) ⊇ ΔK ∩T (Φ). Since M |= (∧∧Φ) ∪ (K ∩ T ), by (IC2), ΔK ∩T (Φ) = Cn((∧∧Φ) ∪
(K ∩ T )). This equality says us that N 6|= ΔK ∩T (Φ), otherwise N |= ∧∧Φ, a contradiction.

(ii) Let K and T be two consistent theories. We want to show that for any M |= K, there
exists N |= T , such that N ≤KtT M . We claim that ΔK ∩T (K t T ) ∪ T 6 ` ⊥. Towards a
contradiction suppose ΔK ∩T (K tT ) ∪ T ` ⊥. By (IC0) ΔK ∩T (K tT ) ⊇ K ∩ T . From these
two facts, it is easy to get using semantical arguments (Proposition 22) that ΔK ∩T (K tT ) ⊇ K,
that is mod(ΔK ∩T (K t T )) ⊆ mod(K). Since K ∩ T is consistent, by (IC1) ΔK ∩T (K t T ) is
consistent too. Therefore ΔK ∩T (K t T ) ∪ K 6 ` ⊥ . But K ⊇ (K ∩ T ), T ⊇ (K ∩ T ) so, by
(IC3) ΔK ∩T (K t T ) ∪ T 6 ` ⊥, a contradiction. Now, by the claim there exists N |= T and
N |= ΔK ∩T (K t T ). But, if M |= K, M |= K ∩ T so, by Lemma 32 M 6<K tT N. From
this, together with the totality of ≤KtT , follows N ≤KtT M .

(iii) Assume that M ≤Φ1 N and M ≤Φ2 N . We want to show that M ≤Φ1tΦ2 N . Let
K ,T ,R , S be theories such that M |= ΔK(Φ1), M |= ΔT (Φ2), N |= ΔR(Φ1) and N |= ΔS(Φ2)
By (IC0), M |= ΔK(Φ1) ∪ T and M |= ΔT (Φ2) ∪ K. From this, using (IC6) and (IC7),
follows Cn(ΔK(Φ1) ∪ T ) = ΔCn(K ∪T )(Φ1) and Cn(ΔT (Φ2) ∪ K) = ΔCn(K ∪T )(Φ2). Therefore



M |= ΔCn(K ∪T )(Φ1) ∪ ΔCn(K ∪T )(Φ2). By (IC4),

Cn(ΔCn(K ∪T )(Φ1) ∪ ΔCn(K ∪T )(Φ2)) ⊇ ΔCn(K ∪T )(Φ1 t Φ2)

So

M |= ΔCn(K ∪T )(Φ1 t Φ2) (7)

With an analogous reasoning, we get

N |= ΔCn(R∪S)(Φ1 t Φ2) (8)

and N |= ΔCn(R∪S)(Φ1) and N |= ΔCn(R∪S)(Φ2). By hypothesis M ≤Φ1 N and M ≤Φ2 N .
Then, using Definition 5, we getM |= ΔCn( K ∪T )∩Cn(R∪S)(Φ1) andM |= ΔCn(K ∪T )∩Cn(R∪S)(Φ2).
By (IC4)

Cn(ΔCn(K∪T )∩Cn(R∪S)(Φ1) ∪ΔCn(K∪T )∩Cn(R∪S)(Φ2)) ⊇ ΔCn(K∪T )∩Cn(R∪S)(Φ1 t Φ2)

Therefore M |= ΔCn(K∪T )∩Cn(R∪S)(Φ1 tΦ2). This, together with the statements 7 and 8 (above)
and Proposition 30, entails M ≤Φ1tΦ2 N .

(iv) Assume that M <Φ1 N and M ≤Φ2 N . We want to show thatM <Φ1 tΦ2 N . Since
≤Φ1tΦ2 is total, it is enough to show that N 6≤Φ1tΦ2 M . Towards a contradiction, suppose
N ≤Φ1 tΦ2 M . Then, by Proposition 30, there are knowledge bases R1, R2 such that M |=
ΔR1(Φ1 tΦ2) , N |= ΔR2(Φ1 tΦ2) and N |= ΔR1 ∩R2(Φ1 tΦ2) . By (IC5) and Proposition 22,
M |= ΔR1(Φ1) , N |= ΔR2(Φ1) and N |= ΔR1 ∩R2(Φ1) . By Proposition 30, we concluded
N ≤Φ1 M , a contradiction.

(v) Assume that M <Φ1 N and M <Φ2 N . We want to show thatM <Φ1 tΦ2 N . Since
≤Φ1 tΦ2 is a total pre-order, it is enough to show that N 6≤Φ1 tΦ2 M . Towards a contradiction,
suppose N ≤Φ1 tΦ2 M . By Proposition 30, there exist knowledge bases R1, R2 such that M |=
ΔR1(Φ1 t Φ2), N |= ΔR2(Φ1 t Φ2) and N |= ΔR1∩R2(Φ1 t Φ2). By (IC5′), each of the three
previous conditions give two possibilities. For instance from M |= ΔR1(Φ1 t Φ2) we get (using
Proposition 22) M |= ΔR1(Φ1) or M |= ΔR1(Φ2). Thus, in total, 8 cases can occur. We examine
the following 4 cases (the remaining cases can be analyzed in a similar way):

1. M |= ΔR1(Φ1), N |= ΔR2(Φ1) and N |= ΔR1∩R2(Φ1).

2. M |= ΔR1(Φ2), N |= ΔR2(Φ2) and N |= ΔR1∩R2(Φ2).

3. M |= ΔR1(Φ1), N |= ΔR2(Φ2) and N |= ΔR1∩R2(Φ1).

4. M |= ΔR1(Φ1), N |= ΔR2(Φ2) and N |= ΔR1∩R2(Φ2).

In case 1, by Proposition 30, N ≤Φ1 M , a contradiction. In case 2, by Proposition 30, N ≤Φ2 M ,
a contradiction. In case 3, since M <Φ1 N and N |= ΔR1∩R2(Φ1) by Lemma 32, M 6|= R1 ∩R2.
This leads to a contradiction, because from M |= ΔR1(Φ1) and the postulate (IC0), we can
get M |= R1, and therefore M |= R1 ∩ R2. The case 4 leads also to a contradiction. Since
N |= ΔR1∩R2(Φ2) and M <Φ2 N imply, by Lemma 32, M 6|= R1 ∩R2. This contradicts the fact
that M |= R1, which is a consequence of M |= ΔR1(Φ1) using (IC0).



(vi) Now we prove that ≤Φ is smooth. LetM |= K, and suppose thatM 6∈ min(mod(K) ,≤Φ
). By Lemma 39M 6|= ΔK(Φ). Define H = {R : M |= ΔR(Φ)}. We claim that for any R ∈ H,
ΔK(Φ) ∪ R is inconsistent. Towards a contradiction, suppose ΔK(Φ) ∪ R consistent. Then, by
(IC6) and (IC7),

ΔCn(K ∪R)(Φ) = Cn(ΔK(Φ) ∪ R) (9)

Since M |= K , ΔR(Φ) ∪ K , for any R ∈ H . By (IC6) and (IC7) we have

ΔCn(K ∪R)(Φ) = Cn(ΔR(Φ) ∪ K) (10)

From 9 and 10 follows Cn(ΔR(Φ) ∪ K) = Cn(ΔK(Φ) ∪ R). Since M |= ΔR(Φ) ∪ K, we con-
clude M |= ΔK(Φ) which is a contradiction. Thus, we have that ΔK(Φ) ∪ R is inconsistent.
Take N |= ΔK(Φ). We know, by Lemma 39, that N ∈ min(mod(K),≤Φ). Furthermore, by the
inconsistency of ΔK(Φ) ∪ R for any R ∈ H, N 6|= R for any R verifying M |= ΔR(Φ). Finally,
Lemma 32 allows to conclude N <Φ M .

(vii) Assume that Δ satisfies (Maj). Suppose M <Φ2 N. We want to show that there exists n
such that M <Φ1tΦ2n N . By (Maj) there exists n such that ΔK(Φ1 t Φ2

n) ⊇ ΔK(Φ2) for any
K ∈ T . Towards a contradiction suppose M 6<Φ1tΦ2n N . By Lemma 32, there exists K such
that N |= ΔK(Φ1 t Φ2n) and M |= K. Therefore N |= ΔK(Φ2) and M |= K. Again, by Lemma
32, we have M 6<Φ2 N , a contradiction.

Now we prove that the assignment Φ 7→≤Φ defined starting from Δ, indeed represents Δ.
More precisely we have the following:

Proposition 41

Assume that Δ satisfies (IC0), (IC1), (IC6) and (IC7). Then ΔK(Φ) = Th(min(mod(K) ,≤Φ))

Proof: It is enough to prove that mod(ΔK(Φ)) = min(mod(K) ,≤Φ). First, we note that
mod(ΔK(Φ)) ⊆ min(mod(K) ,≤Φ) is exactly what says the Lemma 39. Now, we prove the
reverse inclusion, i.e. mod(ΔK(Φ)) ⊇ min(mod(K),≤Φ). Take M ∈ min(mod(K) ,≤Φ). The
proof of the smoothness property above, says us that M is necessarily in ΔK(Φ), otherwise we
can find N |= K such that N <Φ M what contradicts the minimality of M .

The previous results give us the first half part of Theorem 4. Our next goal is to show the
second part of that Theorem, i.e. that a syncretic assignment induces a merging operator defined
by the equation 1. Actually we are going to prove a result that give us more precise relationships
between the conditions satisfied by the assignment and the postulates satisfied by the operator
induced.

Proposition 42

Let Φ 7→≤Φ be an assignment, mapping a knowledge multi-set Φ in a smooth total preorder ≤Φ.
Then the application Δ : S×T → T defined by ΔK(Φ) = Th(min(mod(K) ,≤Φ)) is well defined
and satisfies (IC0), (IC1), (IC6) and (IC7). Moreover, the following conditions hold

(i) If the assignment satisfies conditions 1 and 2 of Definition 3 then Δ satisfies (IC2).

(ii) If the assignment satisfies condition 3 of Definition 3 then Δ satisfies (IC3).



(iii) If the assignment satisfies condition 4 of Definition 3 then Δ satisfies (IC4).

(iv) If the assignment satisfies condition 5 of Definition 3 then Δ satisfies (IC5).

(v) If the assignment satisfies condition 5’ of quasi-syncretic assignment definition then Δ satisfies
(IC5’).

(vi) If the assignment satisfies condition 7 of majority syncretic assignment definition then Δ
satisfies (Maj).

Proof: ClearlyΔ is well defined. By definition, it follows thatmod(ΔK(Φ)) ⊆ mod(K) therefore
ΔK(Φ) ⊇ K, i.e. (IC0) holds. Note that if K 6 ` ⊥ then mod(K) 6= ∅. Thus, by the smoothness
of ≤Φ, it follows min(mod(K) ,≤Φ) 6= ∅; therefore ΔK(Φ) 6 ` ⊥. Thus, (IC1) holds.

Let us verify (IC6). If ΔK1(Φ) ∪ K2 ` ⊥ then, trivially, Cn(ΔK1(Φ) ∪ K2) ⊇ ΔK1 ∪K2(Φ).
Suppose now that ΔK1(Φ) ∪ K2 6` ⊥. Let M |= ΔK1(Φ) ∪ K2 then M ∈ min(mod(K1) ,≤Φ)
and M |= K2. Let N |= K1 ∪ K2 , in particular N |= K1 . So M ≤Φ N . This means that
M ∈ min(mod(K1 ∪K2) ,≤Φ). Therefore Cn(ΔK1(Φ) ∪K2) ⊇ ΔCn(K1 ∪K2)(Φ). This completes
the verification of postulate (IC6).

Now, we verify (IC7). Assume that ΔK1(Φ) ∪ K2 is consistent. This together with (IC0) en-
tails the consistency ofK1 ∪K2. Then there existN |= ΔK1(Φ)∪K2 andM |= ΔCn (K1 ∪K2)(Φ).
We want to show thatM |= ΔK1(Φ) ∪ K2. Since N |= ΔK1(Φ) ∪ K2, by (IC0), N |= K1 ∪ K2 .
So, by minimality of M in mod(K1 ∪K2), M ≤Φ N . Also, by (IC0), M |= K1 . So, by mini-
mality of N in mod(K1), N ≤Φ M . These relations entail M 'Φ N . Then M is minimal in
K1, so, by definition, M |= ΔK1(Φ) . Note that (IC0) and the fact that M |= ΔCn (K1 ∪K2)(Φ)
entail M |= K2. Thus, M |= ΔK1(Φ) ∪ K2.

Next, we are going to prove the assertions (i) to (iv) of the proposition:

(i) We suppose conditions 1 and 2 of Definition 3. Assume that K ∪ (∧∧Φ) is consistent We want
to see that ΔK(Φ) = Cn(K ∪ (∧∧Φ)). Let M |= K ∪ (∧∧Φ). Since M |= ∧∧Φ, conditions 1 and
2 syncretic assignment, says that M is minimal, in particular, M ∈ min(mod(K) ,≤Φ)) , that is
to say M |= ΔK(Φ). This proof that Cn(K ∪ (∧∧Φ)) ⊇ ΔK(Φ) For the inverse inclusion, let
us suppose that M |= ΔK(Φ); by definition M ∈ min(mod(K) ,≤Φ)). Towards a contradiction,
suppose that M 6|= K ∪ (∧∧Φ) . Since M |= K, necessarily M 6|= ∧∧Φ. Since K ∪ (∧∧Φ) is
consistent, there is N such that N |= K ∪ (∧∧Φ) . Then, by condition 2, N <Φ M . But this,
together with N |= K , contradicts the fact M ∈ min(mod(K) ,≤Φ)) . Thus M |= K ∪ (∧∧ Φ) .
We have proved ΔK(Φ) ⊇ K ∪ (∧∧Φ) .

(ii) Suppose that condition 3 of Definition 3 holds. Suppose that T ⊇ K, R ⊇ K and
ΔK(T tR) ∪ T 6 ` ⊥. We want to show that ΔK(T tR) ∪ R 6 ` ⊥. Let N |= ΔK(T tR) ∪ T ,
then N ∈ min(mod(K) ,≤T tR)) and N |= T By condition 3, there exists M |= R such that
M ≤T tR N . Since R ⊇ K, necessarily M |= K . Necessarily M is minimal in mod(K) with
respect the pre-order ≤T tR. From what follows ΔK(T tR) ∪ R 6 ` ⊥.

(iii) Assume that condition 4 of Definition 3 holds. We want to see that (IC4) is satisfied,
i.e. Cn(ΔK(Φ1) ∪ ΔK(Φ2)) ⊇ ΔK(Φ1 t Φ2). If ΔK(Φ1) ∪ ΔK(Φ2) ` ⊥, the verification
is trivial. Thus, suppose ΔK(Φ1) ∪ ΔK(Φ2) consistent and let M be a valuation such that
M |= ΔK(Φ1) ∪ΔK(Φ2) . By definition,M ∈ min(mod(K) ,≤Φ1) ∩min(mod(K) ,≤Φ2). In par-
ticular, for any N ∈ mod(K), M ≤Φ1 N andM ≤Φ2 N . By condition 4, M ≤Φ1 tΦ2 N . Thus,
M ∈ min(mod(K) ,≤Φ1 tΦ2)), i.e. M |= ΔK(Φ1 t Φ2) . Therefore Cn(ΔK(Φ1) ∪ ΔK(Φ2)) ⊇



ΔK(Φ1 t Φ2) .

(iv) Assume that condition 5 of Definition 3 holds. We want to see that (IC5) is satisfied, i.e. if
ΔK(Φ1) ∪ ΔK(Φ2) is consistent then ΔK(Φ1 t Φ2) ⊇ Cn(ΔK(Φ1) ∪ ΔK(Φ2)). By hypothesis,
there exists N such that N |= ΔK(Φ1) ∪ ΔK(Φ2) ,. Let M be such that M |= ΔK(Φ1 t Φ2).
We want to show that M |= ΔK(Φ1) ∪ ΔK(Φ2). By (IC0), we get easily that N |= K; from
this and the fact that (M ∈ min(mod(K) ,≤Φ1 tΦ2)), we get M ≤Φ1 tΦ2 N . Since M |= K ,
if M 6|= ΔK(Φ1) then N <Φ1 M . By the totality of ≤Φ2 and the fact that N is minimal with
respect to this pre-order, we also have N ≤Φ2 M By condition 5, N <Φ1 tΦ2 M , a contra-
diction. Thus, M |= ΔK(Φ1). In an analogous way, we prove that M |= ΔK(Φ2). Therefore
M |= ΔK(Φ1) ∪ ΔK(Φ2). That is to say ΔK(Φ1 t Φ2) ⊇ Cn(ΔK(Φ1) ∪ ΔK(Φ2)).

(v) Assume that condition 5’ of syncretic assignment definition holds. We want to see that (IC5’)
is satisfied, i.e. if ΔK(Φ1) ∪ ΔK(Φ2) is consistent then ΔK(Φ1 t Φ2) ⊇ (ΔK(Φ1) ∩ΔK(Φ2)).
Take M |= ΔR(Φ1 t Φ2). Towards a contradiction suppose M 6|= ΔR(Φ1) and M 6|= ΔR(Φ2).
Let P |= ΔR(Φ1) ∪ ΔR(Φ2), in particular P |= ΔR(Φ1) and P |= ΔR(Φ2). By definition of Δ,
P <Φ1 M and P <Φ2 M . Then, by 5

′, P <Φ1tΦ2 M and by the lemma 32, P 6|= R. But
P |= ΔR(Φ1), so, by (IC0), P |= R, a contradiction.

(vi) Assume that condition 7 of majority syncretic assignment definition holds. Given Φ1 and
Φ2 we want to show that there exists n such that for any K, ΔK(Φ1 t Φ2n) ⊇ ΔK(Φ2). As
usual, we make a semantical argument based on Proposition 22. Towards a contradiction, sup-
pose M 6|= ΔK(Φ2) and M |= K. By smoothness, there exists N such that N |= ΔK(Φ2) and
N <Φ2 M. By condition 7, there exists n such that N <Φ1tΦ2n M. Since N |= K, by Lemma 32,
M 6|= ΔK(Φ1 t Φ2n). Thus, ΔK(Φ1 t Φ2n) ⊇ ΔK(Φ2).

Putting together Propositions 36, 40, 41 and 42 we obtain Theorems 4, 6 and 8.

Having proved Theorem 4, the task of proving Theorem 10 is reduced to prove Proposition 44.
But before, we state a lemma used in the proof of Proposition 44.

Lemma 43

Let Δ a merging operator and Φ 7→≤Φ the syncretic assignment given by Theorem 4. Suppose
M 'Φ N,M 6= N , M |= ΔR(Φ) and N |= ΔT (Φ), then for all valuations P and Q if P |=
ΔR(Φ) ∩ΔT (Φ) and Q |= ΔR(Φ) ∩ΔT (Φ) then P 'Φ Q.

Proof: It is a straightforward consequence of the fact that the relation 'Φ is transitive, and the
fact mod(ΔR(Φ) ∩ΔT (Φ)) = mod(ΔR(Φ)) ∪mod(ΔT (Φ)).

Proposition 44

Let Δ a merging operator and Φ 7→≤Φ the syncretic assignment given by Theorem 4. Then Δ
satisfies (Arb) iff assignment Φ 7→≤Φ satisfies the condition 8 of arbitration syncretic assignment
definition.

Proof: (only if) We want to show condition 8. More precisely, we assume M <H1 N , M <H2 P
and N 'H1tH2 P and we want to show M <H1tH2 N . Take R1, R2,K1,K2, T1, T2 such that

1. M |= ΔR1(H1),ΔR2(H2).



2. N |= ΔK1(H1), P |= ΔK2(H2),K1 ∪K2 ` ⊥ (see the lemma 38)

3. N |= ΔT1(H1 tH2), P |= ΔT2(H1 tH2).

To realize these conditions it is enough to put R1 = R2 = Th(M), K1 = T1 = Th(N) and
K2 = T2 = Th(P ). Define

S1 = ΔCn(R1∪R2)(H1 tH2) ∩ Cn(ΔK1(H1) ∪ΔT1(H1 tH2))

S2 = ΔCn(R1∪R2)(H1 tH2) ∩ Cn(ΔK2(H2) ∪ΔT2(H1 tH2))

We are going to see that S1, S2 verify the hypotheses of the postulate of arbitration.
Affirmation 1. N,P 6|= ΔCn(R1∪R2)(H1 tH2).
Proof: Towards a contradiction, suppose N |= ΔCn(R1∪R2)(H1 t H2). By Lemma 37, N |=
ΔR1(H1), which contradicts the fact M <H1 N. In a similar way, we obtain a contradiction if we
suppose that P |= ΔCn(R1∪R2)(H1 tH2).
Affirmation 2 N |= S1, P |= S2.
Proof: This follows straightforward from the facts N |= ΔK1(H1) ∪ ΔT1(H1 t H2) and P |=
ΔK2(H2) ∪ΔT2(H1 tH2).
Affirmation 3 N 6|= S2, P 6|= S1.
Proof: Since K1 ∪K2 ` ⊥,

Cn(ΔK1(H1) ∪ΔT1(H1 tH2)) ∪ Cn(ΔK2(H2) ∪ΔT2(H1 tH2)) ` ⊥.

Since N |= ΔK1(H1) ∪ ΔT1(H1 t H2), we have N 6|= Cn(ΔK2(H2) ∪ ΔT2(H1 t H2)), so, by
Affirmation 1 and Proposition 22, necessarily N 6|= S2. Similarly we obtain P 6|= S1. Therefore

S1 6⊆ S2, S2 6⊆ S1 (∗)

Affirmation 4 min(mod(S1),≤H1) = mod(ΔCn(R1∪R2)(H1 tH2)).
From the definition of R1, R2,K1 and T1 it is easy to see that mod(S1) = {M,N}. The fact
M <H1 N says us that min(mod(S1),≤H1) = {M}. On the other hand, it is easy to see that
mod(ΔCn(R1∪R2)(H1tH2)) = {M}. Therefore min(mod(S1),≤H1) = mod(ΔCn(R1∪R2)(H1tH2)).

With an analogous argument we can prove the following:
Affirmation 5 min(mod(S2),≤H2) = mod(ΔCn(R1∪R2)(H1 tH2)).

From affirmations 4 and 5, we get

ΔS1(H1) = ΔS2(H2) = ΔCn(R1∪R2)(H1 tH2) (∗∗)

From Cn(ΔK1(H1) ∪ΔT1(H1 tH2)) ∪ Cn(ΔK2(H2) ∪ΔT2(H1 tH2)) ` ⊥, we get
mod(ΔK1(H1) ∪ΔT1(H1 tH2)) ∩mod(ΔK2(H2) ∪ΔT2(H1 tH2)) = ∅.
In the proof of affirmation 4 we have seen that ΔR1(H1)∪ΔK1(H1) ` ⊥. Similarly, one has that
ΔR2(H2) ∪ΔK2(H2) ` ⊥
Thus

mod(S1)\mod(S2) = mod(ΔK1(H1) ∪ΔT1(H1 tH2))

mod(S2)\mod(S1) = mod(ΔK2(H2) ∪ΔT2(H1 tH2))



By definition, S1 � S2 = Th (mod(S1) M mod(S2)), so,

S1 � S2 =Th(mod(ΔK1(H1) ∪ΔT1(H1 tH2)) ∪mod(ΔK2(H2) ∪ΔT2(H1 tH2)))

=Th(mod((ΔK1(H1) ∪ΔT1(H1 tH2)) ∩ (ΔK2(H2) ∪ΔT2(H1 tH2))))

Affirmation 6 If Q1 |= ΔT1(H1 tH2)), Q2 |= ΔT2(H1 tH2) then Q1 'H1tH2 Q2.
Proof: Use the facts N 'H1tH2 P,, N |= ΔT1(H1 t H2)) and P |= ΔT2(H1 t H2) and the
transitivity of 'H1tH2 .

Since

mod((ΔK1(H1) ∪ΔT1(H1 tH2)) ⊆ mod(ΔT1(H1 tH2))

mod(ΔK2(H2) ∪ΔT2(H1 tH2))) ⊆ mod(ΔT2(H1 tH2))

we can assure

mod((ΔK1(H1) ∪ΔT1(H1 tH2)) ∩ (ΔK2(H2) ∪ΔT2(H1 tH2)))

⊆ mod(ΔT1(H1 tH2) ∩ΔT2(H1 tH2))

Thus, the models of S1 � S2 are in the same level regarding the order ≤H1tH2 , and therefore
min(mod(S1 � S2),≤H1tH2) = mod(S1 � S2). That is to say

ΔS1�S2(H1 tH2) = S1 � S2 (∗ ∗ ∗)

The conditions (∗), (∗∗), (∗∗∗) say that the theories S1, S2 verify the hypotheses of the arbitration
postulate, and therefore

ΔS1∩S2(H1 tH2) = ΔS1(H1) (11)

By (∗∗) we have that M |= ΔS1(H1), also N 6|= ΔS1(H1), to be M <H1 N. By equation 11,
M |= ΔS1∩S2(H1 tH2), N 6|= ΔS1∩S2(H1 tH2). Since N |= S1, N |= S1 ∩ S2. This means that
N is a model of S1 ∩ S2 which is not minimal for the pre-order ≤H1tH2 . Since M is a minimal
model of S1 ∩ S2 for the pre-order ≤H1tH2 , necessarily M <H1tH2 N.

(if) Now suppose that Φ 7→≤Φ is an arbitration syncretic assignment, then we are going to
prove that Δ satisfies (Arb). In order to do that, suppose that we have two theories K1,K2, such
that

K1 6⊆ K2, K2 6⊆ K1,

ΔK1(H1) = ΔK2(H2),

ΔK1�K2(H1 tH2) = K1 �K2

We want to show thatΔK1∩K2(H1tH2) = ΔK1(H1). First, we will prove thatΔK1∩K2(H1tH2) ⊇
ΔK1(H1) Towards a contradiction, suppose that there exists N such that N |= ΔK1∩K2(H1tH2)
such that N 6|= ΔK1(H1).
By (IC0), N |= K1 ∩K2. Thus, N ∈ mod(K1) ∪mod(K2). There are three cases to examine:



1. N ∈ mod(K1) ∩mod(K2).

2. N ∈ mod(K1), N /∈ mod(K2).

3. N /∈ mod(K1), N ∈ mod(K2).

The cases 2 and 3 they are symmetrical. Thus, we will only study the first two cases.

Case 1).- N |= K1 N |= K2. By the hypotheses, there is M such that M |= ΔK1(H1) =
ΔK2(H2),. This and the fact N 6|= ΔK1(H1) entail M <H1 N and M <H2 N. By condition
5 of the arbitration syncretic assignment , we get M <H1tH2 N . But M |= K1 ∩ K2 and
N |= ΔK1∩K2(H1 tH2) says, by Lemma 32, M 6<H1tH2 N , a contradiction.

Case 2).- Suppose that N |= K1 and N 6|= K2. Since K1 6⊆ K2, there is P |= K2such thatP 6|=
K1. Since ΔK1(H1) = ΔK2(H2), we have that neither N neither P are models of ΔK1(H1) =
ΔK2(H2). For any M |= ΔK1(H1) we have M <H1 N and M <H2 P . It is clear that N,P |=
K1 �K2, because N,M ∈ mod(K1) M mod(K2). Since ΔK1�K2(H1 tH2) = K1 �K2,, necessarily
N,P |= ΔK1�K2(H1 t H2). Moreover N 'H1tH2 P . Condition 8 of the arbitration syncretic
assignment leads to M <H1tH2 N . But N |= ΔK1∩K2(H1 t H2) and M |= K1 ∩ K2 entail, by
Lemma 32, M 6<H1tH2 N , a contradiction.

To finish the proof, it remains to see that ΔK1(H1) ⊇ ΔK1∩K2(H1 tH2).
Affirmation 7 If M |= ΔK1(H1), N |= K1, N 6|= K2, then M <H1 N.
Proof: Towards a contradiction supposeN ≤H1 M . Then, by Theorem 4,M ∈ min(mod(K1),≤H1
) and therefore N is a minimal model of K1 with respect to ≤H1 . So, N |= ΔK1(H1) and, by
hypothesis, we have that N |= ΔK2(H2). (IC0) entails N |= K2, a contradiction.
Affirmation 8 If M |= ΔK1(H1), N

′ 6|= K1, N ′ |= K2, then M <H2 N
′.

Proof: Analogous to the the proof of previous affirmation.

Now takeN,N ′ ∈ mod(K1�K2). SinceΔK1�K2(H1tH2) = K1�K2, necessarilyN 'H1tH2 N
′.

Take any M |= ΔK1(H1). Affirmations 7 and 8, and the condition 8 of arbitration syncretic
assignment entail M <H1tH2 N.

Now suppose that N |= K1 ∪ K2, that is N ∈ mod(K1) ∩ mod(K2). If M |= ΔK1(H1) =
ΔK2(H2), then M ≤H1 N and M ≤H2 N . By condition 4 of the syncretic assignment, we have
M ≤H1tH2 N . Now, observe that mod(K1 ∩K2) = mod(K1 ∪K2) ∪mod(K1 �K2). Therefore,
any model M of ΔK1(H1) is a minimal model of K1 ∩K2 with respect to pre-order ≤H1tH2 , i.e.
M is a model of ΔK1∩K2(H1 tH2).

As a straightforward corollary of previous proposition we have Theorem 10.

Now, we are going to prove Proposition 13. We prove the part (i). Part (ii) is proved in a
similar way. We begin with the following observation, the proof of which is trivial.

Observation 45

dΣ(M , Φ1 t Φ2) = dΣ(M , Φ1) + dΣ(M , Φ2)

Proposition 46



Φ 7→≤ΣΦ is a majority syncretic assignment.

Proof: ≤ is reflexive, transitive and total over R+. This entails ≤ΣΦ is reflexive, transitive and
total, i.e. ≤ΣΦ is a total pre-order. When dΣ(M , Φ) = dΣ(N , Φ) we write M 'ΣΦ N . Now
we check that Φ 7→≤ΣΦ verify the conditions of a majority syncretic assignment.

1. Suppose M |= ∧∧Φ , N |= ∧∧Φ , then M |= K , ∀K ∈ Φ and N |= K , ∀K ∈ Φ .
Therefore, d(M , K) = 0 , ∀K ∈ Φ and d(N , K) = 0 , ∀K ∈ Φ . From this follows
dΣ(M , Φ) = 0 , dΣ(N , Φ) = 0 . So, dΣ(M , Φ) = dΣ(N , Φ) , i.e. M 'ΣΦ N .

2. Suppose M |= ∧∧Φ , N 6|= ∧∧Φ , then there exists K ∈ Φ such that N 6|= K . Therefore
dΣ(N , K) > 0 and dΣ(M , Φ) < dΣ(N , Φ) . Thus M <ΣΦ N .

3. Let M |= K, so, d(M, K) = 0. Since d(M, T ) = inf{ d(M,N) : N |= T}, by condition
3 of pseudo-distance, there exists N |= T such that d(M, T ) = d(M, N). But d(N, K) =
inf{ d(M ′, N) :M ′ |= K} ≤ d(M,N). Thus, by Observation 45, dΣ(N, K t T ) = dΣ(N, K) +
dΣ(N, T ). So, dΣ(N, KtT ) = dΣ(N, K) ≤ dΣ(M,N) = dΣ(M, KtT ), this impliesN ≤ΣKtT M .

4. Suppose M ≤ΣΦ1 N and M ≤ΣΦ2 N. By definition, dΣ(M, Φ1) ≤ dΣ(N, Φ1) and
dΣ(M, Φ2) ≤ dΣ(N, Φ2). Thus dΣ(M, Φ1) + dΣ(M, Φ2) ≤ dΣ(N, Φ1) + dΣ(N, Φ2). By
Observation 45, M ≤ΣΦ1tΦ2 N .

5. Suppose M <ΣΦ1 N , M ≤ΣΦ2 N . An argument similar to previous one, but using the
strict monotony of the sum instead of large monotony, leads to M <ΣΦ1 tΦ2 N .

6. We want to show that ≤ΣΦ is smooth. Suppose M |= K and M is not a minimal model of
K with respect to pre-order ≤ΣΦ . The set {dΣ(P , Φ) : P |= K } is contained in R

+ therefore
it has an great lower bound (infimum). Take N |= K such that dΣ(N , Φ) ≤ dΣ(P , Φ) for
any P |= K (the existence of a such N is guaranteed by condition 3 of pseudo-distance). By
definition of ≤ΣΦ , necessarily N is a minimal model of K with respect to ≤ΣΦ. Furthermore,
N <ΣΦ M .

7. Suppose M <ΣΦ2 N . We want to show that there exist n such that M <Φ1tΦn2 N . By
the hypotheses we have dΣ(M , Φ2) < dΣ(N , Φ2) . By the Archimedean property of R there
exists n such that

n ∙ ((dΣ(N , Φ2) − dΣ(M , Φ2)) > dΣ(M , Φ1) − dΣ(N , Φ2)

Therefore
dΣ(M , Φ1) + n ∙ dΣ(M , Φ2) < dΣ(N , Φ2) + n ∙ dΣ(N , Φ2)

Finally by Observation 45, we have

dΣ(M , Φ1 t Φ
n
2 ) < dΣ(N , Φ1 t Φ

n
2 )

The proofs that Φ 7→≤maxΦ and Φ 7→≤GmaxΦ are quasi-syncretic and arbitration assignments
respectively are left as an exercise for the reader.



We finish this section of proofs with the proof of Theorem 15.

Proof of Theorem 15: We want to show that if T ⊇ R then there exists n such that
(ΔΣR)

n(Φ, T ) ⊇ T . First we prove the following claim:
Claim.- Assume that S ⊇ R and T ⊇ R. We are going to prove that there exists n such that(
ΔΣR
)n
(S t T ) ⊇ T .

Proof of the claim: Put a the distance between S and T , i.e. d(S, T ) = a. First suppose that
a = ∞. This means that for any M and N such that M |= S,N |= T , d(M,N) = ∞. For any
P |= R there are M and N such that M |= S,N |= T,, d(P, S) = d(P,M) and d(P, T ) = d(P,N).
But, using the Triangle Inequality, we have dΣ(P, StT ) = d(P, S)+d(P, T ) = d(P,M)+d(P,N) ≥
d(M,N) =∞. Thus, dΣ(P, StT ) =∞. Therefore any model of R is minimal with respect to pre-
order ≤ΣStT . By definition, Δ

Σ
R(StT ) = R. Since Δ

Σ
R
2
(S, T ) = ΔΣR(Δ

Σ
R(StT )tT ) = Δ

Σ
R(RtT ),

by (IC2), ΔΣR
2
(S, T ) = Cn(R ∪ T ). In particular ΔΣR

2
(S, T ) ⊇ T.

Now suppose that a < ∞. By the property 3 of pseudo-distances there are valuations M
and N such that M |= S,N |= T, and d(M,N) = a, so, d(M,N) = d(M,T ) = d(N,S) = a.
We claim that min{dΣ(P, S t T ) : P |= R} = a. By hypothesis T ⊇ R, so N |= R. Since
dΣ(N,S t T ) = d(N,S) + d(N,T ), and d(N,T ) = 0, necessarily dΣ(N,S t T ) = d(N,S) = a.
Therefore min{dΣ(P, S t T ) : P |= R} ≤ a. But, using the Triangle Inequality dΣ(P, S t T ) =
d(P, S) + d(P, T ) = d(P,M ′) + d(P,N ′) ≥ d(M ′, N ′) ≥ a. So, min{dΣ(P, S t T ) : P |= R} = a.
Since N verifies dΣ(N,S t T ) = a, necessarily N is a minimal model of R with respect to pre-
order ≤ΣStT . By definition, N |= Δ

Σ
R(S t T ), in particular (Δ

Σ
R(S t T ) ∪ T ) ∪ R is consistent.

By (IC2), ΔΣR(Δ
Σ
R(S t T ) t T ) = Cn(Δ

Σ
R(S t T ) ∪ T ∪ R) = Cn(Δ

Σ
R(S t T ) ∪ T ). In particular

ΔΣR(Δ
Σ
R(S t T ) t T ) ⊇ T . This finish the proof of the claim.

In order to finish the proof of the proposition, put S = ΔΣR(Φ t T ). By the claim we get
(ΔΣR)

3(Φ, T ) ⊇ T.
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