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V. Integration in locally compact Hausdorft spaces-Part II

T.V. Panchapagesan

This part consists of Sections 20-24. The classical Lusin’s theorem is generalized in Section 20
for o(P)- measurable functions with respect to an X-valued o-additive measure m defined on
‘P where X is a Banach space or an IcHs and P = B(T) ( resp. B.(T), Bo(T), 6(C), 6(Cp)) and
it is deduced that C.(T) (resp. Co(T)) is dense in £,(m) and L,(c(P),m), 1 < p < oo for
both the cases of X when P = 6(C) or §(Co) (resp. when P = By(T) or B.(T) or B(T')). Section
21 is devoted to the study of the Lusin measurability of functions and sets. Let m : B(T) — X
(resp. n: §(C) — X) be o-additive and Borel regular (resp. and (C)-regular). Then it is shown
that that a scalar function f on T is Lusin m-measurable if and only if it is m-measurable (see
Theorem 21.5); and it is n-measurable if and only if it is Lusin n-measurable with N(f) being o-
bounded(see Theorem 21.6). Section 22 is devoted to improve Theorem 4.2 of [P8] and Theorem
12.2 of [P10] for m and n. Section 23 is devoted to present the Baire version of Corollary 75,
Appendix I of [T] and to generalize it to o-additive regular vector measures. Finally, Section
24 describes the duals of £4(m) and £4(n) when X is a Banach space and gives the vector
measure analogues of Theorem 4.1 and Proposition 5.9 of [T]. Of course, some of the ideas and
techniques found in [T] are suitably adapted in this study.

20. GENERALIZED LUSIN’S THEOREM AND ITS VARIANTS

In the sequel, T' denotes a locally compact Hausdorff space and U, C, Cy are as in Definition
16.4 of [P10]. Then B(T) = o(U), the o-algebra of the Borel sets in T'; B.(T') = o(C), the o-ring
of the o-Borel sets in T' and By(T') = 0(Cp), the o-ring of the Baire sets in T. 4(C) and §(Co)
denote the J-rings generated by C and Cy.

Notation 20.1. C.(T) = {f : T — K f continuous with compact support}; CZ(T) = {f €
Ce(T) : freal}; CHT)={f € C(T): f>0}; Co(T) = {f : T — K fis continuous and vanishes
at infinity in T}; C5(T) = {f € Co(T) : freal} and C; (T) = {f € C§(T) : f > 0}. All these
spaces are provided with the supremum norm || - ||7.

As in Parts I, IIT and IV, X denotes a Banach space or an IcHs over K (Ror €) with T, the
family of all continuous seminorms on X, unless otherwise mentioned and it will be explicitly
specified whether X is a Banach space or an lcHs. Let P = B(T')(resp. B.(T), Bo(T), 6(C), 6(Co))
and let m : P — X be o-additive and P-regular (see Definition 16.7 of [P10]). In this section we
obtain the generalized Lusin’s theorem and its variants for o(P)-measurable scalar functions on
T, with respect to m when X is a Banach space and when X is an IcHs. Then we deduce that
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C.(T) (resp. Co(T)) is dense in L,(m) and L,(c(P), m), 1 < p < oo, for both the cases of X
when P = §(C) or §(Cp) (resp. when P = By(T) or B.(T) or B(T)).

Theorem 20.2(Generalized Lusin’s theorem for m on B(T) ).

(i) (m normed space-valued). Let X be a normed space and m : B(T) — X be o-additive
and Borel regular. Suppose f : T'— K is Borel measurable. Then, given € > 0, there exists
g € C.(T) such that

lm[[(N(f = 9)) = [[m[|({t € T': f(t) — g(t) #0}) <e (20.2.1)

and
gl < fllT- (20.2.2)

(ii) (m lcHs-valued). Let X be an lcHs and let m : B(T') — X be o-additive and Borel
regular and let f be as in (i). Then, given € > 0 and ¢ € I, there exists g, € C.(T') such
that

[lm|[(N(f —gq)) <€ (20.2.3)

and
lgallr < I f]lT- (20.2.4)

Proof. (i) Let X be the Banach completion of X. Then m : B(T) — X C X and hence
m can be considered as Banach space valued. As m is Borel inner regular in 7T, there exists
K € C such that ||m|[(T\K) < §. By hypothesis, fxx is B(T)-measurable and vanishes in
T\K. If fxk is bounded in T, then the proof of Theorem 2.23 of [Rul] for the case of bounded
Borel functions holds here if we replace p by ||m||, since ||m|| is o-subadditive on B(T') by
Proposition 2.2 of [P8]|. Hence there exists g € C.(T') such that ||m||(N(fxx —g)) < §. Then
lm|[(N(f—g)) < |m||(N(fxx —9))+||m||[(T\K) < e. When fxx is unbounded, the argument
in the proof of the said theorem of [Rul| for the unbounded case also holds here since ||ml]|
is continuous on B(T') by Proposition 2.2 of [P8] and hence there exists g € C.(T') such that

[lm|[(N(fxx —g)) < § so that by the above argument ||m||(N(f—g)) < e. Hence (20.2.1) holds.

To prove (20.2.2), it suffices to restrict to the case ||f||r = M < co. We argue as in the last

part of the proof of the said theorem of [Rul]. Let g € C.(T) satisfy (20.2.1). Replacing g by

g1 = @ og, where p(z) = 2z if |z| < M and ¢(z) = 222 if |2| > M, we deduce that g; € C.(T),

2|

||lm||[(N(f — 1)) < € and ||g1]|7 < || f||7- Hence (20.2.1) and (20.2.2) hold for g¢;.

(i) Given g € I', my =Il;om : B(T) — X, C )f(vq is o-additive and Borel regular and hence
by (i), (ii) holds.
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To obtain the variants of Theorem 20.2 when m : R — X is o-additive and R-regular, where
R = B.(T) (resp. By(T), 6(C), 6(Cp)), we give the following lemmas.

Lemma 20.3. Let X be a normed space or an IcHs. Then an X-valued o-additive measure
on By(T) (resp. on 6(Cp)) is Bo(T')-regular (resp. d(Cp)-regular).

Proof. The result for §(Cp) holds by Theorem in [DL| while that for By(7") holds by Remark
on pp.93-94 of [DL].

Lemma 20.4.

(i) Let X be a normed space and let n. : §(C) — X (resp. ng : 6(Cp) — X) be o-additive and
let n. be 6(C)-regular. If f : T — K is B.(T')-measurable (resp. Bo(7T')-measurable) and if A
is a compact in T such that f(t) = 0 for t € T'\ A, then, given € > 0, there exists g € C.(T)
such that

[Inc[[(N(f —g)) <e (204.1)  (resp.[[nol[(N(f —g)) <e (20.4.2))

and moreover, we can choose g € C.(T') such that

gllr < 1 f]lz- (20.4.3)

(ii) If X is an IcHs in (i) and if the remaining hypotehsis of n. (resp. ng) and of f remain the
same, then, given ¢ € I' and € > 0, there exists g, € C.(T") such that

Inellg(N(f —gq)) <€ (20.4.4) (resp.[|mollg(N(f — g4)) <€  (20.4.5))

and moreover, we can choose g, € Cc(T) such that

|gqllr < [If]|2- (20.4.6)

Proof. (i) One can adapt the proof of Theorem 2.23 of [Rul| as follows. Choose a relatively
compact open set V such that A C V. In the construction of the functions on p.53 of [Rul|, we
can observe that 2"t, (in the notation of [Rul]) is the characteristic function of some o-Borel
(resp. Baire) set T, C A and

oo
f@)=> taz),zeT

1
since f is B.(T)-measurable (resp. By(T)-measurable). By hypothesis, n. is 6(C)-regular (resp.
by Lemma 20.3, ng is §(Cp)-regular) and hence there exist K, € C (resp. K, € Cp) and an open
set Vi, € §(C) (resp. V,, € 6(Co)) such that K, C T, C V,, C V with [|n[|(V,,\Kp) < 557 (resp.
with [|no||(V,\Ky) < 5=) for n € N Let us suppose that 0 < f < 1in A. Then choosing h, by
Urysohn’s lemma such that K, < h,, <V}, for all n and then defining g(z) = > 7" 27 "hy(x), = €
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T as on p.54 of [Rul] and using the fact that ||n.|| (resp. ||ngl||) is o-subadditive on B.(T') (resp.
on By(T)), we note that g € C.(T) and ||n.||(N(f — g)) < € (resp. and ||ng||(N(f — g)) < ¢€)
and hence (20.4.1) (resp. (20.4.2)) holds. From this it follows that these inequalities hold if f
is bounded. When f is not bounded, let B, = {z : |f(z)| > n}. Then B, N\, 0 in B.(T) (resp.
in By(T')) and by hypothesis, B, is relatively compact for all n. Then by Lemma 18.2 of |[P11],
(B,)$° C 8(C) (vesp. (Bn)$® C 6(Co)). Since X C X, the Banach completion of X, we can con-
sider n. and ng as Banach space-valued and hence Proposition 2.2 of [P8], ||n.||(B,) — 0 (resp.
||lng||(B,) — 0). Then arguing as in the general case of Theorem 2.23 of |[Rul| with ||n.|| (resp.
||ng||) replacing p we observe that (20.4.1) (resp. (20.4.2)) holds for the general case. (20.4.3) is
proved as in the last part of the proof of Theorem 2.23 of [Rul].

(ii) This is immediate from (i), since (n.)q : 6(C) = X, C )A(; is o-additive and 6(C)-regular
and (ng)q : 9(Co) — Xy C X is o-additive for ¢ € T

Lemma 20.5. Let X be an IcHs and let m, : B.(T)) — X be o-additive and o-Borel regular.
Then w. = m¢|s5(c) is o-additive and §(C)-regular.

Proof. Clearly it suffices to prove the lemma when X is a normed space and hence let X
be so. Since w. is o-additive, it suffces to prove the regularity of w.. Let A € §(C) and € > 0.
Then by hypothesis, there exist K € C and an open set U € B.(T') such that K C A C U and
||In.||(U\K) < e. Since A is relatively compact, by Theorem 50.D of [H] there exists a relatively
compact open set V such that A C V. Then W = U NV is an open set belonging to §(C) by
Lemma 18.2 of [P11], K C A C W and ||w,||(W\K) < e. Hence the lemma holds.

Theorem 20.6 (Variants of the generalized Lusin’s theorem). Let X be an IcHs. Let
m, : B.(T) — X (resp. n.: 6(C) = X, mg : Bo(T) — X, ng : §(Cp) — X) be o-additive and let
m, be B.(T')-regular (resp. n. be §(C)-regular). Suppose f : T — K is B.(T)-measurable (resp.
Baire measurable). Let A € B.(T) (resp. A € §(C), A € By(T), A € §(Cp)) such that f(t) =0
for t € T\ A and let € > 0. Then, given ¢ € T, there exists g, € C.(T) such that

wllg(N(f —gq)) <€ (20.6.1)

where w = m.or n, or my or ng, as the case may be. Moreover, g, € C(T) can be chosen such
that

lgqllz < [[f]lz- (20.6.2)

We say that m, (resp. myg) is o-Borel (resp. Baire) inner regular in 7" if, given ¢ € I" and € > 0,
there exists K € C (resp. K € Cp) such that |m.||4(B) < e for B € B.(T') (resp. B € By(T)) with
B Cc T\K. If m, (resp. myg) is further o-Borel (resp. Baire) inner regular in 7', then the above
results hold for any B.(T')-measurable (resp. By(T)-measurable) function f on T with values in K

Proof. Without loss of generality we shall assume X to be a normed space. Let R = B.(T)
and w = m,, or R = §(C) and w = n. or R = By(T) and w = my or R = §(Cy) and
w = ng. By hypothesis and by Lemmas 20.3 and 20.5, w is R-regular and o-additive. Then
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there exists a compact set K € R such that K C A and ||w||[(A\K) < §. As fxx satisfies
the hypothesis of Lemma 20.4(i) and as mc[sc) and myls,) are regular and o-additive by hy-
pothesis and by Lemmas 20.5 and 20.3, by Lemma 20.4(i) there exists g € C.(T") such that
ol l(V(Fxx — 9)) < & with llgllr < |lfxxllr < |Ifllr- By hypothesis and by Theorem 51.B
of [H|, f — g is o(R)-measurable and hence N(f — g) € o(R). Since f(t)xx(t) = f(t) for
t € KU(T\A), N(f —g) € N(fxx —9) N (KU(T\A)) U(A\K), and hence ||w[[(N(f - 9)) <e.
Thus (20.6.1) and (20.6.2) hold.

If m, is o-Borel (resp. my is Baire) inner regular in 7', choose K € C (resp. K € Cp) such
that ||m.||(B) < § (resp. ||mo|[(B) < §) for B € B.(T) (resp. B € Bo(T)) with B C T\K. Let
w = m, or my as the case may be. Then by the above part there exists g € C.(T) such that
[|w||(N(fxx —g)) < § with [|g|]l7 < ||fxk|lr < ||f|lr and hence as in the proof of (20.2.1) of
Theorem 20.2(i) we have ||w||[(N(f —g)) <.

Corollary 20.7. Let X be an lcHs and ¢ € I'. Suppose m : B(T) — X is o-additive and
Borel regular (resp. m. : B.(T) — X is o-additive and o-Borel regular and moreover, o-Borel
inner regular in 7', mg : Bo(T) — X is o-additive and Baire inner regular in 7). Let f : T — K

be Borel measurable (resp. o-Borel measurable, Baire measurable). Then given ¢ € T', there

exists a sequence (97({1)) C C.(T) such that sup,, ||g,(1q)||T < ||fllr and f(t) = lim,, g,(Lq) (t) mg-a.e.

inT.

Proof. Without loss of generality we shall assume X to be a normed space. Let R = B(T)
(resp. B(T), Bo(T)) and w = m (resp. m,, mg). Then by Theorems 20.2 and 20.6 there exists
gn € Ce(T) with ||gn|lr < ||f||7 such that ||w]|(N(f — gn)) < 5= for n € N Let A, = N(f — gn)
and let A = limsupA,. Clearly, A € R and [[w[|(A4) < [|w||(Up>n, Ak) < 2,1%1 — 0 since ||w]| is

o-subadditive on R. Hence ||w||(A) = 0. Clearly, f(t) = limy, g,(t) for t € T\ A.

Lemma 20.8. Let X be a sequentially complete lcHs, P = 6(C) or §(Cp) and m : P — X
be o-additive. Then C¢(T) C L,(o(P), m) for 1 < p < oo (see Definition 14.4 of [P10]).

Proof. Let f € C.(T) and let ¢ € I'. Then by Theorem 51.B of [H]|, f is o(P)-measurable.
Let supp f = K € C. Then by Theorem 50.D of [H| there exists Cy € Cy such that K C Cp. As
N(f) C Cy, for a Borel set B in Kwe have f~1(B)NN(f) € o(P)NCy = o(PNCpy) by Theorem
5.E of [H]. As PNy is a o-ring, it follows that f is P N Co-measurable. Hence there exists a
sequence (sy,) of (PNCp)-simple functions such that s, — f and |sp| 7 |f| uniformly in 7. Then
for A € o(P), by Theorem 3.5(i) of [P8] we have

[ /A |su[Pdmn — /A lskPdmlly < [[[snl? — |sk[Pllz|mlly(Co) — 0

as n,k — 0o. As ¢ is arbitrary in ' and as X is sequentially complete, we conclude that there
exists 24 € X such that lim, [, |sn[Pdm = x 4. This holds for each A € o(P) and consequently,
by Definition 12.1 in Remark 12.11 of [P10], | | is m-integrable in 7" and hence f € £L,(o(P), m).
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Lemma 20.9. Let & = B(T') or B.(T') or Byo(T'), X be a sequentially complete lcHs and
m : S — X be o-additive. Then Co(T') C L,(0(S),m) = L,(S,m) for 1 < p < co.

Proof. Given f € Cy(T), f is bounded and by Theorem 51.B of [H| f is S-measurable and
hence there exists a sequence (s;) of S-simple functions such that s, — f and |s,| | f| uni-
formly in 7. Then arguing as in the last part of the proof of Lemma 20.8 we conclude that
feLy(S,m)forl<p<oo.

Theorem 20.10. Let X be a sequentially complete (resp. quasicomplete) lcHs and let
1 < p < oco. Suppose m : P — X is g-additive when P = §(Cp) or By(T); and m : P — X be
o-additive and P-regular when P = §(C) or B.(T") or B(T'). Then C.(T') is dense in L,(o(P), m)
(resp. in £,(m)) and then, given f € £,(m) (resp. f € Ly(c(P),m)), ¢ € I" and € > 0, there
exists g € Ce(T') such that (mg)s(f — g4, T) < € (vesp. and ||gyl|lr < [|fl|7). If P = Bo(T) or
B.(T) or B(T), then Cy(T) is also dense in L,(c(P),m) (resp. in L,(m)).

Proof. By Lemma 20.8, C.(T') C L,(c(P),m) for P = §(Cp) or 6(C) and by Lemma 20.9,
C.(T) C Co(T) C Lp(o(P),m) for P = By(T) or B.(T) or B(T). When X is quasicomplete,
Ly(c(P),m) C L,(m). Let f € L,(0(P),m) (resp. f € L,(m)). Let ¢ € I" and € > 0. Then by
Theorem 15.6 of [P10] there exists a P-simple function s such that (mg)y(f —s,T) < § and when
f € L,(c(P),m), by the same theorem we can choose s further to satisty |s(¢)| < |f(¢)| for ¢ in
T. Then by Theorems 20.2(ii) and 20.6 there exists g, € Cc(T) such that |[m||4(N (g — $)) <
((%)(m))p and ||gq||7 < ||s||7. Now by Theorem 13.2 and by Proposition 10.14(c) of [P10] we
have

(mq);(s -9, T) = (mq);,(s —99: N (s — 99))

1
P
= sup / |s — gq/Pdv(z"m)
z*cU? N(s—gq)

2|l ([mllg(N(s = gq)))

3=

IN

<

N

and hence, by Theorem 5.13(ii) of [P9] we have

(mg)p(f = 94, T) < (myg)p(f — 5, T) + (mg)(s — g4, T) <e.

Moreover, for f € L,(c(P),m), ||gqllT < ||s||7 < || f||r. Hence the theorem holds.

Remark 20.11. Restricting the agument in the proof of Theorem 20.10 to real functions, we
have similar results for £ (o(P), m) and £;(m) with C.(T') and Co(T') being replaced by C¢ (T
and Cj(T'), respectively.

Theorem 20.12. Let X be an IcHs and let m : B(T') — X be o-additive and Borel regular.
Then m, = m|g (1) (resp. mg = m|g (7)) is o-additive and B.(T')-regular (resp. and Baire regu-
lar). Consequently, m|s(c) (resp. mlsc,)) is o-additive and §(C)-regular (resp. and 6(Cp)-regular).
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Proof. Let A € B.(T). Then there exists a sequence (K,) C C such that A C |J7° K. Let
q € I' and € > 0. Then by hypothesis there exists an open set U, in T' such that ANK,, C U,, with
[/m|[q (U \(ANK3)) < o571 for n € N. By Theorem 50.D of [H] there exists a (o-Borel) relatively
compact open set V,, in T such that K, C V,, so that AN K, C V,,. Let W,, = U, NV,. Then
W = 7" W, is a o-Borel open set in T and A C W. By hypothesis, there exists K € C such
that K C A with |[m||,(A\K) < §. Then K C A C W and ||m]|;(W\K) < e. In fact, W\A C
UT W \(ANV,)) € UT (W \(ANK,)) C UT(UNANK,)). As ||m]||, is o-subadditive on
B(T), we have |[m||,(W\A) < §. Consequently, |[m||,(W\K) < ||m]|[,(W\A)+|/m]|[,(A\K) < €
and hence m, is B.(T)-regular. Then the other results hold by Lemmas 20.3 and 20.5.

21. LUSIN MEASURABILITY OF FUNCTIONS AND SETS

If X is an IcHs and m : P — X is o-additive, let us recall from Definition 10.6 of [P10] that for

—_—

aset Ain T, x4 is m-measurable if A € o(P),, the generalized Lebesgue completion of o(P) with
respect to ||ml||, for each ¢ € I'. In that case, we say that A is m-measurable. When P = B(T')
(resp. 6(C)) and m is further P-regular, we introduce the concept of Lusin m-measurability and
study the inter-relations between the concepts of m-measurability and Lusin m-measurability in
Theorems 21.5 and 21.6. The latter theorems play a key role in Section 22.

Theorem 21.1. Let X be an IcHs and m : B(T) — X be o-additive and Borel regular. For
a set A in T the following statements are equivalent:

(i) A is m-measurable.

ii) Given ¢ € I and € > 0, there exist K, € C and an open set U, in T such that K, C A C U
q q q q
and ||m||,(U,\Ky) < €.

(iii) Given ¢ € T', there exist a G5 G4 and an F, F in T such that F, C A C G, with
|Im]|¢(Gq\Fg) = 0.

(iv) Given ¢ € I', there exist a disjoint sequence (Kﬁbq))fo C C and a G5 G4 in T such that
Fo=Un2y K cAc Gq with ||ml[¢(Gg\Fg) = 0.

P

(v) Foreach g eT', ANK € B(T), for each K € C.

—_—

(vi) For each g € I', ANU € B(T), for each open set U in T

Proof. Without loss of generality we shall assume X to be a normed space.

(i)=(ii) By the Borel regularity of m and by the fact that the m-measurable set A is of the
form A=BUN, N C M € B(T), B € B(T) and ||m||(M) = 0, (i)=-(ii).

(ii)=(iii) By (ii), for € = 1, n € K there exist a compact K, and an open set U, in T such
that K, C A C U, with |[m|[(U,\K,) < 2. Let G = N°U, and F = (J;° K,,. Then G is a
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Gs, Fisan F,, F C A C G and ||m||(G\F) < ||m||(U,\K,) < L for each n € Nand hence
|lm[|(G\F) = 0.

(ii)=(i) Let F C A C G. F an F,, G a Gs with ||m|[(G\F) = 0. Then A = F U (A\F),

A\F Cc G\F, (G\F) € B(T) and ||m||(G\F) = 0. Hence A € B(T') and hence (i) holds.

Thus (i), (ii) and (iii) are equivalent.

(i)e(ii)=(iv) By hypothesis, there exists K; € C such that K1 C A and ||m||(A\K;) < 1.

Since A\K; € B(T), by (ii) there exists K3 € C such that Ko C A\K; and |m||(A\(K1UK3)) <

%. Proceeding step by step, in the n'? step we would have chosen mutually disjoint compact

sets (K1) such that U7 K; C A with ||m[|(A\U} K;) < 2. Then F = J°K; C A and
||ml|[(A\F) = 0. Moreover, by (iii)< (i) there exists a G5 G such that A C G and ||m||(G\A) = 0.
Hence (iv) holds.

(iv)=(i) Let F and G be as in the hypothesis. Then F, G € B(T) and ||m||(G\F) = 0. Since
A=FU(A\F), it follows that A € B(T') and hence (i) holds.

Thus (i),(ii), (iii) and (iv) are equivalent.
(i)=(v) obviously.

(v)=(vi) Let U be an open set in 7. Then U € B(T) and hence (iv) holds. Thus there
exists (K,)}® C C such that |J°K, C U and N = U\U{" K, is m-null. Then by (v),

—~—

ANU=UT(ANK,)U(ANN) € B(T). Hence (vi) holds.
(vi)=(i) by taking U =T.
Hence (i)=(v)=-(vi)=(i).
This completes the proof of the theorem.

Theorem 21.2. Let X be an IcHs and let n : 6(C) — X be o-additive and §(C)-regular. For
a set A in T the following statements are equivalent:

(i) A is n-measurable.

(ii) Given q € T', there exist a o-compact Fy and a G5 G4 € B.(T) such that F, C A C G4 with
|Infl¢(Gg\Fg) = 0.

e~ —

(iii) A is o-bounded and AN K € B.(T')q for each K € C and for each ¢ € T".

P

(iv) A is o-bounded and ANU € B.(T), for each open set U in T and for each ¢ € T
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Proof. Without loss of generality we shall assume X to be a normed space.

(i)=(ii) By hypothsis, A is of the form A = BUN, B € B.(T), N ¢ M € B.(T) and
|n||(M) = 0. As (BUM) € B.(T), there exists (K,)° C C such that (BU M) C 7" K, so
that BUM = J7°((BU M) N K,,). Then by Lemma 18.2 of [P11], ((BU M) N K,)° C §(C).
As n is §(C)-regular, given € > 0, there exists an open set Vj, in T such that V,, € 6(C) and
such that (BU M) N K,, C V, with [[n[|[(V,\((BUM)NK,)) < 5. Then U = |J7°V,, is an
open set in T belonging to B.(T"), (BU M) C U and ||n||(U\(BU M)) < €. Hence A C U and
|In||(U\A) < e. By taking € = 1, n € Nwe obtain open sets U, € Bc(T) such that A C U,
and ||n||(U,\A) < 1. Then G = N°U, is a G5, G € B,(T), A C G and |[n||(G\A) = 0. As
n is 0(C)-regular, given k € N there exists ¥ e ¢ such that ¥ ¢ Bn K, € 0(C) with
|In|[(B N Kn)\Cflk)) <tz forne N If F, =, C’,(Zk), then F = |J7° F}) is o-compact,
F C BC A and |n||(A\F) = ||]n||[(B\F) =0. Then FF C A C G with ||n|[(G\F) = 0 and hence
(ii) holds.

(ii)= (i) since A = F U (A\F), F € B.(T), A\F C (G\F) € Bo(T) and ||n]|(G\F) = 0.
Thus ()< (ii).

(i)=(iii) and (iv) Take B, N and M as in the proof of '(i)=(ii)’. Clearly A is o-bounded.

For K € C, BN K € B.(T) and N N K is n-null so that NN K € B.(T). Hence AN K € B.(T).
For an open set U in T', U N B is o-bounded and hence U N B € B,(T) and U N N is n-null so

—_~—

that UNN € B.(T). Hnce UN A € B.(T).

(iii)=(1) As A is o-bounded, there exists (K,);° C C such that A C |7 K, so that by

—~—

hypothesis, A = 7" (AN K,,) € B.(T).

(iv)=(i) As A is o-bounded, by Theorem 50.D of [H]| there exists relatively compact open
sets (Uy)$° in T such that A C [J7°U,. Then A = J7°(ANU,) € B(T) by (iv).

Hence (i)« (iii) <> (iv).
This completes the proof of the theorem.

Definition 21.3. Let X be an IcHs and let m : B(T) — X (resp. n : §(C) — X) be
o-additive and B(T')-regular (resp. and 0(C)-regular). Then a functon f : T — Kis said to be
Lusin m-measurable (resp. Lusin n-measurable) if, given ¢ € I, € > 0 and K € C, there exists

a K§" C K such that f|, () is continuous and |[ml|o(K\K") < € (resp. and ||n||(K\K") < ).
0

Theorem 21.4. Let X, m, n and f be as in Definition 21.3. Then f is Lusin m-measurable
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(resp. Lusin n-measurable) if and only if, given ¢ € I" and K € C, there exist an mg,-null set (resp.

ng-null set) N, C K and a countable disjoint family (KZ.(q))(l’o C C such that K = J;2, Ki(Q) U N,
and f|K§q) is continuous for each ¢ € N

Proof. Without loss of generality we shall assume X to be a normed space. Let P = B(T)
and w = m or P = §(C) and w = n. Let f be Lusin w-measurable and K € C. Then by
Definition 21.3 there exists K; € C such that K; C K, f|k, is continuous and ||w||(K\K;) < 1.
Let n > 1 and suppose we have chosen (K1)} C € mutually disjoint such that | J K; C K, f|k, is
continuous for 1 <7 < n and ||w||(K\ U} Ki) < +. As K\ U} K; € §(C), by the regularity of w

there exists a compact C' C K\ J7 K; such that ||w||(K\(U] K; UC)) < m By hypothesis

there exists a compact K41 C C such that f|g, , is continuous and ||w|[(C\Kp+1) < m

n+1
Then (K;)?"™ € C are mutually disjoint, I K; € K and ||w||(K\ U™ K;) < n+r1 Therefore,
by induction there exists a disjoint sequence (K;)° C C such that f|g, is continuous for all 4
and [|w||(K\ U} K;) < £ for all n. Then N = K\ |J{° K; is w-null and f|g, is continuous for all 4.

Conversely, let K € C and suppose K = [J7° K; U N, where (K;);° € C, K; N K; = 0 for
i # j, flk, is continuous for each i and ||w||(N) = 0. Let ¢ > 0. As K\|J] K; € P for all n,
K\U} Ki \y N € 4(C) and as ||w|| is continuous on P by Proposition 2.1 of [P8], there exists ng
such that ||w||(K\ U7° K;i) < e. Clearly, Ko = |J]° K; € C, Ko C K and f|g, is continuous since
K; are mutually disjoint. Hence f is Lusin w-measurable.

Theorem 21.5. Let X be an lcHs, m : B(T) — X be o-additive and Borel regular and
f:T — K Then f is Lusin m-measurable if and only if it is m-measurable.

Proof. Without loss of generality we shall assume X to be a normed space. Let f be m-
measurable, K € C and € > 0. Then fxx is m-measurable and hence by Proposition 2.10 of [P8]
there exists N € B(T) with ||m||(N) = 0 such that h = fxg\n is B(T)-measurable. Then by
Theorem 20.2(i) there exists g € C.(T') such that ||m||(N(h—g)) < §. Let A= N(h —g). Then
A € B(T) and hence by the Borel regularity of m there exists a compact Ko C K\ A such that
|lm||(K\A\Ko) < §. Then h|x, = flx, = 9|k, is continuous and ||m|[(K\Ky) < e. Hence f is
Lusin m-measurable.

Conversely, let f be Lusin m-measurable. Given K € C, by Theorem 21.4 there exist a dis-
joint sequence (K;)° C C and an m-null set N disjoint with (J7° K; such that K = [J7° K; UN
and such that f|g, is continuous for each i. Let U be an open set in K Then f~Y({U)NK =
UC(F Y U)NK)U(f 1N N). As fl|k, is continuous, there exists an open set V; in 7" such that

fHU)NK; =V;NK; and hence f 1(U)NK = (VinK;)) U(f~Y(U)NN) € l?(\ﬁ Then by
Theorem 21.1(v), f is m-measurable.

Theorem 21.6. Let X be an IcHs, n : §(C) — X be o-additive and 6(C)-regular and
f:T — K Then f is n-measurable if and only if N(f) is o-bounded and f is Lusin n-measurable.
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Proof. Without loss of generality we shall assume X to be a normed space. Let f be n-

measurable. Then N(f) € B.(T') and hence N(f) is o-bounded. Let K € C and € > 0. Then
by Proposition 2.10 of [P8] there exists N € B.(T') with |[n||(N) = 0 such that fxp\n is Be(T)-
measurable. Then fx g\ is Be(T)-measurable. Hence by Theorem 20.6 there exists g € Cc(T)
such that [|n[|(N(fxx\~ —9)) < 5. Let A = N(g — fxg\n)- Then A € B.(T) and hence
K\A € §(C) by Lemma 18.2 of |[P11]. Then by the 6(C)-regularity of n there exists a compact
Ky C K\ A such that |[n||[(K\A\Ko) < §. Then f|x, = g|x, is continuous and ||n||(K\Kp) < e.

Hence f is Lusin n-measurable.

Conversely, let f be Lusin n-measurable and let N(f) be o-bounded. Let K € C. Then by
Theorem 21.4 there exist a disjoint countable family (K;)7° C C and an n-null set N disjoint with
U K, such that K = J{° K; UN and f|g, is continuous for each ¢. Let U be an open set in K
If f; = f|k,, then by the continuity of f; we have f~H(U\{0}) N K; = f; }(U\{0}) € B(K;) and

—_—

hence N(f) N £~ (U) N K = UR(FHU\{0}) N K) U (N 1 fHT\{0})) € Be(T). As N(f) is

—_~—

o-bounded by hypothesis, it follows by Theorem 21.2(v) that N(f) N f~1(U) € B.(T) and hence
f is n-measurable.

Corollary 21.7. Let X be an IcHs and let m : B(T') — X (resp. n: §(C) — X) be o-additive
and Borel regular (resp. and §(C)-regular). Then a Borel measurable scalar function f on 7T is
Lusin m-measurable (resp. Lusin n-measurable).

Proof. Let f be Borel measurable. Then f is m-measurable and hence is Lusin m-measurable
by Theorem 21.5. Let K € C. Then by Lemma 18.2 of [P11], fxk is B.(T')-measurable and
hence n-measurable. Clearly, N(fxx) is o-bounded. Hence by Theorem 21.6, fxg is Lusin
n-measurable. As K is arbitrary in C, it follows that f is Lusin n-measurable.

Definition 21.8. Let X be an IcHs and let m : B(T) — X (resp. n : §(C) — X) be
o-additive and Borel regular (resp. and ¢(C)-regular). Then a set A in T is said to be Lusin
m-measurable (resp. Lusin n-measurable) if x 4 is so.

The following theorem is immediate from Definition 21.8 and Theorem 21.4.
Theorem 21.9. Let X, m and n be as in Definition 21.8. Let A C T. Then A is Lusin
m-measurable (resp. Lusin n-measurable) if for each ¢ € I' and K € C, there exist a disjoint

sequence (K Z-(q))‘fo C C and an mg-null set (resp. and an ng-null set) N, disjoint with |J7° K; such
that K = U K? U N, and such that, for each i, K¥ ¢ A or K'? c T\A.

Using Theorem 21.1(iv) and the Borel regularity of m, the proof of Proposition 4, no.2, §5,
Ch. IV of [B] can be adapted to prove the following

Theorem 21.10 (Localization principle). Let X be an IcHs and let m : B(T)) — X be
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o-additive and Borel regular. Let f : T — K and suppose for each t € T and ¢ € I', there
exist an open neighborhood Vt(q) of t and a Lusin mg-measurable scalar function gfq) such that

f) = g,gq) (t') mg-a.e. in Vt(q). Then f is Lusin m-measurable.
As in the classical case of [B], the above theorem motivates the following

Definition 21.11. Let X and m be as in Theorem 21.10. A set A in T is said to be locally
m-null (briefly, loc. m-null) if, for each ¢ € T, there exists an open neighborhood V; of ¢t such
that ANV, is m-null. (See Definition 10.3 of [P10].)

The proof of the following theorem is similar to those on pp. 172-173 of [B] and is based on
Theorems 21.1(iv), 21.5 and 21.10 and hence is omitted.

Theorem 21.12. Let X be an IcHs and let m : B(T') — X be o-additive and Borel regular.
Then:

(i) Locally m-null sets are m-measurable.

(ii) If A is loc. m-null, then all the subsets of A are also loc. m-null.

(iii) A is loc. m-null if and only if AN K is m-null for each K € C.

(iv) If A;, i € N are locally m-null, then (J{° 4; is also loc. m-null.

(v) Aisloc. m-null if and only if A is m-null. (Use (i) and Theorem 21.1(iv).)
)

(vi) f:T — Kand N = {t € T : fis discontinuous int} is loc. m-null, then f is m-measurable.
22. THEOREMS OF INTEGRABILITY CRITERIA

The aim of the present section is to improve Theorem 4.2 of [P8| and Theorem 12.2 of [P10]
for 0(C)-regular o-additive vector measures on §(C). The said improvement of Theorem 4.2 of
[P8] is given in the last part of Therem 22.4 which gives much stronger results and Theorem 22.5
improves Theorem 12.2 of [P10]. We also generlize Theorem 22.4 to complete lcHs valued vector
measures. The proofs of Lemmas 3.10 and 3.14, Propositions 2.17, 2.20 and 3.7 and Theorems
3.5, 3.13 and 3.20 of |T] are adapted here in the set-up of vector measures.

Recall from Notation 19.2 of [P11] that V denotes the family of relatively compact open sets
inT.

Lemma 22.1. Let X be a Banach space and let H be a norm determining set in X*. Let P
be a d-ring of subsets of a set Q(# 0) and let m : P — X be additive. Then:

(i) [[ml[[(A) = supycpy v(z" 0 m)(A), A € o(P).
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(ii) Suppose m is o-additive and f : @ — Kis m-measurable and (z* o m)-integrable for each
z* € H. If, for each € > 0, there exists g € £1(m) such that sup,«cg [ |f —ge|dv(z*om) <
€, then f € £1(m).

Proof. (i) This is proved by an argument similar to that in the proof of Proposition 10.12(iii)
of [P10].

(ii) Let v ( f( fd(z* om), z* € H. Then by hypothesis and by Proposmon 5, 88 of
[Din|, v is o- addltlve on o(P) and by Proposition 2.11 of [P§|, v(vy = [, |fldv(z* o m)

for A € o(P). Let
= sup/|f|dva: om)

z*eH

If f € L£1(m), then by (ii) and (iii) of Theorem 3.5 and by Remark 4.3 of [P8], v(-) = f fdm is

o-additive on o(P) and ||v[|(T) = sup|,«|<1 [7 |fldv(z* o m). Consequently, by (i) above and by
Theorem 5.3 of [P9] we have

m$(f,T) = sup / [ Fldv(a* o m) = [}]|(T)

<17

= sup v(z* ov)(T) = sup / |fldv(z* om) =n(f). (22.1.1)
z*eH z*eH

Let ¥ = {f : T — K fm-measurable and (z* o m)-integrable for eachz* € H withn(f) <
oo}. For f € L1M(m) (see Definition 5.9 of [P9]), we have n(f) = sup,«cpg [7|fldv(z* om) <
m}(f,T) < oo and hence LM (m) C X. Clearly, n is a seminorm on 3.

Claim 1. £1(m) is closed in (X, 7).

In fact, let (fn)?° C Li1(m) and let f € ¥ such that n(f, — f) — 0. Then by (22.1.1),
(fn)3° is Cauchy in £9(m). Hence by Theorem 6.8 of [P9], there exists g € £1(m) such that
lim, m$(f, —¢,7) = 0. Since H C {z* € X* : |z*| < 1} by Lemma 18.13 of [P11], n(f, — g) <
m}(fn,—9g,T) = 0asn — oco. Then n(f—g) < n(f— fn)+n(fn—g) — 0 and hence n(f —g) =0.
Clearly, f—g is m-measurable and hence N(f—g) = BUN, where B € o(P) and N C M € o(P)
with ||m||(M) = 0. Then by (i) or by the fact that H C {z* : |z*| < 1}, v(z* om)(M) = 0 for
a* € H. Now supgecp [y |f — gldv(z* om) = supecy [p[f — gldv(z* om) < n(f —g) =0
and hence v(z* om)(B) = 0 for * € H. Then by (i), |m||(B) = sup,«cy v(z* om)(B) = 0 so
that |[m||(N(f — g)) = 0. Therefore, f = g m-a.e. in T and hence f € £1(m). Thus the claim
holds.

By hypothesis and by (22.1.1) we have
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sup/f\dv(w*om < sup/|gE]dv:c om) + sup/]f ge|dv(z* o m)

x*eH JT z*€H
< mi(g,,T)+e< 0

and hence f € ¥. Moreover, the hypothesis in (ii) implies that f belong to the n-closure of £;(m)
in ¥. Then by Claim 1, f € £;(m).

Lemma 22.2. Let X and H be as in Lemma 22.1. Let m : §(C) — X (resp. m : B(T) — X)
be o-additive. Let V' € V. Then there exist a sequence (z}) in H and a sequence (¢,,) of positive
numbers such that

lim |lml|(4) =0
A(A)—0

for A € B(V) (resp. for A € B(T')), where

A= Z cpu(x) om)
1

is o-additive and finite on B(V) (resp. on B(T')). (Note that in the case of m-defined on 6(C),
(z}) and X depend on V). Consequently, A € B(V) (resp. A € B(T)) is m-null if and only if A is
(z* om)-null for each z* € H. If m is further §(C)-regular (resp. B(T)-regular) and if f : T — K
is (z* o m)-measurable for each z* € H, then f is Lusin m-measurable as well as m-measurable.

Proof. Let V € V. As m is o-additive on §(C) (resp. on B(T")) and as H is norm bounded by
Lemma 18.13 of [P11], {z* om : 2* € H} is bounded and uniformly o-additive on B(V') (resp.
on B(T)) and hence by the proof of Theorem IV.9.2 and by Theorem IV.9.1 of |DS], there exist
(x3)5° C H and ¢, > 0, n € K such that A = > 7° cpv(x} o m) is o-additive and finite on B(V)
(resp. on B(T')) and satisfies

o 2, o) =

for A € B(V) (resp. A € B(T)). Then by Lemma 22.1(i),

lim |lm||(A) =0 forA e B(V) (resp. A€ B(T)). (22.2.1)
A(A)—0

If Ae B(V) (resp. A€ B(T)) is * o m-null for each z* € H, then A\(A) = 0 and hence

||lml||(A) = 0 so that A is m-null. The converse is trivial.

Now let us assume that m is further §(C)-regular (resp. B(T')-regular). Let K € C and let
€ > 0. Choose V' € V such that K C V. Choose (z,){° C H and ¢, > 0, n € N and A as above.
By (22.2.1), there exists 6 > 0 such that ||m||(A) < e whenever A(A4) < ¢ for A € B(V') (resp. for
A € B(T)). By hypothesis, f is (z}, o m)-measurable and hence by Theorem 21.6 (resp. by The-
orem 21.5) f is Lusin (2} o m)-measurable. Therefore, for each n € N there exists K,, € C such
that K,, C K, f|k, is continuous and v(z} om)(K\K,) < ﬁ. Then Ko = (] K, €C, flk, is
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continuous and A(K\Kp) < > 7° cpv(z) om)(K\K,) < d. Hence ||m||(K\Ky) < e. Therefore, f
is Lusin m-measurable. When m is defined on B(T'), then by Theorem 21.5, f is m-measurable.
If m is defined on §(C), then by hypothesis, f is (z* o m)-measurable for z* € H and hence,
given z* € H, there exist N+, M+ and B« such that By € B.(T), Ny C My« € B.(T') and
||m||(Mz+) = 0 and such that N(f) = By« U Ng+«. Hence N(f) is o-bounded and consequently, f
is m-measurable by Theorem 21.6.

In the sequel, £(T") is as in Notation 19.1 of [P11].

Theorem 22.3. Let p; : §(C) — K be o-additive and §(C)-regular for i« € I. Suppose
Yier | 7 edpilP < oo for each ¢ € K(T) and for 1 < p < oo. Let u : K(T) — Iy(I) be defined
by u(e) = ([;wdpi)icr. Then u is a prolongable Radon operator on K(T). Let m, be the
representing measure of u. (See Definitions 19.5 and 19.6 and Theorem 19.9 of [P11].) Let
f:T — Kbelong to L1(p;) for i € I. Then f is my-integrable in T" if and only if

Z|/deﬂi|p <0 (22.3.1)

i€l

for each open Baire set U in T'. In that case, [, fdm, = ([, fdu;)ier-

Let p=1and let f € L1(my,). If 0(p) = > .c; [z wdus for ¢ € K(T), then 0 € K(T)*, f is

e-integrable and
fdug = / fdpi
IR )

iel
for A € B.(T), where g is the complex Radon measure induced by € in the sense of Definition
4.3 of [P1].

Proof. Let us recall from Notation 19.1 of [P11] that the topology of IC(T') is the inductive
limit locally convex topology on C.(T") induced by the family (C.(T,C), I¢) where C.(T,C) are
provided with the topology 7, of uniform convergence. Clearly, C.(T,C) are Banach spaces.
Let u : K(T) — £,(I) be given by u(¢) = ([ wdus)icr. Clearly, u is linear. We claim that
u has a closed graph. In fact, let ¢, — ¢ in K(T). As p; € K(T)* (see Section 5 of [P2]),
J7 Padp; = [ ddp; for each i € I. Suppose u(pa) = (fi)ier € £p(I). Then given € > 0, there
exist J C I, J finite, and an ag, such that Y, ;| [ @adpi — filP < (§)P for o > ag. Moreover,
there exists a1 > ag such that >, ;| [7 @adps — [ dpilP < (5)P as [ oadp; — [ pdp; for
each . Then

1 1 1
> / w17 < (3| / dpii / padslP)? + (3 / (Cadits — FilP)?
ieg T ieg T T ieg?’T

< €
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for @« > ay. Thus, for i € J,
1
[ = 51 < (X1 [ oy~ 5507 <
T , T
jeJ
Since € is arbitrary, fT wdu; = f;. If i ¢ J, by the same argument with J U {i} in place of J, we
have [ @du; = f; for each i € I. Thus (f;); = u(p) and hence the graph of u is closed.

Since C.(T,C) is a Banach space, any linear mapping from C.(T,C) into £,(I) with closed
graph is continuous by the closed graph theorem (see Theorem 2.15 of [Ru2]) and hence by Prob-
lem C(i), Sec. 16, Ch. 5 of [KN], u is a continuous linear mapping.

Let V €V and uy(¢) = u(p) for ¢ € Cc(V).Then clearly uy : Ce(V)) = £,(I) is continuous
and its continuous extension uy : Co(V') — £p(I) is weakly compact by by Theorem 13 of [P5] or
by Corollary 2 of [P6| since ¢o ¢ €,(I) for 1 < p < oo (as ¢1(I) is weakly sequentially complete
and as £p(I) is reflexive for 1 < p < o0.) Hence u is a prolongable Radon operator on K(T)
and hence by Theorem 19.9 of [P11] its representing measure my,, : 6(C) — £,(I), 1 < p < o0, is
o-additive and §(C)-regular and

u(yp) = /Tgodmu, p € Co(T) (22.3.2)

where the integral is a (BDS)-integral.

For 1 < p < oo, let H}p) = {(ai)ier € €4(I) : X icrlas|? < 1,05 = Ofori € I\ J, whereJ C
I, J finite} where %—i—% =1. Forp=1, let H}l) = {()ier € loo(I) : sup;er |y < 1,04 = 0fori €
I\J, where J C I, J finite}. Clearly, H}p) is a norm determining set for £,(I), 1 < p < oo.

Claim 1. Let * = (a)ier € H(p), 1 <p < oo, where a; = 0 for i € I\ Jy=, Jp» C I and finite.
Then x*omy, = ),y aip; = Zier* QU [ -

In fact, by Theorem 11.8(v) and Remark 12.5 of [P10] and by (22.3.2) we have

/TSOd(w*omu) = z*u(p) :Zai/Tgodui:/Tgod(Z i) (22.3.3)

icl i€
for ¢ € K(T). Let V € V. Then, for ¢ € C.(V), by (22.3.3) we have [, pd(z* o (m,)y =
*uy(p) = ¥ ulp) = [7ed(Xic; . aipi), where (my)v = my|py). Asz*o(my)v and p;|p) are
o-additive and B(V')-regular, by the uniqueness part of the Riesz representation theorem we con-
clude that z* o (my)yv = Y ;c; @ipti|g(v). Since V is arbitrary in V and since 6(C) = Uy ¢y, B(V),
it follows that z* om,, = ZiEJI* iy = ZiEI a; ;. Hence the claim holds.

Let ¢ € Cy(T). By hypothesis, f € L£1(u;) for i € I and ¢ is B.(T)-measurable by Theorem
51.B of [H| and is bounded. Hence fo € L1(u;) for i € I. Let

0i(p) = /TfQDd,U«i» @ € Co(T)
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for i € I. Then 0; is a bounded linear functional on Cy(7") and hence the complex Radon measure
o, induced by 6; is a o-additive B(T')-regular scalar measure on B(T") by Theorems 3.3 and 4.6
of [P2]. On the other hand,

Claim (*). ni(-) = f(.) fdu; is o-additive on B.(T') and n; is v(p;)-continuous, ¢ € I .(In
symbols, 7; < v(us).)

In fact, v(p;) : Be(T) — [0,00] is o-additive by Property 9, § 3, Ch. I of [Din| and
v(p;)(E) =0, E € B.(T) implies v(n;)(E) = 0. Then by Theorem 6.11 of [Rul] (whose proof is
valid for o-rings too) we conclude that v(n;) is v(u;)-continuous on B.(T") and hence n; is v(u;)-
continuous.

Therefore, v(n;) < v(p;) on 6(C) and consequently, n;, i € I, are §(C)-regular. Moreover, for
¢ € Co(T'), we have

/‘Pdm:/@fdﬂizgi(w)Z/<pd,u9i, icl. (22.3.4)
T T T

Thus, for V. € V and ¢ € C.(V), we have [, @dni|gwy = [r¢dpe,|pr) and hence by the
uniqueness part of the Riesz representation theorem, we have ;| B(V) = Lo | B(v)- AsV is arbitrary
in V, we conclude that

nilse) = ro;ls(c)- (22.3.5)

Since v(m;)(T) = [ |f|dv(pi) < oo by Proposition 2.11 of [P8] and by the hypothesis that
f € L1(u;) and since o(6(C)) = B.(T), we conclude that

Ni = o, |B.(T) (22.3.6)
for i € I. Then by Theorem 2.4 of [P2|, n; is B.(T")-regular for i € I.

Let z* = (o) € H}p). Then there exists a finite set J,« C I such that a; = 0 for ¢ € I\ J,».
Let Wy = Zier* a;0;. Then ¥, is a bounded linear functional on Cy(T") and U,-(p) =

iy aifi(p) = [7od(3X,c; . aipg,) by (22.3.4). Then arguing as in the proof of (22.3.5) and
using (22.3.6), we have

Py, = Z aiprg; on B(T) and iy . |p.(1) = Z Q;n;. (22.3.7)
TEJS p* 1€ S %

Claim 2. sup_, o) v(pw,., B(T))(T') = M (say) < oo for 1 < p < oo.
T I x

In fact, let U be an open Baire set in 7" and let 1 < p < co. Then by hypothesis (22.3.1), by
(22.3.7) and by Holder’s inequality, we have
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sup |M\Ifx*(U)| = sup |Z ani(U
z*EH}p) z*=(a;); EH(p) 1€
= sup o / Fdusict]
‘T*EH}p) U
1
< s WOl [ s
z*€H; (p) el
< Z|/ Fdpl?)r < oo (22.3.8)
el

where & + 2 = 1. If p=1, by (22.3.1) and by (22.3.7) we have

sup |N\I’m*(U)‘ = Sup |Z a;ni(U
z*EH}l) x*=(0); EH() 1€ T

sup |o* / Fdpi)iet]

ac*EH(l

_ s Sl [ fu

w*EH(l) (az icl 1€1

Z’/ fdui| < oco. (22.3.8')

el

IN

IN

As {py . 12" € H}p)} C M(T) for 1 < p < oo, the claim holds by (22.3.8) and (22.3.8’) and
by Corollary 18.5 of [P11].

Claim 3. Given ¢ € Co(T') and e > 0, there exists a simple function s as a complex linear
combination of the characteristic functions of relatively compact open Baire sets in T' such that

lls — ollr < = (22.3.9)

€
2M

where M is as in Claim 2.

In fact, in the proof of Lemma 18.20(i) of [P11], each of the sets E; ,, is a difference of two open
sets U n, Vi in T which are Fy; and in fact, are o-compact and relatively compact as supp ¢ is
compact. Then by Lemma 18.3 of [P11], U; , and Vj ,, are relatively compact open Baire sets in T'.
Then, the functions (s},) in the proof of Lemma 18.20(i) of [P11] are complex linear combinations
of the characteristic functions of relatively compact open Baire sets in T'. As s/, — ¢ uniformly
in T, the claim holds.
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Claim 4. Let ¢ € Co(T). Then

ZI/Tfsodwp < 0. (22.3.10)

el

In fact, given € > 0, choose s as in Claim 3. By hypothesis (22.3.1), >,/ | [y sfdpsl? < oo.
Then there exists a finite set Jy C I such that

> I/TSfdui\p < (%)P. (22.3.11)

I\Jo

Let Iy = I\Jp. Let Hl(f) = {()ier, : there exists a finite set J C I such that

a; = Ofori € I1\Jand ||(a)ier, ||lq < 1} where %—l—% =1 when 1 < p < o0; and ¢ = oo when
p=1. Let * = (a;)ier, € Hg)) be fixed. Then there exists a finite set J,+ C I; such that a; = 0
for i € I} \Jy+. Let

B () = D cibile).

=
Then by (22.3.4) we have
bo(e) = Y aunle) = Y [ aisedns (22312)
= icdg 0T
for ¢ € Co(T). Then P« is a bounded linear functional on Cy(T") and
B0 () <1 [ (o= 5)disn,e | +1 [ sdiun,o] < llp = slizo(uo,. BINT) + | 3 o [ st
=

since pe,. = Y icy. Qifto; = Y icy . @M on B.(T) by (22.3.6) and since s is a B.(T')-simple

function. Taking y* = (y)ier with a; = 0 for i € I\ J,+, we observe that ®,« is the same as

Wy defined before Claim 2 and hence by Claim 2 we have sup_, ) v(pe,.,B(T))(T) < M for
I

1 <p < oo where M is as in Claim 2. Hence by (22.3.9) and (22.3.11) we have

B () < [l sllr - oen, BN + (Y s [ spdu
1€ S *
€ *
< i Mo+l sfduien]
€ *
< S+l | spdmdienll
T
< €.

Varying z* € Hl(f), we have SUp_, () |+ (@) < €. As H}f) is a norm determining set for
1
lp(I1) for 1 < p < oo and as Pu+ (@) = x*( [ fedui)ier, by (22.3.12), we have

> /T Fodul?) = || /T Fedudienlly = sup |@,(0)] < e

icly JT*EH}I;)
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for 1 < p < oco. Hence the claim holds.
Then by Claim 4, the mapping & : Co(T") — £,(I) given by

= (/T fedupi)ier = (/T edn;)ier

is well defined and linear. Moreover, by the closed graph theorem £ is continuous. Since co  £,,(I)
for 1 < p < o0, £ is weakly compact by Theorem 13 of [P5] for 1 < p < co. Then by Theorems 2
and 6 of [P5] its representing measure m¢ : B(T') — £,(I)** has range in £,(I), and is o-additive
and B(T')-regular.

Claim 5. Let x* = (a;)ier € H(p), 1 < p < o0, so that there exists a finite set J,« C I such
that a; = 0 for ¢ € I\ J,». Then

(z* o myg)|p, (1) = Z Qin; = Zaﬂ]z‘-

1€ S i€l

In fact, for ¢ € Cy(T"), by Theorem 1 of [P5] we have

Z Oéz/ edn; —/ (Z i, );

1€ x 1€ S x

/sod(ﬂf omg) = z"{(¢p

(" omyg)|g, (1) is Be(T)-regular since (mg)|g, (1) is Be(T')-regular by Theorem 7(xxiii) of [P5] and
Y ic J,. QT 18 B.(T')-regular as observed after (22.3.6). Consequently, by the uniqueness part of
the o-Borel version of the Riesz representation theorem the claim holds.

By hypothesis, f is p;-measurable for ¢ € I and hence f is ), J,. @ipyi-measurable for

2" = (ai)ier € HP for 1 < p < oo, where o = 0 for i € I\Jyr, Jo» C I and J,- is finite.
Since n; < v(wi), ¢ € I by Claim (*), f is also m;-measurable for ¢ € I. Hence by Claim 5,
[ is (2" o mg)|p,()-measurable for z* € H}p). Since my is £,(I)-valued o-additive and Borel
regular for 1 < p < 0o, by Theorem 20.12, m¢|5(cy is £,(I)-valued o-additive and 6(C)-regular for

1<p<oo. As H}p) is a norm determining set for £,(I), then by the last part of Lemma 22.2, f
is m¢|5(c)-measurable as well as Lusin mg/|5(c)-measurable.

Let € > 0. As mg is B(T')-regular, there exists K € C such that |[m¢|[(T\K) < §. As f
is Lusin m§|5(c)—measurable, there exists Ko € C with Ky C K such that f|g, is continuous
and ||m¢||(K\Kp) < §. Then |[m¢||(T\Ko) < € and fxx, is bounded and B(Kp)-measurable,
as it is continuous on the compact Ko. Consequently, fxx, is a bounded B.(T)-measurable
function with compact support. As w is prolongable with the reprsenting measure m,, by (20)
of Theorem 19.12 of [P11] and by Theorem 3.5(v) and Remark 4.3 of [P8|, fxk, € L£i(my).
By Claim 1 and by the hypothesis that f € Ly(w;) for ¢ € I, f is (z* o m,)-measurable
for each z* € H}p), 1 < p < oo and as observed in the beginning of the proof, m,, is £,(I)-

valued, o-additive and §(C)-regular. As H}p) is a norm determining set for £,(I), 1 < p < oo,
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by Lemma 22.2, f is m,-measurable. Consequently, f — fxk, is also m,-measurable. Now
by Claims 1 and 5, by Lemma 22.1(i) and by the fact that fN(f)\Ko |fldv(D i yux itti) =

U(fN(f)\Ko) A ey, cirti)) = v(Xie .. cimi) (N (f)\Ko) (by Proposition 2.11 of [P8]), we have

sup [ 1= uaglavetom,) = s [ [flautetom,)
)T N(f)\Ko

:c*EH? w*EH}p)

— s / Flao( S agus)
N(f)\Ko Z

m*:(ai)iEHy)) 1€ S x

= sup v( Z ain:) (N (f)\Ko)
v =(a)ier€HP ic],s

= sup o(z” omg)(N(f)\Ko)

x*eH}p)

sup v(z* omyg)(T\Ko)
x*GH}p)
< Jmg[|(T\Kop) < €

IN

for 1 < p < co. Since f is my-measurable, fxx, € £1(my,), H}p) is a norm determining set for

lp(I) for 1 < p < oo and € > 0 is arbitrary, by Lemma 22.1(ii) we conclude that f € £;(my,).
Hence the condition (22.3.1) is sufficient.

Let f € £Li(m,). Let =7 = (aj)jer € H}p), where a; = 1 and a; = 0, j # i. Then by
Claim 1, ] o my = p; and hence by Theorem 19.11(iii) of [P11], f € £1(u;) and =} ([ fdm,) =
Jp fd(xf omy) = [ fdu;. Hence

/ fdmy, = ( / fduier € 6,(I)  (22.3.13)
T T

for 1 <p < o0.

Conversely, let f € £1(m,,) and let U be an open Baire set in 7. Then by Theorem 3.5(vi) and
by Remark 4.3 of [P8], fxu € £1(my) and hence by (22.3.13), [ fxvdmy = ([; fdps)ier € £p(1).
Therefore 7,/ | [;; fduilP < oo for 1 < p < co. Thus the condition (22.3.1) is also necessary.

Let p=1, f € £L1(m,) and * = (a;)ier € loo(I), where a; = 1 for each i. Then 6 given in
the last part of the theorem is the same as x*u and hence 6§ € K(T')*. Then by Theorem 19.11
of [P11], pg = my=, considering z*u as a scalar valued prolongable operator. Moreover, by the
same theorem, we have f € £i(z*m,) = £1(my+,) = L£1(pg) and

[ gawo= [ fime, =t [ fim,) =i | i) = 3 IRZ
1S

for each A € B.(T).
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This completes the proof of the theorem.

The above theorem for the case I = N and p = 1 is used in the proof of the following result,
the last part of which strengthens Theorem 4.2 of [P8] when P = §(C) and m is a Banach space
valued o-additive P-regular measure on P.

Theorem 22.4. Let X be a Banach space and let m : 6(C) — X be o-additive and §(C)-
regular. Let H be a norm determining set for X with the Orlicz property. Then a function
f: T — Kis m-integrable in T if and only if f € £;(2* om) for each z* € H and, for each open
Baire set U in T, there exists a vector zy € X such that

+*(wy) = /U fd(z* o m) (22.4.1)

for #* € H. In that case, fo € £1(m) for each ¢ € Cy(T") and the mapping ¥ : Co(T) — X
given by U(yp) = fT fedm is a weakly compact operator. Consequently, f is m-integrable in T’
if and only if f € £1(2* om) for * € X* and (22.4.1) holds for each z* € X* and for each open
Baire set U in T'.

Proof. If f € £1(m), then f is (KL) m-integrable in 7" by Theorem 4.2 of [P8] and hence the
conditions hold.

Conversely, let the conditions hold. Let < H > be the vector space spanned by H and let F
be the norm closure of < H > in X*. By hypothesis, for each open Baire set U in T there exists
xzy € X such that (22.4.1) holds for * € H and consequently,

=¥ (xy) = /de(ac* om) (22.4.2)

for z* e< H >.
Claim 1. (22.4.2) holds for each z* € F' and for each open Baire set U in T.

In fact, given z* € F, there exists a sequence (z})7° C< H > such that z* = Y 1° z} with
> |zk| < oo. Then, for ¢ € K(T'), we have

o0

3 /T pd(z om)| = 3 [ /T pdm)| < | /T | (3 [w4)) < 0o (22.4.3)

1

since ¢ € L£1(m) by Theorem 3.5(v) and Remark 4.3 of |[P8| and since Theorem 3.5(viii) of [P§]
applies by the same remark. Moreover, by (22.4.2) we have

> I/ fd(ay om)| = |z (zv)| < O lah))|zy| < oo (22.4.4)
1 U 1 1
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Clearly, z* om = > "{° 2} om as m has range in X. As m is o-additive and §(C)-regular on
0(C), z* om is o-additive and 0(C)-regular on 6(C).

The mapping u : K(T') — ¢1(N) given by

ul(i) = ( /T pd(xt 0 M),

is well defined by (22.4.3) and is clearly linear. By hypothesis f € £i(z} o m) for n € Nand by
(22.4.4), the complex measures (z), om)>° ; satisfy the hypotheses of Theorem 22.3 for p = 1 and
I = Nand consequently, u is a prolongable Radon operator and f € £;(m,,). By the last part of
the said theorem, 6 : K(T) — K given by 0(¢) = > >°, [ d(x}; o m), belongs to K(T)*, f is
pe-integrable and

/deue = nzl /U fd(z} om) (22.4.5)

for each open Baire set U in T and for the set U = N(f) since f € £1(m,,) so that N(f) € B.(T)

with respect to ||ml|,.

Now [ @dug =0(¢) =302, [ped(x) om) = [ ed(z* om) for ¢ € K(T), since | [ pd(z* o
m) — [ gpd(zlf x} om)| = |z* — Z’f x| [7pdm| — 0 as k — oo. Since z* o m is o-additive
and §(C)-regular, and since pg|s(c) is o-additive and 6(C)-regular by Theorem 4.4(i) of [P2], by
an argument based on the uniqueness part of the Riesz representation theorem which is similar
to that in the proof of Claim 1 in the proof of Theorem 22.3 we have (z* o m) = pgls). Then
by (22.4.2) and (22.4.5) we have

o0

[ sitwom = [ fdue—il [ piom) =X o) =)

for any open Baire set U in T and hence Claim 1 holds. Moreover, as f is pg-integrable and as
tolscy = ** om, f is (z* o m)-integrable and hence [} |f|dv(z* o m) < co. Since z* is arbitrary
in F, it follows that f € £;(z* om) and hence

/ | fldv(z™ om) < oo (22.4.6)
T

for z* € F.

Let F be the vector space spanned by the characteristic functions of open Baire sets in T
Then for each g € F, by Claim 1 there exists z, € X such that

z*(zg) = /ngd(:c* om) (22.4.7)

for each z* € F. Let G = {z4: g € F,||g||r < 1}.
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Claim 2. sup, cg|zg| = M (say) < oco.
In fact, for z* € F', by (22.4.6) and (22.4.7) we have

sup |o* ()] = sup | [ fod(a* om)| < [ |fldoe” om) < o
xg€G z4€G JT T

Hence G is o(X, F)-bounded. Since H is a norm determining set for X, by Lemma 18.13 of
[P11] we have |z*[ < 1 for z* € H and hence |z| = sup|,«|<q [2"(2)| > SUPg+cp |z <1 |2°(2)] >
Sup,«cp |2*(z)| = |z| for x € X (since H C F'). Hence X can be considered as a subspace of F*
with the restriction of the norm of F*. Then by the Banach-Steinhaus theorem applied to the
Banach space F, the set G is norm bounded and hence the claim holds.

For g € F, let ®(g9) = z4. By (22.4.7) and by the hypothesis that H is norm determining,
® . F — X is well defined and linear. By Claim 2, ® is continuous. Hence ® has a unique
X-valued continuous linear extension ® on the closure F of F in the Banach space of all bounded
scalar functions on 7', with the supremum norm. As Co(T) C F by Claim 3 in the proof of
Theorem 22.3, define &g = ‘i’|Co(T)- Then @ : Co(T) — X is linear and continuous and hence
by Theorem 1 of [P5] its representing measure n is given by ®§*| B(T)- Moreover, by the same
theorem, z* om € M(T) for each z* € X* and

¥ ®p(p) = /Tgod(m* on)foryp € Cy(T). (22.4.8)

By hypothesis, f € L£i(z* om) for 2* € H and hence v,-(-) = f(‘) fd(z* om) is o-additive
on B.(T) for z* € H. Clearly, vy« < v(z* om). Then f is vz=-measurable since f is (z* o m)-
measurable and vy« is §(C)-regular for z* € H.

Let ¢ € Co(T). Then there exists (gn)° C F such that g, — ¢ uniformly in 7" so that
@y (p) = lim, ®(gp). Then by (22.4.7) and by the definition of & we have

" Po(p) = limz*®(g,) = limx™ (x4, ) = lim/ fgnd(z* om) (22.4.9)
n n n T

for #* € F. On the other hand, as ¢ is B.(T')-measurable and bounded, fy € £i(z* o m) for
x* € H and by (22.4.6)

|| seita”om) ~ [ foad(a® om)] < g~ gullr( [ |fldv(a® o m) 0
T T T
as n — oo for each * € H. Hence by (22.4.9) and (22.4.8) we have
| wiver = [ fodtaom) = tim [ fouderom)
T T nJr

= a:*(I)O(go):/Tnpd(x*on) (22.4.10)
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for p € Co(T) and z* € H. As z* om € M(T) and as v, is o-additive and §(C)-regular for
x* € H, by an argument similar to that in the proof of Claim 1 in the proof of Theorem 22.3 and
by (22.4.10), we have

(% om)lsc) = Var (22.4.11)

for x* € H. As v(z* on, B(T))(T) < o0, it follows that
v(Var, Be(T))() = v(a* o m, B(T)) g, (1) () (22.4.12)

for z* € H. Consequently, as f is v «-measurable, it is (z* o n)] B.(T)-measurable for z* € H and
consequently, f is (z* o ;)-measurable.

Let U be an open Baire set in T'. Then by §14 of [Din| there exists an increasing sequence (¢y,)
of functions in C.(T") such that ¢, " xy. Then by LDCT, by (22.4.1), (22.4.10) and (22.4.12)
we have

(z* on)(U)

/ xvd(z" on) = lim / end(z” om)

T nJr

= lim/ PndUgr = lim/ onfd(z" om)

= / xvfd(z* om) = z*(xy) (22.4.13)
T

for z* € H. Then by Theorem 18.14 of [P11], ®¢ is weakly compact and hence by Theorem 2
of [P5], m is o-additive and has range in X and by Theorem 6(xix) of [P5], i is B(T')-regular.
(Note that only here we use the hypothesis that H has the Orlicz proprty to assert that ®¢ is
weakly compact.) Then, as f is (z* o n)-measurable for * € H, by the last part of Lemma 22.2
f is m-measurable as well as Lusin n-measurable. Given € > 0, by the B(T)-regularity of n there
exists K € C such that ||n|[(T\K) < 5. As f is Lusin n-measurable, there exists Ko € C such
that Ko C K, f|k, is continuous, and ||n||(K\Ky) < §. Then

[Inl|[(T\Ko) < e. (22.4.14)

Moreover, fxk, is bounded and B.(T')-measurable with compact support so that fxx, € £1(m)
by Theorem 3.5 and Remark 4.3 of [P8]. As f is (z* o m)-measurable for z* € H, f — fxk,
is also (z* o m)-measurable for z* € H. Moreover, as H is a norm determining set, by the last
part of Lemma 22.2 f — fxk, is m-measurable. Then by (22.4.12), (22.4.14), by the fact that
v(vg)(+) = f(‘) | fldv(z* o m) and by Lemma 22.1(i) we have

sup/]f—fXKoldv(:c*om) = sup/ | f|dv(z* o m)
T N(f)\Ko

o e H z*cH
= sup v(ve) (N (f)\Ko)
— ;12:;{ v(z* on)(N(f)\Ko)

= |Inl[(N(/)\Ko) < [[nl[(T\Ko) <.
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Consequently, as fxk, € £1(m), by Lemma 22.1(ii), f € £1(m). Hence the conditions are also
sufficient.

If f € £1(m), then by Theorem 3.5(vii) and Remark 4.3 of [P§|, fy € Li(m) for each
@ € Co(T) and hence ¥ : Co(T) — X given by () = [, ¢fdm is well defined for ¢ € Co(T).
Consequently, by (22.4.10) and by (viii) of the said theorem in [P8] we have

£ U(p) = /T Fd(z* om) = " Bo()

for * € H and for ¢ € Cy(T'). As H is norm determining, it follows that ¥ = ®; and hence Wis
weakly compact.

If H={z* € X*: |2*| <1}, then H is a norm determining set for X and has the Orlicz
property by the Orlicz-Pettis theorem. Hence the last part holds by the first part.

This completes the proof of the theorem.

The following result which is deduced from the last part of Theorem 22.4 improves Theorem
12.2(i) of [P10] for §(C)-regular o-additive vector measures on §(C).

Theorem 22.5. Let X be a quasicomplete lIcHs and let m : §(C) — X be o-additive and
d(C)-regular. Let f: T — K Then f is m-integrable in 7" if and only if f € £;(z* o m) for each
z* € X* and, for each open Baire set U in T', there exists a vector xy € X such that

x*(zy) = /de(q:* om) (22.5.1)

for x* € X*.

Proof. Clearly, the conditions are necessary. Conversely, let the conditions hold. For each
qel I, : X - X, C X, is continuous. Hence (y* o II;) € X* for y* € X, and hence by
hypothesis f € £1(y* o m,) for each y* € X and by (22.5.1) we have

W oM (aw) = [ paty o Tm) = [ gy omy)
for each open Baire set U in T'. Then by the last part of Theorem 22.4, f € £;(my) for each

q € I'. Particularly, f id mg-measurable for each ¢ € I' and hence f is m-measurable. Moreover,
by Definition 12.1 of [P10], f € £1(m) and

/ fdm = lim / fdmy, A€ B.(T)
A — JA

and

/ fdm = lim/ fdm,
T TN\,
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(see Definition 12.1 of [P10]).

In order to generalize Theorem 22.4 to complete lcHs-valued o-additive §(C)-regular vector
measures on 0(C), we first generalize Lemmas 22.1 and 22.2 as follows.

Lemma 22.6. Let X be an lcHs with topology 7 and let H be a subset of X* such that
7 is identical with the topology of uniform convergence in equicontinuous subsets of H. Let P
be a d-ring of subsets of a set Q(A) and let m : P — X be additive. Let £y = {E C H :
E equicontinuous}. Then:

(i) |Jmllg;(A) = supyep v(z* om)(4), A € o(P).

(ii) Suppose X is further quasicomplete, m is o-additive and f : Q — Kis m-measurable and
(z* o m)-integrable for each z* € H. Then f € £;(m) if, for each E € £y and € > 0, there

exists gg) € L£1(myg,) such that

sup / |f— gg)|dv(:p* om) < €.

z*eEJT

Proof. (i) is due to Proposition 10.12(iii) of [P10].

(ii) For z* € E, let ¥, be as in Proposition 10.12 of [P10]. Then by hypothesis and by the
latter proposition, we have

Sup/|f 93 |dv(¥, o my,) = sup/lf 99dv(z* om) <e.  (22.6.1)
z*el T*el

Then by (22.6.1) and by Lemma 22.1(ii) applied to mg,, : P — Xg, C )f(;;, f € Li(my,) since
{¥,+ : 2* € E} is a norm determining set for X, by Proposition 10.12 of [P10] and since f is

myg, -measuable by hypothesis. Since E is arbitrary in £y and since {qg : E € £} generates the
topology 7, by Definition 12.1 and Remark 10.5 of [P12] we conclude that f € £;(m).

Lemma 22.7. Let X be an IcHs and let H satisfy the hypothesis of Lemma 22.6. Let &y
be as in the above lemma. Suppose m : 6(C) — X (resp. m: B(T) :— X) is o-additive and let
V eV. Then aset A€ B(V) (resp. A € B(T)) is m-null if and only if A is (z* o m)-null for each
z* € H. If m is further §(C)-regular (resp. B(T')-regular) and if f : T'— Kis (z* om)-measurable
for * € H, then f is Lusin m-measurable as well as m-measurable.

Proof. Let A be (z* o m)-null for each z* € H and let E € . For z* € E, let ¥« be as
in Proposition 10.12 of [P10]. Then by the said proposition Hg = {¥,- : * € E} is a norm
determining set for X, and hence for )?;; and therefore, by hypothesis and by Lemma 22.2, A
is mg,-null. As E is arbitrary in €y and as {gg : E € Ex} generates the topology 7, A is m-
null by Remark 10.5 of [P10]. Conversely, if A is m-null, clearly A is (z*om)-null for each z* € H.
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Let f be (z* o m)-measurable for * € H. Let E € £y. Then, f is (¥;+ o m)-measurable
for ¥« € Hg. Hence, by Lemma 22.2 applied to my,, : P — X,, C X,,, f is my,-measurable,
where P = §(C) (resp. B(T). Then by Definition 10.6 and by Remark 10.5 of [P10], f is m-

measurable and consequently, f is also Lusin m-measurable by Theorem 21.6 (resp. by Theorem
21.5).

Now we shall generalize Theorem 22.4 to complete lcHs-valued o-additive §(C)-regular mea-
sures.

Theorem 22.8 (Generalization of Theorem 22.4 to complete lcHs-valued mea-
sures). Let X be a complete lcHs with topology 7 and let H be a subset of X* with the Orlicz
property such that 7 is identical with the toplogy of uniform convergence in equicontinuous sub-
sets of H. Let m : §(C) — X be o-additive and §(C)-regular and let f: T — K Then f € £;(m)
if and only if f € £1(z* o m) for each z* € H and, for each open Baire set U in T, there exists
zy € X such that

m*(xU):/de(m*om) (22.8.1)

for z* € H.

Proof. Let &g = {F C H : Eequicontinuous}. By hypothesis, the seminorms gg, F € &,
generate the topology 7. Let E € Ef be fixed. By Proposition 10.12 of [P10], (¥ o II;, ) (z) =
x*(x) for z € X and for z* € E and hence we identify z* € E with ¥ «. Let Hg = UgE N H for
E € &y. Since E C Hg C U;’E and since {V,+ : * € E} is a norm determining set for X, by
the Proposition 10.12 of [P10], it follows that Hg is a norm determining set for X, and hence
for )/(;;. Let F be the vector space spanned by the characteristic functions of open Baire sets in
T. Then by (22.8.1), for each g € F, there exists z4 € X such that

z*(z4) —/ngd(a:*om) (22.8.2)

for * € H and x4 is unique as 7 is generated by {qg : £ € £x}. Then the mapping ® : F — X
given by ®(g) = x4 for g € F is well defined and linear. For E € Hg, arguing as in the proof of
Theorem 22.4 with X,

q9E>
in place of (22.4.1) we can show that I, o @ : .7:: Xy 1s continuous for ' € Ey. Therefore,

mg, and Hg in place of X, H and m, respectively, and using (22.8.1)

there exists a unique continuous linear extension ®(&) of II,,, o ® to the whole of F with values in

)/(\q; where F is the closure of F in the Banach space of all bounded scalar functions on T with
supremum norm. Then there exists a constant Mg such that

—

12F)(p)lgp < Mellellr (22.8.3)

for ¢ € F. Hence by Claim 3 in the proof of Theorem 22.3, <I>(()E) = QT(E)\CO(T) is continuous
and linear and has range in )?;;. Then (22.8.3) also holds for CIDéE) with ¢ € Co(T). Moreover,

(22.8.3) holds for all E € Ep.
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By hypothesis, X is a complete IcHs and {gg : £ € &n} generates the topology 7 and

hence by Theorem 5.4, §5, Ch. II of [Schal, X = I}LanE' Let us define & : F — X by
b(p) = lim®E)(p) for ¢ € F. Let By : Co(T) — X be given by ®o = &|c,(r). Then by (22.8.3)

we have |<i>(<p)\gE = |(Hgg © 2)(@)lgp = [2E)(9)]gs < ME||¢||7 for each E € £y and for each
@ € F. Hence ® and @ are X-valued continuous linear mappings.

Let 1 be the representing measure of ®( in the sense of Definition 4 of [P5]. Then by Theorem
1 of [P5]

7*Bo(p) = / pd(z*on)  (28.8.4)
T
for z* € X* and for ¢ € Cy(T).

Claim 1. [, fed(z* om) = z*®g(p) = [, pd(z* on) for * € H and for ¢ € Co(T).

In fact, let ¢ € Co(T'). As f € Li(z* om) for z* € H and as ¢ is bounded and B.(T)-
measurable, fo € L£1(z* om) for z* € H. By Claim 3 in the proof of Theorem 22.3, there exists
(gn)3° C F such that || — gnl||r — 0. Then, for z* € H,

| /T fed(z* o m) - /T Fond(z* o m)]| < |l — gallr /T fldv(z"om) 50 (22.85)

as n — 0o. Observing that ®(g) = ®(g) = z, for g € F, by (22.8.2), (22.8.4) and (22.8.5) and
by the fact that ||¢ — gn|l7 — 0 as n — oo we have

/ fed(z* om) = lirrbn/ fond(z* om) = liﬁn z*(zg,) = liﬁn z*®(gn) = " Po(p) = / pd(z* om)
T T T

for * € H since ®g is continuous on Cy(7T"). Hence the claim holds.

Let U be an open Baire set in T" and choose (¢,)7® C Co(T') such that ¢,  xu (see the
proof (22.4.13)). Then by Claim 1, by LDCT and by (22.8.1) we have

@ o)) = lm [ puda"om)
nJr
= lim:c*q)()(gon):lim/fgond(w*om)
n n T

= /TXde(g;* om) = z*(zy) (22.8.6)

for z* € H. Since H has the Orlicz property, by (22.8.6) and by Theorem 19.7(ii) of [P11], ® is
weakly compact.

Then by Theorems 2 and 6 of [P5], n is X-valued, o-additive and B(T')-regular. Let vy« () =
f(.) fd(z* om) for * € H. Then for ¢ € Cy(T) and for x* € H, by Claim 1 we have

/T e = /T Fpd(a* o m) = 2By (p) = /T pd(z* o)
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and hence an argument similar to to that in the paragraph following (22.4.10) in the proof of
Theorem 22.4 shows that f is (z* o n)-measurable for «* € H. Then by the last part of Lemma
22.7, f is n-measurable as well as Lusin n-measurable. Thus, given E € £y and € > 0, arguing
as in the proof of Theorem 22.4, there exists a compact Ko in T such that ||n||q,(T\Ko) < €
and f|k, is continuous. Then fxg, is bounded and B.(T')-measurable with compact support.
Consequently, by Theorem 11.9(i)(b) and by Notation 15.9 of [P10], fxk, € £1(m) and hence
fxk, € £1(mg,). Moreover, by hypothesis f is (* o m)-measurable for each z* € H and as H
satisfies the hypothesis of Lemma 22.7, it follows that f is m-measurable. Then an argument
similar to that in the last part of the proof of Theorem 22.4, invoking Lemma 22.6(ii) in place
of Lemma 22.1(ii), shows that f € £i(my,). Since E is arbitrary in &y and since (¢g)peey
generates the topology 7, by Definition 12.1 and by Remark 10.5 of [P10], f € £1(m).

This completes the proof of the theorem.

Now we give an analogue of Theorem 22.3 when y; : B(T) — K i € I, are o-additive and
Borel regular.

Theorem 22.9. Let u; : B(T) — Kbe o-additive and B(T')-regular for ¢ € I. Suppose
Sier | JpeduilP < oo for each ¢ € Co(T) and for 1 < p < oo. Let u : Co(T) — £,(I) be
defined by u(p) = ([ wdps)icr- Then u is a weakly compact operator on Co(T'). Let m, be the
representing measure of u in the sense of Definition 4 of [P5] and let f : T'— Kbelong to L1 ()
for ¢ € I. Then f is my-integrable in T if and only if

> I/deuilp < o0 (22.9.1)

i€l

for each open Baire set U in T'. In that case, [ fdm, = ([, fdui)ier.

Let p=1and let f € £1(my). If 0(¢) = > ;) [7¢dui for ¢ € Co(T), then 8 € K(T); (see
pp. 65 and 69 of [P2]), f is up-integrable and

/A fdpg =Y /A fp

icl
for A € B(T), where pg is the bounded complex Radon measure induced by 6 in the sense of
Definition 4.3 of [P1].

Proof. By an argument similar to that in the proof of Theorem 22.3 we can show that the
linear mapping u has closed graph and hence by Theorem 2.15 of [Ru2|, u is continuous. Since
co ¢ £p(I) for 1 < p < oo, by Theorem 13 of [P5] or by Corollary 2 of [P6], u is weakly compact.
Then by Theorems 2 and 6 of [P5|, the representing measure m,, of u is ¢,(I)-valued, o-additive
and Borel regular on B(T).

Let H}p) be as in the proof of Theorem 2.3 for 1 < p < co. If z* = (o) € Hl(p), then there
exists Jyx C I, Jp+ finite, such that o; = 0 for ¢ € I\ Jy«. Then by Theorem 1 of [P5] we have
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z*u(p) = [ped(z* omy) = [, SOd(Zz‘er* a;p;) for ¢ € Co(T). Since z* om, and p;, 7 € I,
are o-additive and Borel regular, by the uniqueness part of the Riesz representation theorem we

conclude that
Tromy, = Y i =Y aifl. (22.9.2)
1€ S p* el

For i € I, let 8; and 7; be defined as in the proof of Theorem 22.3. Note that 7; is o-additive
on B(T) and n; < v(u;), ¢ € I so that n; is B(T)-regular for ¢ € I. Since

/ wdn; = / ofdu; = 0;(p) = / @dpg,
T T T

for ¢ € Cy(T) and for ¢ € I, by the uniqueness part of the Riesz representation theorem

n; = pe, foriel. (22.9.3)

Defining ¥« as in the proof of Theorem 22.3, by (22.9.3) we have

W, = Z aifle, = Z a;n; on B(T). (22.9.4)

1€ S % 1€ S x

Using (22.9.1), (22.9.4) and Hoélder’s inequality and arguing as in the proof of Claim 2 in the
proof of Theorem 22.3 one can show that

sup (o (O < (1 [ gt <o (2205)

a*cHP) iel

for 1 < p < oo and for an open Baire set U in T'. As {puy_. : 2* € H}p)} C M(T) for 1 < p < o0,
by (22.9.5) and by Corollary 18.5 of [P11] we have

sup v(pw, ., B(T))(T) = M, (say) < oo (22.9.6)
z*GH}p)

for 1 <p < o0.

By an argument quite similar to the proof of Claim 4 in the proof of Theorem 22.3 and by
the use of (22.9.6) in place of Claim 2 in the proof of the said theorem, we have

Z|/Tf<;7d,ui!p < 00 (22.9.7)

el
for ¢ € Co(T) and for 1 < p < 0.

Then the mapping & : Co(T') — £,(I) given by

£(p) = (/T fedui)ier = (/T @dn;)ier
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is well defined and Inear and has closed graph. Then by the closed graph theorem, £ is contin-
uous. Since c¢o  £,(I) for 1 < p < oo, by Theorem 13 of [P5|, £ is weakly compact. . Then by
Theorems 2 and 6 of [P5], the representing measure mg¢ of £ is £,([)-valued, o-additive and Borel
regular on B(T).

Then arguing as in the proof of Claim 5 in the proof of Theorem 22.3 and using the uniqueness
part of the Riesz representation theorem (Borel version), we conclude that

(z" omg) = Z o = Zozmi (22.9.8)

1€ J % el

for each z* € H}p), 1 < p < oo. Invoking the Borel case of Lemma 22.2 and using (22.9.8) we

conclude that f is m-measurable as well as Lusin m-measurable. The rest of the argument in
the proof of Theorem 22.3 holds here verbatim with B(T') in place of B.(T) and B(T')-regular in
place of §(C)-regular.

This completes the proof of the theorem.

Using the above theorem for I = Nand for p = 1, we obtain below the analogue of Theorem
22.4 for a Banach space-valued o-additive Borel regular measure.

Theorem 22.10. Let X be a Banach space and let m : B(T') — X be o-additive and Borel
regular. Let H be a norm determining set for X with the Orlicz property and let f: T — K
Then the conclusions of Theorem 22.4 hold. (By Theorem 20.12, m](;(c) satisfies the hypothesis
of Theorem 22.4 and hence the conclusions of Theorem 22.4 hold for m|s(¢)y but it requires a proof
to show that they hold for m itself.)

Proof. By Theorem 4.2 of [P8|, the conditions are necessary. Conversely, let < H > and
F be as in the proof of Theorem 22.4. If z* € F and z* = Y {"z} with (z}) C H and with
> |=)| < oo, then arguing as in the proof of the said theorem, we have z* om = ) [°z} om
and moreover, z* o m is o-additive and B(T)-regular. Further, (22.4.3) holds for ¢ € Co(T) and
(22.4.4) also holds. Consequently, the mapping u : Co(T") — ¢1(N) given by

u() = ( /T pd(x 0o m))22.,

is well defined and linear. Then the complex measures (x}; o m)S° ; satisfy the hypotheses of
Theorem 22.9 for p = 1 and for I = Nand hence u is a weakly compact operator on Cy(T")
and f € L£y(m,), where m, is the representing measure of u. Then by the last part of the
said theorem, 0 : Co(T) — K given by (@) = > 7, [, @d(x} o m), belongs to K(T);, f is

pe-integrable and
fdug = / fd(z; om
/ > [ it om)

for each open Baire set U in T" and for the set U = N(f) since f € £1(m,,) so that N(f) € B(T)
with respect to ||my,||. Observing that * om is o-additive and B(T')-regular by hypothesis and g




V. Applications to integration in locally compact Hausdorfl spaces-Part I1 33

is o-additive and B(T)-regular by Theorem 5.3 of [P2|, and proving that [, pdug = [ @d(z*om)
for ¢ € Cy(T') as in the proof of Claim 1 in the proof of Theorem 22.4, by the uniqueness part
of the Riesz representation theorem we conclude that pg = x* o m. Moreover, by (22.4.2) and
(22.4.5) we have z*(zy) = [;; fd(z* o m), where by hypothsis y*(zy) = [, fd(y* o m) for each
open Baire set U in T" and for each y* € H.

Arguing as in the proof of Theorem 22.4, one can define the continuous linear mapping
@y : Co(T) — X with the representing measure 1. Let vy«() = f(.) fd(z* om) for z* € H.
Then vz« < v(z* om). Then f is vz--measurable since f is (z* o m)-measurable and v+ is
B(T)-regular for z* € H. Arguing as in the proof of Theorem 22.4, by the uniqueness part of the
Riesz representation theorem we have v« = z* om, z* € H and hence f is (z* o ;)-measurable
for * € H. The remaining arguments in the proof of Theorem 22.4 hold here excepting that the
Borel case of Lemma 22.2 has to be invoked here.

This completes the proof of the theorem.

The following theorem which improves Theorem 12.2(i) of |[P10| for B(T')-regular o-additive
vector measures is immediate from the last part of Theorem 22.10 by an argument similar to that
in the proof of Theorem 22.5.

Theorem 22.11. Let X be a quasicomplete IcHs and let m : B(T) — X be o-additive and
B(T)-regular. Then a function f: T — Kis m-integrable in 7" if and only if f € £1(z* o m) for
each z* € X™* and, for each open Baire set U in T, there exists a vector xyy € X such that

r(ew) = [ fda”om)

for z* € X*.

The following result is an analogue of Theorem 22.8 for the Borel-regular o-additive X-valued
vector measure m where X is a complete lcHs.

Theorem 22.12. Let X, 7 and H be as in Theorem 22.8 and let m : B(T') — X be o-additive
and Borel regular. Then a function f : T — Kbelongs to £;(m) if and only if f € £1(z* om)
for each * € H and, for each open Baire set U in T, there exists a vector zyy € X such that

2 (zp) = /U fd(z* o m)

for x* € H.

Proof. The proof of Theorem 22.8 holds here verbatim excepting that we have to invoke the
uniqueness part of the Riesz representation theoem (Borel version) to show that v, = z* on for
x* € H so that f is (z* o )-measurable for z* € H and then invoke the Borel case of Lemma
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22.7. The details are left to the reader.

23. ADDITIONAL CONVERGENCE THEOREMS

First we obtain a generalization of the Bourbaki version of the Egoroff theorem for an lcHs-
valued o-additive 6(C)-regular measure. Then Proposition 4.3 of [T] is suitably generalized in
Theorem 23.4. Corollary T5 on P. 176 of |T] is improved in Theorem 23.6. Then the latter
theorem is generalized to vector measures in Theorems 23.8 and 23.12.

Theorem 23.1 (Generalization of the Bourbaki version of the Egoroff theorem).
Let X be an IcHs, n : §(C) — X be o-additive and 0(C)-regular and fy: T'— K For each ¢ € T,

let fflq) : T'— Kbe ng-measurable for n € Nand let fflq) — fo ng-a.e. in T'. Then:

(i) fo is n-measurable.

(ii) Given K € C, ¢ € " and € > 0, there exists Kéq) € C such that Kéq) CK, Han(K\Kéq)) <
€, féq)]K(q), n € NU {0}, are continuous and féq) — fo uniformly in Kéq).
0

Proof. (i) By hypothesis, fy is n,-measurable for each ¢ € I' and hence fy is n-measurable.

(ii) Without loss of generality we shall assume X to be a normed space. Clearly, §(C) N K =
B(K) is a o-algebra and hence by Theorem 5.18(viii) of [P9], given € > 0, there exists A € B(K)
such that [|n[|(4e) < § and f, — f uniformly in K\A.. As K\Ac € B(K) C 6(C), by the
§(C)-regularity of n there exists a compact set K; C K\A such that ||n||(K\A\K1) < £.
Then particularly, f, — fo uniformly in K7. Moreover, by hypothesis, by Theorem 21.6 and
by Definition 21.3, for each n there exists C,, € C with C,, C Kj such that f,|c, is con-
tinuous and ||n||(K1\Cy) < § - 3r. Then Ko = N{°C, € C, Ko C K1 C K and fy|k, is
continuous for each n € Nso that their uniform limit fy is also continuous in Ky. Moreover,

[Inf[(K1\Ko) < 3272 [In||(K1\Cr) < § so that |[n]|(K\Ko) <.
The following definition is motivated by that on p.122 of |T].

Definition 23.2. Let X be an IcHs, n : §(C) — X be o-additive, f : T — Kand ¢ € . A
sequence ( f,(ﬂ)) of ng,-measurable scalar functions is said to converge to f in measure n, over com-
pacts, if, given K € C and > 0, the sequence ||n||,({t € K : |f7sq)(t)—f(t)\ >n}) = 0asn — oo.

Theorem 23.3. Let X be anIcHs, n : §(C) — X be o-additive, ¢ € T and fy, go, g, féq), 97(1(1) :

T — K n € N be ng-measurable forn € N Let f: T — K If fT(Lq) — fo and gﬁf’) — gp in measure
n, over compacts, then the following hold:

(i) fr(Lq) + gﬁf’) — fo + go in measure n, over compacts.
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(i) A f,gq) — Afo in measure n, over compacts.
(iii) If fT(Lq) — ¢ in measure n, over compacts, then fo = g ns-a.e. in T
(iv) If f,gq) — fng-a.e. in T and if n is §(C)-regular, then f,(Lq) — f in measure n, over compacts.

Proof. (ii) is obvious. Let K € C and > 0. For any three ng-measurable scalar func-
tions ¢, ¢, and h on T, it is easy to verify that |[n|[;({t € K : |o(t) — ¥(t)] > n}) <
Inll({t € K : lp(t) — b)) > 21) + Inlly({t € K : |h(t) — $(t)] = 1}). Using this in-
equality, one can prove (i) and that ||n||;(N(fo —¢) N K) = 0 in (iii) for each K € C, since
N(fo—g9g)NK =U,2{t € K :|fo(t) —g(t)| > %} If A= N(fo—g), then A € B.(T), so that
A is of the form A= BUN, B € B.(T), N C M € B.(T) and ||n||4(M) = 0. Then there exists
an increasing sequence (B,)° C §(C) such that B, /* B. Then K,, = B, € C and B C J;° Kp.
Hence ||n||¢(B) < >°7°||In||q(N(fo —g) N K,) = 0. Hence fo = g ng-a.e. in T.

(iv) By hypothesis, f is ng-measurable. Let K € C and > 0. By hypothesis and by Theorem
23.1 there exists KSQ) € C with K(()q) C K such that Han(K\Kéq)) < n, A n € Nand
(9)

fl (@ are continuous and fT(Lq) — f uniformly in K. Hence, given € > 0, there exists ng such
0

that sup,_ o [f£7(8) = F(B)] < € for n > ng so that [[nlly({t € K : [£7(6) = fO] = ) <
Han(K\K(()q)) < n for n > ny. Hence (iv) holds.

|K(g‘1) i

Theorem 23.4 (A variant of Theorem 15.12(ii) of [P10]). Let X be a quasicomplete
(resp. sequentially complete) lcHs, let 1 < p < oo and let n : §(C) — X be o-additive. Let

(ff,(Lq))‘fo C Lp(ng) (resp. C Lp(c(0(C)),ng)) for each ¢ € T and let f : T — K (resp. be
B.(T')-measurable). Suppose f,gq) — f ngae. in T for each ¢ € I'. Then f € L,(n) (resp.

f € Ly(a(6(C)),m)) and lim,(ng)3(f1? — f,T) = 0 for each ¢ € T if and only if the following
conditions hold:

(1) (ng)p( f,(ﬂ), -), n € K are uniformly ng-continuous on B.(T') for each g € I'. (See Definition
8.3 of [P10].)

(ii) For each € > 0 and q € T, there exists K@ € C such that
sup(ng)p (£, T\K'¥) < e.

Proof. If P = §(C), note that o(P) = B.(T). Then (i) is the same as condition (a) of Theo-
rem 15.12(ii) of [P10]. (ii) is equivalent to condition (b) of Theorem 15.2(ii), since for A € P,

AW = K@ € ¢ and T\AY > T\K@.

Remark 23.5. In the light of Lemma 20.5 and Theorem 20.12, Theorems 23.1 and 23.3(iv)
hold for n = m|s(c) (resp. n = wlsc)) where m : B(T') — X (resp. w : B.(T) — X) is o-additive
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and Borel regular (resp. and o-Borel regular).
The following theorem is an improved version of Corollary 75 on p. 176 of |T].

Theorem 23.6. Let 0 € K(T)* and A = x| (so that X = v(ug, B(T)) = we|lsr) by
Theorems 4.7 and 4.11 of [P1]). Then X : B(T') — [0, 00| is o-additive and Radon-regular in the
sense of Definition 3.3 of [P1]. Suppose (fn)7° C L1()) such that the sequence ([;; fndpg)7° is
convergent for each open Baire set U in T'. Then there exists f € £1(\) such that lim,, [ A fndpe =
/ 4 fdug for each Borel set A in T'. Consequently,

tim [ gfudio = [ afdu (23.6.1)
n T T

for each A-measurable bounded scalar function g on T and consequently, f is unique in Lj(\). If
fn— h Xae inT, then f =h Aae. inT and lim, [, fodue = [, hdpe for each A € B(T'), the
convergence being uniform with respect to A € B(T).

Proof. A\ is o-additive and Radon-regular by Theorem 2.2 of [P1]. For f € Li(\), let
u(-) = f(.) fdug. Since f € L1(A), by Lemma 1, no. 6, § 5, Ch. IV of [B|, there exist a sequence

(K,)$° C € and a A-null set N such that N(f) € NUUT K. Hence, for A € B(T), let us define

[ tina= [ fdue  (23.6.2)
A U (ANKy)

which is well defined as f € £1(ug). Then we note that p : B(T) — Kgiven by u(A) = [, fdue
is well defined, o-additive and Borel regular since p < v(pg) on Be(T") and hence on B(T') by
(23.6.2). (See Claim (*) in the proof of Theorem 22.3.) Therefore, u € M(T). Moreover,
by Notation 18.1 of [P11], by Proposition 2.11 of [P§|, by Theorems 4.7 and 4.11 of [P1] and
by (23.6.2) we have [|ul| = v(u, B(T))(T) = v(p, B(T))(Ur" Kn) = [ o= i, |f1dv(p0,0(C)) =
Juz i, | F1dmollse) = Jus i, 11wl lery = Jr|fldA = [If]l1. Then, the mapping @ : L1(A) —
M(T) given by ®(f)(-) = f(.) fduyg is linear and isometric so that My = ®(L1(\)) = {p € M(T) :
there exists f € Li(\)such that u(-) = f(.) fdug} is complete with respect to the norm on M (T).
Therefore, M) is a closed subspace of M (T'). Then by the Hahn-Banach theorem, M) is a weakly
closed subspace of M (T).

Let pn(-) = f(.) fndug, n € N Then by the foregoing argument p,, n € N belong to M(T).
By hypothesis, lim,, u,(U) € K for each open Baire set U in T and hence by Theorem 18.6 of
[P11] there exists up € M(T) such that p, — po weakly in M(T). As (un)3° C My and as M)
is weakly closed, py € M) and hence there exists f € Li(A) such that po(:) = f(.) fdug on B(T).
Moreover, as jt, — po weakly in M(T'), (pn)22, is weakly bounded and hence by Theorem 3.18
of [Ru2|, sup,¢cxuqoy llpnl| = M < oo and further, pun(A) — po(A) for each A € B(T).

Let g be a bounded Borel measurable function on 7' and let € > 0. Then there exists a B(T)-
simple function s such that |[g — s||7 < 557 Let s = Y74 aixa, with (4;)]7 C B(T). Choose ng
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such that .
il (Ai) = po(Ai)] < o (23.6.2)

for i =1,2,...,7 and for n > ng. Then,

€
[ atudia~ [ studiol <1lg = sliz( [ 1faldX) = llg = sllrllinl] < § (2563
T T T

for all n € Nand
€
[ atdua— [ sfaual < llg = slie( [ 1713 =llg = sllzlluol < 5. (2560
T T T

Then by (23.6.2), (23.6.3) and (23.6.4) we have

| / o fndiio — / ofdug) < ¢
T T

for n > ng and hence (23.6.1) holds for bounded Borel measurable functions g.

If g is bounded and A-measurable, then there exists a A-null set N € B(T') such that gx\n
is Borel measurable and hence (23.6.1) holds for bounded A-measurable functions g. Moreover,
since (23.6.1) implies that f,, — f weakly in Li(X), f is unique in L;j(A).

If f = h Aae. in T, then by (23.6.1) (with g = x4, A € B.(T)) and by Proposition
2.13 of [P8], limy, [, fudpg = [; hdug for each A € B.(T) and consequently, again by (23.6.1),
Jihdpe = [, fdue for A € B.(T). Let v(A) = [,(f — h)dug for A € B(T). Then v is a null
measure on B.(T") and hence v(v)(N(f—h)) = fN(f—h) |f—h|dv(pg,d(C)) = fN(f—h) | f —hldwe =
fN(f—h) |f — h|d\ = 0 by Proposition 2.11 of [P8] and by Theorems 4.7 and 4.11 of [P1]|. There-
fore, f = h Mae. inT. Since [, fdug = [, hdps = fU‘f"(AﬂKn) hdug for A € B(T), where

N(f) c NUU Kp, (Kp)5° C C and N is A-null, the last part holds by the equivalence of (i)
and (iii) of Proposition 2.13 of [P§].

The rest of the section is devoted to generalize Theorem 23.6 to vector measures. We begin
with the following lemma.

Lemma 23.7. Let X be a quasicomplete IcHs and let m : 6(C) — X be o-additive and
0(C)-regular. Let f : T — K belong to £;(m). Then:

(i) There exists B € B.(T) such that N(f) C B.
(ii) Let v : B(T) — X be defined by v(A) = [, 5 fdm for A € B(T). Then v is o-additive
and B(T')-regular.

Proof. As f is m-measurable, there exists M € B.(T) such that ||m||(M) = 0 and such that
Ixrar is Be(T)-measurable. Consequently, N(fx7\a) € Be(T) so that N(f) C N(fxr\wm) U
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M = B (say). Thus (i) holds.

(ii) For A € B(T'), ANB is o-bounded and Borel and hence ANB € B.(T'). Since f(.) fdmis o-
additive on B.(T") by Theorem 11.8(ii) and by Remark 12.5 of [P10], it follows that v(-) = v(-NB)
is o-additive on B(T).

Claim 1. = is Borel inner regular.

In fact, let A € B(T') and let B be as in (i). Then there exists (Ex)° C d(C) such that
Ey, /' BNA. Let e >0 and ¢ € T'. Since ~ is o-additive on B(T'), by Proposition 2.2 of |P§],
||v!lq is continuous on B(T") and hence there exists kg such that ||v||4((ANB)\Ey) < § for k > k.
On the other hand, by Theorem 11.8(iii)(c) and by Remark 12.5 of [P10], there exists d > 0 such
that ||v]|¢(F) < § whenever F € B.(T) with ||m]|4(F) < . Since m is 6(C)-regular by hypothe-
sis, there exists C' € C such that C' C Ey, and |[m|[4(Eg,\C) < d. Then ||y||¢(Ex,\C) < §. Then
[17]1q(A\C) < € since ||7]|4(A\B) = 0. Hence the claim holds.

Mo~ :B(T) — )A(; is o-additive and hence has bounded range. Then by Proposition 10.14
of [P10], {z* oy : a* € UJ} = {Upx(Ilgo ) : z* € UY} is bounded in M(T). By Claim 1 v is
Borel inner regular on B(7T'), and hence, given A € B(T), ¢ € T and € > 0, there exists a compact
K C A such that ||y][q(A\K) < e. Then by the said proposition of [P10] we have

sup v(z” 0 7)(A\K) = [IIg o ¥[[(A\K) = [[7]]¢(A\K) <€

z*eUQ

and hence {(z* o ~) : z* € Ug} is uniformly Borel inner regular on B(7T'). Consequently, by
Theorem 2 of [P4], {z* o~ : 2* € U} is uniformly Borel regular on B(T') and arguing as in the
above invoking Proposition 10.14 of [P10], we conclude that ~ is Borel regular on B(T).

Using the above lemma, we give in the following theorem two generalizations of the a.e. con-
vergence part of Theorem 23.6 to o-additive §(C)-regular vector measures and this result is a
strengthened vector measure analogue of Proposition 4.8 of |T].

Theorem 23.8. Let X be a quasicomplete lcHs with topology 7 and let m : §(C) — X be
o-additive and §(C)-regular. Let (f,)3° C L£i1(m) and let f : T — K,or [—o0,00] be such that
fn — f m-ae. in T (see Definition 10.4 of [P10]).

(a) Suppose (f;; fndm)?°® converges in X in 7 for each open Baire set U in T. Then the
following hold:

(a)(i) f € L1(m).
(a)(ii) For A € B(T),

/Afndm—>/Afdm int
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and for each ¢ € I', the onvergence is uniform with respect to A € B(T).

(a)(iii) For bounded m-measurable scalar functions g on T,

/fngdm—>/fgdm inT.
T T

(b) Suppose ([;; fndm)$® converges weakly in X for each open Baire set U in T. Then the
following hold:

(b)) f € L1(m).
(b)(ii) For A € B(T),

/fndm%/fdmweakly.
A A

(b)(iii) For bounded m-measurable scalar functions g on T’

/ frngdm — / fgdm weakly.
T T
Proof.

(a)(i) and (b)(i). Let U be an open Baire set in 7. By hypothesis (a) (resp. (b)) there exists
a vector zyy € X such that

lim/ fndm = xy inT(resp. weakly).

mJu

Then in both the cases, by Theorem 11.8(v) and Remark 12.5 of [P10]
lim/ frd(z* om) = x*(zp) (23.8.1)
nJu

for z* € X*. On the other hand, by hypothesis and by Theorem 4.4(i) of [P2], * o m = py for
some 6 € K(T')* and hence by Theorem 23.6 we have

lim/ frd(z* om) = / fd(z" om) (23.8.2)
nJu U
for z* € X*. Then by (23.8.1) and (23.8.2) we have
o*(ov) = [ fda” om)
U

for each open Baire set U in T and for * € X*. Consequently, by Theorem 22.5, (a)(i) (resp.
(b)(i)) holds.

(a)(il) Let fo = f. By (a)(i) and by Lemma 23.7, there exists B,, € B.(T') such that N(f,) C
B, and ~,, : B(T) — X given by ~v,(4) = fAmBn frdm for A € B(T), is o-additive and Borel
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regular for n € NU {0}. By hypothesis, lim, v, (U) € X in 7 for each open Baire set U in T.
Since X is also sequentially complete, by Theorem 18.23 of [P11] there exists a unique X-valued
o-additive measure v on B(T) such that

lim/ gdy,, = / gdy € X (23.8.3)
noJr T

in 7 for each bounded Borel measurable scalar function g on 7T'.

Claim 1. For a bounded Borel measurable scalar function g on T

/T gy, = /T frngdm (23.8.4)

forne N

In fact, (22.8.4) clearly holds for B(T')-simple functions. Choose a sequence (s,)5° of B(T)-
simple functions such that s, — ¢ and |s,|  |g| pointwise (in fact, uniformly) in 7. Then by
LDCT (Theorem 15.3(i) of [P10]) and by the validity of (23.8.4) for B(T')-simple functions we

have
/gd’yn zlim/ skdy,, zlim/ frnspdm = / frngdm
T ko Jr k Jr T

since g and f,g are m-integrable in T and since g is =, integrable in T' by (i)(b) and (ii) of
Theorem 11.9 and by Remark 12.5 of [P10]. Hence the claim holds.

Let B = J;2 Bn. Then B € B.(T) and f, = 0 in T\B for n € NU{0}. For z* € X*, let
0 be as in the proof of (a)(i). Then by hypothesis (a), by Theorem 11.8(v) and Remark 12.5 of
[P10], ([;; fad(z* o m))$° is convergent in Kfor each open Baire set U in T. Hence by Theorem
93.6,

li}ln/Tfngd(a:* om) = /ngd(x* om) (23.8.5)

for each bounded Borel measurable funxtion g on T'. Then for A € B(T'), by (23.8.4) and (23.8.5)
and by Theorem 11.8(v) and Remark 12.5 of [P10] (since f € £1(m) by (a)(i)), we have

lim(z* o7,,)(4) = lim/ frnd(z*om) = lim frnd(z" om)
n noJA n JAnB

= fd(z* om)
ANB

= /Afd(x*om)
= (z%¥ovyy)(A). (23.8.6)

Moreover, by (23.8.3) we have

li7ILn(x* ov,)(A4) = liTILn(:r* oy, )(ANB)=(z*oy)(ANB) = (z"o~v)(4) (23.8.7)
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for z* € X*, since v,,(A\B) = 0 for all n so that y(A\B) = 0. Consequently, by (23.8.6) and
(23.8.7) we have

(27 07)(A) = (¢ 0 7)(4)
for A € B(T') and for z* € X*. Then, by the Hahn-Banach theorem, v(A) = vy(A) and hence,
for A € B(T), by (23.8.3) we have

lim/ frdm = lim~,(A) =~v(A) =v,(A) = / fdm (23.8.8)
nJA n A
in 7.

In Theorem 12.8 of [P10], take f,sq) = fn for all ¢ € I'. Note that o(6(C)) = B.(T"). Then in
the notation of the said thorem, by Theorems 11.8(v) and 12.8 and by Remark 12.5 of [P10] and
by (23.8.8) we have

7D(A) =~vP(ANB) = fndm,
ANB

= I ANB fndm)
= (Hgovo)(ANB) = (Il o vo)(A)

in qu and the limit is uniform with resepect to A € B(T') for a fixed ¢ € T, since it is so with
respect to E € B.(T'). Hence (a)(ii) holds.

(a)(iii) By hypothesis and by Theorem 18.8 of [P11], for each ¢ € T', there exists a finite
constant M, such that

sup ||v,|lg(T') = M. (23.8.9)
neNU{0}

Let ¢ be a bounded m-measurable scalar function on 71" and let ¢ € I'. Then there exists
Ny € Bo(T) with [lm|[4(Ng) = 0 such that hy = gxp\n, is Be(T)-measurable and bounded.
Hence, given € > 0, there exists a B.(T)-simple function s(9 such that |s@| < |h,| and

€

_ @
Iy = 5llr < 537

(23.8.10)

Let 59 =31 ayxa, with (4;)] C B.(T). By (a)(ii) there exists n; such that
€

23.8.11
. ( )

|l [ (Ai) = v0(Ai)lq <

fori =1,2,...,r and for n > n;. Then by (23.8.11) we have

! €
[ s, = [ sDavily < 3 laulla(A) = (Al < 5 (28512)

=1
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for n > ny. Moreover, by (23.8.9) and (23.8.10) we have

| /T 5@y, - /T hadyalg < 1189 = hllzllvallo(T) < < (23.8.13)

£
3
for n € NU {0}.

Consequently, by (23.8.12) and (23.8.13)

[ fagimn - /T fgdml|, = | /T fuhqdm — /T fhydm],

< | / (hy — $D)dy |y + | / @y, — / Dy,
T T T

T / (59— hy)dyoly
< €

for n > n;. Hence (a)(iii) holds.

(b)(ii) Let * € X*. Then by hypothesis and by Theorem 4.4(i) of [P2] there exists 6 € IC(T)*
such that py = z*om. Then by hypothesis, by(b)(i) and by Theorem 23.6 and by Theorem 11.8(v)
and Remark 12.5 of [P10], (b)(ii) holds.

(b)(iii) Let U be an open Baire set in T'. Let «,,, n € NU{0}, be as in the proof of (a)(ii). By
hypothesis, lim, (z* 0 v,,)(U) € Kfor each * € X*. Hence ((v,)(U))$° is weakly bounded and
hence, by Theorem 3.18 of [Ru2]|, is bounded in 7. Then for ¢ € T, by Theorem 18.8 of [P11],
(23.8.9) holds.

Let z* € X* be fixed and let ¢u«(z) = |z*(z)| for x € X. By hypothesis there exists a
bounded B(T)-measurable function hg+ such that hy« = gxp\n,. Where Npx € B.(T) with
v(z* om)(Ngz+) = 0. Choose a B.(T)-simple function s such that

[ls = ha[lr <

€
. 23.8.14
i (23819

Let s = > aixa,, (A;))] C Be(T). Then by (b)(i) and (b)(ii) and by Theorem 11.8(v) and
Remark 12.5 of [P10] there exists ng such that

aill [ fud(aom)— [ gaatomy <5 (28815)

fori =1,2,...,r and for n > ng. Then by (23.8.15) we have

\/Tsfnd(:c*om)—/Tsfd(a:*omﬂ g;\aiﬂ/Ai(fn—f)d(a:*omﬂ <5 (23816)
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for n > ny. Then by (23.8.14), by Proposition 10.12(iv), by Theorem 11.8(v) and Remark 12.5
of [P10] we have

| /T sfad(z" om) — / hoe fod(z* o )|

= | [ 5= heddta” o)

< ls = harllro(z® o v, (T

)
= |ls = ho[I7|[Vnllg,- (T) < (22.8.17)

€
3
for n € NU{0}. Then by (b)(i) and by Theorems 11.8(v) and 11.9(ii) and Remark 12.5 of [P10],

i
and by (23.8.16) and (23.8.17),
o*(| fugdm = [ foam) —

as n — oo for each z* € X* and hence (b)(iii) holds.

Thus Theorem 23.8 generalizes Theorem 23.6 to §(C)-regular o-additive quasicomplete lcHs
valued vector measures when f, — f m-a.e. in T. In order to generalize the said theorem when
frn doesn’t satisfy the m-a.e. convergence hypothesis, we restrict m to be Banach space-valued.
To this end, we adapt the proofs of Lemmas 1, 2 and 3 on pp.126-129 of [T] and then we give a
stronger vector measure version of Theorem 4.9 of [T| in Theorem 23.12 below.

Lemma 23.9. Let X be a Banach space and let m : §(C) — X be o-additive and §(C)-
regular. Let (f,)7° C L£i(m). Then there exists a sequence (K,)}° C C such that each f,
vanishes in T\ J7° Kp.

Proof. By Lemma 23.7(i), for each n € N there exists B,, € B.(T) such that N(f,) C B,
so that " N(fn) € U7 Bn € B.(T). Since J° By, is o-bounded, there exists a sequence
(Ky)$° C C such that JT° B, € U7” Kp. Then f, =0 in T\ U7~ K}, for each n.

Lemma 23.10. Let X and m be as in Lemma 23.9 and let H be a norm determining set in
X*. Given a sequence (K,)° C C, there exists a sequence (z)° C H such that every o-Borel

set A C U° K, is m-null whenever A is (z} o m)-null for each n € K

Proof. By Lemma 18.2 of [P11], AN K,, € §(C) for n € N Choose a relatively compact
open set V,, such that K,, C V,,. Arguing as in the proof of Lemma 22.2, we can find a sequence
(z;,,)721 C H such that E € B(V,) is m-null whenever E is (z},,, o m)-null for all » € N Let
(z7,)8° = {z},, : n,r € N}. Then A is m-null whenever A is (z;, o m)-null for each n € Nsince

ANK, € B(V,) for all n and A = J7°(A N Ky).

Lemma 23.11. Let ug : 6(C) — K k € N be o-additive and 6(C)-regular and let (f,,)7° C
Miei1 £1(p). Suppose limy, [;; frnduy, € Kfor each k € Nand for each open Baie set U in T'. Then
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there exists a sequence (g,,)7° such that each gy, is a convex combination of ( f;)r>n and such that
(gn)$° converges in mean in £;(uy) and also converges pointwise pg-a.e. in T for each k € N

Proof. By hypothesis and by Theorem 23.6, for each k € K (f,) converges weakly to some
hi € Li(px). Let us embed (32, £1(px) in the diagonal of the product space P = I | L ().
For each f,,, let }; = (fn, fn,...) € P. Clearly, P is a pseudo-metrizable locally convex space with
the pseudo-norm p given by

=1 frler — trldv(pk)
PUoR)T (k)T —Z_k +nygok—wk!dv<uk>

for (gok)l , (Yk)1° € P. Then by Theorem 4.3, Ch. IV of [Schal, (}’;)n , converges weakly to
some h = (hi)52, € P. Then ( fn)n>;c converges to h weakly for each k and hence by the Hahn-
Banach theorem (see the proof of Theorem 3.13 of [Ru2]), h = (h;)$° belongs to the closed convex
hull of (};)nzk for each k. Then there exists a sequence (g ) such that g, € co(ﬁ, ﬁg\;, ...) with

p(g;l,ﬁ) — 0. Let g, = ZZ 0 a@fz, a; >0, ZN(n
in mean in £;(ug) for each k.

a; = 1 so that g, = (gn, gn,-..). Then g, — hg

o

For k = 1, there exists a subsequence (g1,)72; of (g,){° such that g1, — hy pi-a.e. in 7.
Proceeding successwely, there exists a subsequence (gn ), of (gn—1,)p2; such that g,, — hy
pp-a.e. in T. Then the diagonal sequence (gnn)52 4 is a subsequence of (g,,)7 ; and converges to
hi pr-a.e. in T for each k. Clearly, (gnn)5>; also converges in mean to hy in L£q(u) for each k.

Hence the lemma holds.

Theorem 23.12 (Full generalization of Theorem 23.6 to Banach space-valued mea-
sures on J§(C). Let X be a Banach space with toplogy 7 and let H be a norm determining set
in X* with the Orlicz property. Let m : 6(C) — X be o-additive and §(C)-regular.

(a) Suppose (f,)7° C L£1(m) is such that for each open Baire set U in T', there exists a vector
zy € X such that [;; fodm — zy in 7. Then the following hold:

(a)(i) There exists a function f € £1(m) such that [; fodm — [;; fdm in 7.
(a)(ii) f in (a)(i) is unique upto m-a.e. in 7.

(a)(iii) For A e B(T), [, fndm — [, fdm in 7.

)

(a)(iv) For each bounded m-measurable scalar function g on T, fT frngdm — fT fgdm in 7.

(b) Suppose (fn)7° C L£1(m) is such that for each open Baire set U in T, there exists a vector
zy € X such that [, fodm — zy in 0(X, H). Then the following hold:

(b)(i) There exists f € £1(m) such that [;; fpdm — [;; fdm in o(X, H).
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(b)(ii) f in (b)(i) is unique upto m-a.e. in 7'
(b)(iii) For A€ B(T), [, fadm — [, fdm in (X, H).

(b)(iv) For each bounded m-measurable scalar function g on T, [ fogdm — [, fgdm in o(X, H).

Proof. Let Hy = {z* : |z*| < 1}. By hypothesis (a) (resp. (b)), and by Theorem 3.5(viii) and
Remark 4.3 of [P8], lim, [;; fad(z* om) = z*(2y) € Kfor each z* € Hy (resp. in H). By Lemma
23.9, there exists (K,,)° C C such that each f,, vanishes in T\ J7° K. By Lemma 23.10, we
associate the sequence (K,,)7° with a sequence (x})° C Hy (resp. C H) satisfying the property
mentioned in the said lemma. Then by Lemma 23.11 there exists a sequence (gn)7° such that
each g, is of the form

Z al £, ol™ > 0and Z ol = (23.12.1)

and such that (g,) converges in mean in £;(z} o m) and converges (z; o m)-a.e. in T for each
i € N Then by Lemma 23.10, (gy,)7° converges m-a.e. in 7. Let f be the m-a.e. pointwise limit

of (gn)7°

(a)(i) Let U be an open Baire set in T and let zyy € X be as in the hypothesis (a). Then,
given € > 0, there exists ng such that

\/ fodm — x| < € (23.12.2)
U

for n > ng. Let (g,)7° be as in (23.12.1). Then

N(n)

[ mm el =1 el [ gidm —al? |<Za _

for n > ng and hence

lim/ gndm = zyin 7. (23.12.3)
n Ju

Then by Theorem 23.8(a), f € £1(m) and

/gndm—>/ fdm inT. (23.12.4)
U U

Then by (23.12.3) and (23.12.4) we have

/ fdm = xy

U

lim/ frndm = / fdmin 7.
nJu U

and hence by hypothesis,
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Thus (a)(i) holds.
(b)(i) Let 2* € H. By hypothesis (b) and by Theorem 3.5(v) and Remark 4.3 of [P§],
lirrln/U frd(z* om) = liin a:*(/U fndm) = 2™ (xy) (23.12.5)
for each open Baire set U in T'. Hence, given € > 0, there exists n; such that
| /U fod(z om) — 2" (@) <€ (23.12.6)

for n > ny. Then by (23.12.1) and (23.12.6) we have

N(n)

| /Ugnd@c* om) —z*(zp)| = | 3 (a™ /Ufidcc* om) — oz (zp))| < e

for n > ni. Hence

lim/ gnd(z* om) = z*(zy) (23.12.7)
nJu

for z* € H. By hypothesis and by Theorem 4.4(i) of [P2| there exists 6 € IC(T)* such that
pg = =* om and hence by (23.12.7) and by Theorem 23.6, f € £1(2* om) and

hm/ gnd(z* o m) / fd(z* om) (23.12.8)
for z* € H. Then by (23.12.7) and (23.12.8)
/ fd(z" om) = 2" (2v)
U

for z* € H. Consequently, by Theorem 22.4, f € £1(m) and by by Theorem 3.5(v) and Remark
4.3 of [Pg],

m*(/ fdm) :/ fd(z* om) = x*(zp)
U U
for z* € H. As H is norm determining, we conclude that

/ fdm = zy (23.12.9)

and hence by (23.12.5) and (23.12.9), (b)(i) holds.

(a)(ii) (resp. (b)(ii))
Claim 1. Let py and pg be in M(T'). If p1(U) = pe(U) for each open Baire set U in T, then
H1 = p2.
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In fact, Let v; = pi|p, () for i = 1,2. By Proposition 1 of [P13], 1 and v are Baire regular.
For E € By(T), let Ug = {U € By(T) : Uopen,U D E} and let Uy > Us for Uy, Us € Ug if
U; C Uy. Then Ug is a directed set and by the Baire regularity of v; and vs we have

FE) = li = li =k
) =l O = iy preU) = va(E)

and hence v; = v on By(T'). Then the claim is immediate from the uniqueness part of Proposi-
tion 1 of [P13].

Suppose h is another function in £;(m) such that lim, [ fpdm = [; hdm in 7 (resp. in
o(X,H)) for open Baire sets U in T. Let z* € Hy (resp. z* € H). By hypothesis and by
Theorem 4.4(i) of [P2] there exists 8 € C(T')* such that z* o m = py and as seen in the proof of
Theorem 23.6, f(.) hd(z* om) and f(.) fd(z* om) belong to M(T'). Then by hypothesis (a) (resp.
(b)), by Theorem 3.5(v) and Remark 4.3 of [P8] and by Claim 1 above, v is a null measure where
v(A) = [,(h—f)d(z* om) for A € B(T). Then by Proposition 2.11 of [P8] and by Theorem 1.39
of [Rul], h = f (z* om)-a.e. in T. This holds for each z* € Hy (resp. * € H) and hence by
Lemmas 23.9 and 23.10, h = f m-a.e. in T". Therefore, (a)(ii) (resp. (b)(ii)) holds.

(b)(iii) and (b)(iv) Let fo = f. For z* € X*, by (b)(i) and by Theorem 3.5(v) and Remark
4.3 of [P8| we have

lim /U fod(z* om) = /U fd(z* om)

for each open Baire set U in T. Moreover, by hypothesis and by Theorem 4.4(i) of [P2] there
exists 6 € KC(T')* such that z* o m = ug and hence by Theorem 23.6 and by the uniqueness of f
in Li(z* om), we have

lirrln/Tgfnd(x* om) = /Tgfd(x* om) (23.12.9)

for each bounded m-measurable scalar function g on T'. Then by (23.12.9), by Theorem 3.5 and
Remark 4.3 of [P8] and by the fact that (f,)32, C £1(m), we conclude that [, f,gdm — [, fgdm
in 0(X, H). Hence (b)(iv) holds. Let A € B(T') and let By, n € NU {0}, be as in the proof of
Theorem 23.8(a). Let B = |J;( Bn. Then, by (b)(iv) we have z*( [, fndm) = 2*( [, 5 fndm) —
&*([ g fdm) = 2*([, fdm) for z* € H. Hence (b)(iii) also holds.

(a)(iii) Let By, n € NU{0}, B and fy be as in the proof of (b)(iii) and (b)(iv). Let ~,,,n €
KNU {0}, be as in the proof of Theorem 23.8(a)(ii). Then by hypothesis, lim, v, (U) € X in 7 for
each open Baire set U in T and hence, by Theorem 18.21 of [P11] there exists a unique X-valued
o-additive measure v on B(7T) such that

lim/gd'yn:/gd'y (23.12.10)
nJr T

in 7 for each bounded Borel measurable scalar function g on 7. Then by Claim 1 in the proof of
Theorem 23.8, by Theorem 3.5 and Remark 4.3 of [P8| and (23.12.10) we have
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lim/ gfnd(z* om) zlimm*(/ gfndm) = lima:*(/ 9dv,,)
nJr " T " T

= ([ g

for * € X*. By (23.12.9) which also holds for z* € X*, and by Theorem 3.5 and Remark 4.3 of
[P8] we have

ligl/Tgfnd(a:* om) = /Tgfd(-%* om) = 33*(/T gfdvo)

w*(/ngv)Zm*(/ng'Yo)

for * € X*. Then by the Hahn-Banach theorem and by Claim 1 in the proof of Theorem 23.8

we have
/gd’yz/gd’yoz/gfdm (23.12.11)
T T T

for each bounded Borel measurable function g on 7" and hence by (23.12.10) and (23.12.11) we
have

and hence

lim/fngdm:/fgdm inT. (23.12.12)
noJr T

If g is a bounded m-measurable scalar function on T, then there exists a bounded Borel measur-
able function h such that g = h m-a.e. in T" and hence by (23.12.12), (a)(iv) holds. Moeover,
(a)(iii) is immediate from (a)(iv).

Remark 23.13. Suppose X is a quasicomplete lcHs with topology 7 and m : B(T) — X is
o-additive and Borel regular. Then, in the light of theorem 22.11, the analogue of Theorem 23.8
for m holds here verbatim. Moreover, if X is a Banach space, then in view of Theorem 21.1(iv)

—_~

applied to N(f) € B(T'), Lemma 23.9 holds here with f, vanishing in m-a.e. in T\ | J]° K. Then
the analogue of Theorem 23.12 for m holds here verbatim if we use Theorem 22.10 in place of
Theorem 22.4. The details are left to the reader.

24. DUALS OF £;(m) AND £;(n)

Let X be a Banach space. Suppose m : B(T) — X (resp. n : §(C) — X) is o-additive and
B(T)-regular (resp. and d(C)-regular). The present section is devoted to the study of the duals
of £1(m) and £1(n). Also are given vector measure analogues of Theorem 4.1 and Proposition

5.9 of [T].

Lemma 24.1. Let X be a Banach space and let m : B(T') — X (resp. n: §(C) — X) be
o-additive and B(T')-regular (resp. and 6(C)-regular). If u € £1(m)* (resp. v € £1(n)*), then
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there exists a unique o-additive and B(T')-regular (resp. and §(C)-regular) scalar measure 7, on

B(T) (resp. ¢, on §(C)) such that

u(f) = /T fdipy and /T Fldv(n, B(T)) < |[ul[m$(f,T)  (24.1.1)

for f € £1(m) where
[lul| = sup{[u(f)| : f € L1(m), mi(f,T) <1}

resp. v(f) = /degv and /T Fldv(Co,(C)) < [[o|n(£,T)  (24.1.1)
for f € £1(n) where
[lv]| = sup{|v(f)| : f € L1(n),n}(f,T) < 1}).
Proof. Let u € £1(m)* (resp. v € £1(n)*). Then

lu(f)| < lulfmi(f,T) (24.1.2)
for f € £1(m)
(resp. [v(f)| < |[v]Ini(f,T) (24.1.2')
for f € L1(n)).

Let ¢ € K(T') (resp. ¢ € C.(T,C) with C € C- see Notation 19.1 of [P11]). Then, as
¢ € L1(m) (resp. £1(n)) by Lemma 20.8, by (24.1.2) (resp. by (24.1.2")), we have

[u(@)] < lullmi(p,T) = [ull( |Sl|151/ |pldv(z” o m))
I*

< |lullllellr|jml[(T)

(resp. [v(p)| < |lv][ni(p, T) < |[v[[llellr|n]|(C)).

Hence ulx(ry € K(T); (see pp. 65 and 69 of [P2]). Let ulx(ry = 6, (by Theorem 4.4(i) oby
f [P2], this is determined uniquely by u)and let 1, = pg, |p(7), Where pp, is the complex Radon
measure induced by 6,, in the sense of Definition 4.3 of [P1]. Then n, is o-additive on B(T) and
is Borel regular by Theorem 5.3 of [P2| and moreover,

u(p) = /T pdn, = /T edpig, = 0,() (24.1.3)

for o € Co(T). (Resp. vy € K(T)*. Let v|gy = 0"y, By Theorem 4.4(i) of [P2], this is
uniquely determined bt v and ¢, = pg, |5(c) is o-additive on 6(C) and is §(C)-regular by Theorem
4.7 of [P1] and

v(p) = /T @dC, = /T edpg, = 0"y () (24.1.3")
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for ¢ € K(T)).

Then by (12) on p. 55 of [B| and by (24.1.2) and (24.1.3) (resp. and by (24.1.2’) and (24.1.3"))
we have

10ul(lel) = sup 0, (9)]
WK (T),[|<|el

= sup - |u(¥)|
VEK(T),|¥|<||

< lulf  sup - mi(¥,T)
VeK(T),| V<]

= |lullmi(p,T)  (24.1.4)

(resp.
0l(e) = sup  o(@)] < |p|]  sup  ni(¥,T)
VER(T),||<|¢| VER(T),||<]|¢|
= [[ollni(e, T) (24.14Y))

for ¢ € IC(T'). Then by Theorems 4.7 and 4.11 of [P1] and by the last part of Theorem 3.3 of
[P2] (resp. by Theorems 4.7 and 4.11 of [P1]) and by (24.1.4) (resp. by (24.1.4")) we have

10ul(l) Z/leldu|eu| Z/leldv(uo,B(T)) < [[ul|mi(p,T)  (24.1.5)

(resp. |60"u(|¢]) Zélwlduefv Z/leldv(ue'vﬁ(c)) < [lvlni(e,T)  (24.1.5))

for p € K(T).
Let ST be the set of all non negative lower semicontinuous functions on 7.

Claim 1. For f € ST N Ly(m) (resp. f € ST NLy(n)),
16u]* () < [[ul[mi(f,T) (24.1.6)
(resp. |0/ (f) < Wl (£,T)  (24.1.67)
where [0,|* and |0',|* are as in Definition 1, § 1, Ch. IV of [B].
In fact, by the said definition of |B| and by (24.1.5) we have

0u°(f) = sup  |ul(p) < |[ull  sup  mi(p,T) < |lu[lmI(f,T)
Pe(T) T p<f Pe(T) T p<f

for f € " N Ly(m). Similarly, by (24.1.5%), (24.1.6") holds.
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Claim 2. Let f € L£1(m) (resp. f € L1(n)). Then

/ (Fldv(na, B(T)) = / | Fldv(ua,, BT)) < [[ul[m$(f,T)  (24.1.7)
T T

(resp. / Ifldv(Cv,5(C))=/ |[fldv(per,,0(C)) < [[v][nf(f,T). (24.1.7)).
T T

In fact, as n, = pe,|p(r) (resp. G = per,|sc)) it suffices to prove the claim for g, (rvesp.
gr,). Note that |f| € £1(m) (resp. £1(n)) by Theorem 3.5(vii) and Remark 4.3 of [P8| . Given
e > 0, by Theorem 17.2 (resp. by Theorem 17.3) of [P11], there exist functions g and h on T
such that 0 < g < |f| < h m-a.e. (resp. n-a.e.) in T, g is upper semicontinuous, bounded and
m-integrable in T (resp. and n-integrable in T'), h is lower semicontinuous and m-integrable in
T (resp. and n-integrable in T') and

m(h—g,T) < ﬁ (24.1.8)
(resp. g and h are B.(T')-measurable and

n(h—g,T) < ﬁ (24.1.8')).

As h and —g are lower semicontinuous, h — g € T N L1(m) (resp. h —g € ST N L1(n)) by
Theorems 3.3 and 3.4, § 3, Ch. III of [MB|. Then by Proposition 1, no.2, § 4, Ch. IV of [B] and
by (24.1.6) and (24.1.8) (resp. and by (24.1.6’) and (24.1.8’)) we have

0< /T(h — g)dv(pe,, B(T)) = |0u|*(h — g) < |Ju|lm$}(h — g,T) < € (24.1.9)

(resp. 0 < /T (h — 9)dv(pgr,,6(C)) = |8 (h — g) < [lol[n}(h — g, T) < ¢ (24.019)).

Then, as h € It N Ly(m) (resp. h € T N Ly(n)), by Claim 1, by Proposition 1, no. 2, § 4,
Ch. IV of |[B] and by (24.1.9) (resp. and by (24.1.9”)) we have

[ fldvtunR) < [ hao(un R

T T

oI (1) < [l w? (b, T)

< |wll{wl(h - 6,T) + (9, T)}
< et llullwi(e,T)

< et llwllwl(f,T)

since 0 < g < |f|, where R = B(T), w = u and p = 6, (resp. R = (C), w =v and p =6',). As
€ > 0 is arbitrary, the claim holds.
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Claim 3. For f € L1(m), u(f) = [, fdnu = [ fdue, and for f € Li(n), v(f) = [, fd¢, =
fT fd/"belv'

In fact, it suffices to prove the claim for f € £1(m) since the proof for f € £;(n) is similar.

Let f € L1(m). Since (C.(T),m3(-,T)) is dense in L£1(m) by Theorem 20.10, there exists
(pn)$° C Cc(T) such that

limmi(f — ¢p,T) = 0. (24.1.10)
n

Then by Claim 2 and by (24.1.10), we have

im |l = Fido(ya,, BD)) < |l limmt (£ = 0, T) = 0

and hence by (24.1.3) we have

/ fdpe, = 1im/ endpe, = 1im/ Pndny = limu(pn) = u(f)
T noJr noJr n

since u € £1(m)*. Hence the claim holds.
Now the lemma is immediate from Claims 2 and 3.

Theorem 24.2. Let X be a Banach space and let m : B(T') — X be o-additive and B(T')-
regular (resp. let n : 6(C) — X be o-additive and 0(C)-regular). Let Y = {n : B(T) — K:
o-additive and B(T')-regular such that there exists a constant M satisfying [ |f|dv(n, B(T)) <
Mm$(f,T) for f € L1(m)} and let Z = {¢ : §(C) — K: o-additive and §(C)-regular such
that there exists a constant M satisfying [, |f|dv((,0(C)) < MnS$(f,T) for f € Li(n)}. Let

l|Inll] = sup{| [ fdn| : f € L1(m), m3(f,T) <1} for n € Y and let |[[C][| = sup{| [ fd(| : f €
Li(n),n}(f,T) <1} for ( € Z. Then:

(i) L1(m)* (resp. £1(n)*) is isometrically isomorphic with (Y, |||-|||) (resp. (Z,]]|-]|])) so that
Li(m)* =Y (resp. L1(n)* = Z). Consequently, (Y,|||-|||) (resp. (Z,]]|-]||)) is a Banach
space.

(ii) The closed unit ball By of Y (resp. By of Z) is given by A={n e Y : [|f|dv(n, B(T)) <
mi(f,T)for f € L1(m)} (resp. B={¢ € Z: [|f|dv(¢,6(C)) < ni(f,T)for f € L1(n)}).

(iii) If By = {n € By : n >0} (resp. B} ={( € Bz : ( > 0}), then

m?(f,T) = sup / fldn for f € £1(m)

17€B+

(resp-nt (£T) = sup [ |FIdC for f € £1(m).

+
¢eB}
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Proof. Let n € Y and let u, : £;(m) — Kbe given by

wif)= [ fan @a21)

(resp. let ¢ € Z and let v¢ : £1(n) — Kbe given by

wlf) = [ sac )

Then by hypothesis, there exists M > 0 such that

|un(f)] < /Tlfldv(n,B(T)) < Mmi(f,T) (24.2.2)

for f € £1(m)

(vesp. [u (f)] < /T Fldo(C,6(C)) < Muy(£,T)  (24.2.2)

for f € £1(n)). Hence u, € £1(m)* (resp. v¢ € L1(n)*).

Conversely, let v € £1(m)* (resp. v € £1(n)*). Then by Lemma 24.1, there exists a unique
N €Y (resp. {, € Z) such that

u(f) = /T fdipa with /T | Fldv(, B(T)) < |Jullm3(f, T) for f € £1(m)

(resp.v(f):/dengith/ipyf\dv(gy,é(C)§ [v][mS (£, T) for f € £1(n)).

Let @ : £i(m)* — Y (resp. ¥ : L1(n)* — Z) be given by ®(u) = n, (resp. ¥(v) = () so
that

u(f)z/denu, f € £1(m) (24.1.11)

(resp.v(f) = /deCU, f € L1(n) (24.1.11")).

Then by Lemma 24.1, ® (resp. W) is linear since any, + 81y = Nau+ge o0 Ce(T) by the Riesz rep-
resentation theorem and since C.(T) is dense in £;(m) (resp. in £q(n)) by theorem 20.10.
Clearly, ® and U are injective. To show that ® (resp. W) is surjective, let n € Y (resp.
¢ € Z). Then uy, (resp. wvc) given by u,(f) = [, fdn for f € Li(m) (resp. ve(f) = [, fd¢
for f € £1(n)) belongs to £1(m)* (resp. £1(n)*) and arguing as in the beginning of the proof
of Lemma 24.1 one can show that uy|xry = Ou, € K(T); (vesp. v¢|xry = 0%, € K(T)*) and
hence fT pdn = uy(p) = fT god,ugu” for ¢ € Co(T) (resp. fT pd( = ve(p) = fT gpd,ugf% for
¢ € K(T)). Then by the uniqueness part of the Riesz representation theorem for Cy(T") (resp.
for B(V) for V' € V since 6(C) = Uyep B(V)) we conclude that n = pg,, ( resp. ¢ = /,LQ/UC>

so that uy(p) = [pedn = [, ¢due,, for ¢ € Ce(T) (vesp. ve(p) = [ppd¢ = [; pdpg,, for
¢ € Cc(T)). Since (Ce(T),m3(-,T)) (resp. Cc(T),n$(-,T)) is dense in L;(m) (resp. L1(n)) by
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Theorem 20.10, we conclude that [ fdn = [, fdue,, for f € L1(m)(resp. [, fd¢ = [ fduglvc
for f € L1(n)) so that n = ®(0,,) (resp. ¢ = \IJ(H{)C)), where we identify 6, with an element of

L1(m)* (resp. L1(n)*) given by 6, (f) = [; fdue,, for f € Li(m) (resp. Hgg(f) = [ fdporu,
for € £1(n)). Hence ® (resp. ¥) is bijective. The remaining parts of (i) are immediate.

(ii) If n € A, then

= swp | / fdl < sup / fldo(n, B(T)) < 1
feLi(m)m}(fT)<1 JT fe€Li(m)ms(f,T)<1JT

by the definition of A and hence A C By . Similarly, |||¢||| <1 for ¢ € B and hence B C By.

Conversely, let € By. Then u,(f) = [, fdn for f € £1(m) and

lugll=  sup \/fdnlél-
feLy(m)m$(f,T)<1 JT

Then by (24.1.1), [+ |fldv(n, B(T)) < ||uy|m$(f,T) < mS(f,T) for f € £1(m) and hence 7 € A.
Therefore, A = By. Similary, B = By.

(i) By (), w}(£,T) = supyep| [y fdnl < supyep fy |fldo(R)) < supyepe [y |fldn <
wi(f,T) where w =m, f € L1(m) and D = By (resp. w =n, f € L1(n) and D = Byz). Hence
(iii) holds.

Remark 24.3. If |a(¢)| < Mp*(|¢]) for ¢ € K(T), then in the proof of Proposition 4.2 of [T
it is claimed that a® < Mpu®. This result requires a proof and is not immediate from the results
developed in [T|. Hence there is a laguna in the proof of the said proposition.

Using Theorem 24.2, we now give the vector measure analogues of Theorem 4.1 of [T].

Theorem 24.4. Let X be a Banach space (resp. a quasicomplete lcHs). Let m : B(T) — X
(resp. n: §(C) — X) be o-additive and B(T')-regular (resp. and §(C)-regular). Let (fa)ac(n,>)
be an increasing net of non negative lower semicontinuous m-integrable (resp. n-integrable) func-
tions with f = sup,, fa also being m-integrable (resp. n-integrable) in 7. Then f, — f in £;(m)
(resp. £1(n)) and consequently, lim, [ fodm = [, fdm (resp. limy [ fodn = [, fdn) in X.

Proof. Case 1. X is a Banach space.

Then by Alaoglu’s theorem, By and By (resp. Bz and B}) are compact in o(By, £1(m))
(resp. in o(Bz, L1(n)), where Y, Z, By, By, Bz and B}, are as in Theorem 24.2. Then, for
n € By (resp. ( € B}), by Theorem 5.3 of [P2] there exists § € Kp(T)* with 6 > 0 such
that we|p(ry = 1 (resp. by Theorem 4.4 of [P2] there exists §' € K(T)* with §' > 0 such that




V. Applications to integration in locally compact Hausdorfl spaces-Part I1 55

perlscy = €)- Then by Theorem 1, no.1, § 1, Ch. IV of [B],

/ fn = sup / fudy = lim / Judn
T a JT @ Jr

(resp. /T fd¢ = sup /T fadC = lim /T fad0).

As f and fo, @ € (D,>), belong to £1(m) (resp. Li(n)), the mappings n — [, fdn and
n = [p fadn (vesp. ¢ — [, fd¢ and ( — [, fad() are continuous in o(By, £1(m)) (resp. in
o(B},L1(n)). Consequently, by Dini’s lemma, the limit is uniform with respect to n € By (resp.
¢ € B}). Then by (iii) of Theorem 24.2 we have

fimm(f = fou ) =lim sup_[ 17 = foldn =0

@ nGB}t

and hence by (5.3.1) of [P9] we have lim, [, fodm = [, fdm. Similarly, the results for n are
proved.

Case 2. X is a quasicomplete 1cHs.

By Theorem 15.13(i) of [P10], £1(m) = (\,cp £1(mg). Then by case 1, (mg)}(foa — f,T) — 0
for ¢ € T" and hence f, — f in £3(m). Consequently, by (13.2.1) and Remark 12.5 of [P10],
fT fodm — fT fdm as a — co. Similarly, the results for n are proved.

Lemma 24.5. Let X be a Banach space. Let m : B(T) — X (resp. n: 6(C) — X) be
o-additive and Borel regular (resp. and §(C)-regular). Let R = B(T) or 6(C) and let w = m
when R=B(T') and w = n when R=4§(C). If n € L1(w)*, then, for each bounded Borel function
gon T, g-n given by

(g-m(f) = /T fgdn  forf e Li(w)

is well defined and belongs to £1(w)*.

Proof. Let f € £1(m). Then there exist A, N, M such that N(f) = AUN, A€ B(T),N C
M € B(T) with |jm||(M) =0. Let B=AUM. Then N(f) C B B(T). If f € £1(n), then by
Lemma 23.7 there exists B € B.(T') such that N(f) C B. By hypothesis, g is a bounded Borel
function (resp. gxp is a bounded o-Borel function) and hence by Theorem 3.5(vi) and Remark
4.3 of [P8|, fgxB € L1(w) and hence

(g-n)(f)Z/ngdn:/TfQXBdn

is well defined and g -7 is a linear functional on £;(w). Let u,(f) = [ fdn for f € L1(w) and
n € L1(w)*. Then by Lemma 24.1 we have

[(g-m)(f) < HQXB\T/deU(U’R) < llgllrllug|lw1(f, T)-
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Hence g-n € L1(w)*.

The following lemmas, which are the same as or similar to Lemmas 23.9, 23.10 and 23.11, are
needed to prove the vector measure analogues of Proposition 5.9 of [T].

Lemma 24.6. Let R and w be as in Lemma 24.5. If (f,,)3° C £1(w), there exists a sequence
(K;)$° C C such that each f, vanishes w-a.e. in T\ |J7° K.

Proof. If R = 6(C) and w = n, then the result holds by Lemma 23.9. If R = B(T) and
w = m, then by the proof Lemma 24.5 there exist (B,){® C B(T') such that N(f,) C B, for
each n. Let B = |J{° By. Then J{° N(f,) C B € B(T). Then by Theorem 21.1, there exists
a sequence (K,)$® C C such that |J7° K, C B and ||jm||(B\U{” K,) = 0. Since fy|mp = 0 for
each n, it follows that f, = 0 m-a.e. in T\ | J" Kp.

Lemma 24.7. Let X, R, and w be as in Lemma 24.5 and let H = {z* € X* : |2*] < 1}.
Given a sequence (K,)° C C, there exists a sequence (z})7° C H such that every set A € o(R)
with A C U7° K, is w-null whenever A is (z}; o w)-null for each n € K

Proof. For each n, ANK,, € 6(C) by Lemma 18.2 of [P11| whenever A € B(T) or A € B.(T).
Hence the proof of Lemma 23.10 holds here verbatim in both the cases of w. Hence the lemma
holds.

Lemma 24.8. Let R = B(T) or §(C). Let pup : R — K k € Nbe o-additive and R-regular
and let (fn)5° C Npey £1(x). Suppose (fn)$° converges weakly to some hy € L£q(py) for each
k. Then there exists a sequence (gy,)7° such that g, is a convex combination of (fx)g>n and such
that (g,)$° converges in mean in £;(ug) and also converges pointwise pg-a.e. in T for each k € N

Proof. The proof of Lemma 23.11 holds here verbatim.
The following theorem gives the vector measure analogues of Proposition 5.9 of [T].

Theorem 24.9. Let X be a Banach space with ¢o ¢ X and let m : B(T) — X be o-additive
and Borel regular (resp. n : 6(C) — X be o-additive and 6(C)-regular). Then L;(m) (resp.
Li(n)) is a weakly sequentially complete Banach space.

Proof. In the light of Theorem 6.8 and Notation 7.6 of [P9], L1(m) (resp. Li(n)) is a Banach
space. To show that these spaces are weakly sequentially complete, let (f,)° be weakly Cauchy in
L1(w), where w and its domain R are as in Lemma 24.5. By Lemma 24.6, there exists (K,)° C C
such that each f, vanishes w-a.e. in T\ 7" K. Let (23)5° € H = {z* € X* : |2*| < 1} be
chosen as to satisfy the property mentioned in Lemma 24.7 for the sequence (K,)$° of compacts.
Let pn = x}, ow, n € N Then by Theorem 3.5(viii) and Remark 4.3 of [P8], f, € Npo L1 (1)
for each n.
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Let n € L1(w)*. Then by Lemma 24.5, g - n € L1(w)* for each bounded Borel function g.
As (fn)7° is weakly Cauchy in L£i(w), and as g -1 € Li(w)*, (9 1)(fn))?® = ([ fagdn)$® is
Cauchy in Kand hence (f,,){° is weakly Cauchy in £1(n) for each n € L£1(w)*. As L;1(n) is weakly
sequentially complete, there exists f,, € £1(n) such that f,, — f, weakly in £1(n). On the other
hand, by Theorem 24.2, z} ow = pp € Li(w)* (since z* om € Ly(w)* for * € X* as it is
o-additive and R-regular and [ |f|dv(z* ow,R) < |[ug+||w}(f, T), where ug~(f) = [ fd(z* ow)
for f € £L1(w) (see Lemma 24.1)) and taking n = py, in the above arguement, there exists f,, in
L1(px) such that f, — fy, weakly in £q(uy) for each k € N Then by Lemma 24.8 there exists a
sequence (gp)7° such that each g, is of the form

N(n) N(n)
gn = Z agn)fz‘, az(n) >0, and Z agn) =1
i=n i=n

and such that (g,)5° converges in mean in £1(uy) and also converges pg-a.e. in T for each k € N
Then by Lemma 24.7, (g,,)° converges w-a.e. in T'. Let f be the w-a.e. pointwise limit of (g,,)$°.

As fn — f weakly in £1(n), gn — fy weakly in L£1(n) for each n € £1(w)*. Then by Theorem
5.3 (resp. by Theorem 4.4) of [P2| and by Theorem 24.2 there exists 6§ € IC(T')* such that n = ug.
Then clearly fA gndjtg converges to fA fndpg for A € B(T). Then by Theorem 23.6, f = f, for
each n € L1(w)*. Now, for * € X*, n = z* om belongs to £;(w)* by Theorem 24.2 (see the
argument given for py in the above). Hence f € L£i(z* o w) for each z* € X*. As ¢y ¢ X, by
the last part of Theorem 5.8 and by Notation 7.8 of [P9|, f € Li(w). Hence £;(w) is weakly
sequentially complete.
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