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MULTIPLICITY THEORY OF PROJECTIONS IN
ABELIAN VON NEUMANN ALGEBRAS
BY
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ABSTRACT

The spectral multiplicity theory is generalized for
projections in an arbitrary abelian von Neumann algebra.The
well known type In direct sum decomposition of a type I von

Neumann algebra follows as a consequence.
RESUMEN

La teoria de multiplicidad espectral se generaliza pa
ra las proyecciones en un algebra conmuts*iva de von Neumann,
La bien conocida descomposicidén de un dlgebra de tipo I de von
Neumann en una suma directa de Algebras de tipo I se dedu-

Ce. como una consecuencia,

1.- INTRODUCTION. Suppose(X,S ) is a measure space with Sa

calgebra. If E(.) is a spectral measure on S withvalues
in projections on a Hilbert space H,let W be the commutant
of the.range of E(.) in B(H). Then W is a von Neumann

algebra on H with W', the commutant of W, abelian. In

(*)Supported by C.D.C.H. Projects C-S-30-149,150. Universi-
dad de los Andes, Venezuyela,



[2] Halmos develops a (spectral) multiplicity theory for
projections in W' through §§ 54-64, making use of the
countable additivity of E(.). In Section 6 we conclude
the present article with a discussion on the results of

Halmos [2] 1n the set up of the von Neumann algebra W.

By the results of Stone [5] the maximal ideal space M of
an abelian von Neumann algebra A an a Hilbert space H is
extremally disconnected. Thus it is possible toconstruct

a spectral measure E(.) on the Borel substes of M such
that the range of E(.)coincides with the Boolean algebra
of all projections in A. (vide pp. 158-160, [ 3] ).
Consequently, by means of E(.) thus constructed the spectral
multiplicity theory developed in Halmos | £ | can also be
interpretted as a mltiplicity- theory for projections in A.
The object of the present work is to give a direct alternate

methoa of study for the multiplicity theoryof projections
in an arbitrary abelian von Neumann algebra and thus deduce
the results of Halmos in §§54-64 of [ 2 Jas a particular
case. Besides, the present study offers a new proof to
the well known type I direct sum decomposition cof a type

I von Neumann algebra.

- PRELIMINARIES. This section is devoted to fix the terminology
and notation to be followed in the sequel and to list a
few definitions and results from the theory of von

Neumann algebras which " are . repeatedly



made usc¢ of 1n the body of this articile.

H will denote a Hilbert space, W a von Neum.nn alge-
bra on H with its commutant W' abelian, Ran arbitrary
von Neumann algebra on H with Z its centre .nd I the
identity operator on H, If M is a nonempty sdﬁetinH,.
M denotes the closed linear subspace spanncd by M,
If E is a projection, E is also denoted by :ts range
and vice-versa. Thus for a vector x € H, [Rx] is the
projection with its range given by [Tx: T € R]Jand is

the cyclic projection generated by x under R .Clearly,

[Rx] ¢ R' and [R'x] e R.

Let A e R. If F={ Q €Z: Q a projection, QA= A}
then CA=A{ Q: Q £} belongs to Z and is a projection,

CA is called the central support of A. For CA it 1is

true that CAA= A.

PROPOSITION 2.1, If A is an operator in K and Q acen

tral projection of R, then CQA= QCA.

DEFIXICION 2.2.- For two projections E and F in R we
say E ~ F 1f there exists a partial isometry V in R
such that V*V= E and VV*= F, We say E< F if there
exists a subprojection E1 of F in R such that E & E]

and E< F'if E< Fand E a F.

DEFINITION 2.3. A projection E in R is said to be

finite 1f there exists no subprojection E1 in Rof E



such rhat F o E]~< E. Otherwise I is calied infini-
te.
DEFINITION 2.4. A projection E in Ris said to be

abelian 1f ERE 1s an abelian algebra.

PROPOSITION 2.5. If E and F are projectionsin R then

the following assertions hold:

(1) If E is finite and E ~ F, then F is also finite.

(i1) E is abelian in R if and only if every sub-
projection F of E in Ris of the form F= CFE

(1ii) If E and F are abelian in R and CE= CF’ then
E ~ F.

(iv) If E< F, then(%ﬁ(%ﬁf E~ F, then CE= CF.

(v) If E is abelian in R, then E 1s finite.

PROOF.
(1) Trivial .
(11) Use the observation that E is abelian in R

if and only if ERE= ZE.

(111) An immediate consequence of '~mma 1, §3,
Chapter III of Dixmier [1 ].

(iv) Vide Corollary 1 to Proposition 7, §1, Chapter
I and Proposition 1, §1, Chapter 11I of Dixmier
(11].

(v) If £ ~E < E, E; a projection in R, then by
(iv) Cg= CE1' Fut, on the ‘other hand,by (ii)E,=
CE1E= E. This is a contradiction. Hence E is
finite,



PROPOSITION 2.6.

(1) If {Ea} is an orthogonal family of projections
(respectively, (ii)
abelian projections) in R with the property that

{ Cp }is an orthogonal family and if E=2Eu;ﬁwﬁ

G

CE= ZCE
a

(respectively, and £ is abelian in R).

PROOF. If Q= ZCE , then Q is a central projection of

a
> Ea for all « . Thus GC> E and hence,
a

Rand Q >C

Q> CE'

E

Since CEz_E > Ea , CE_z CEa for all ¢ and hence CE_z
Q. Thus Q= C.. In consequence, ERE= I8 C.ERE (C_.=

E Eq E
= ZOEQ R}Q } If each E  1is abelian, then E RE is
abelian and hence E 1s abelian. (Vide 2, 52, Chapter I

of Dixmier [ 1], wherell is used instead of I8).

THEOREM 2,7, Suppose E,F are non-zero projections in

R, F being finite. If (Fa)ue:Aand(GB)Be B are two

maximal orthogonal families of projections in R such

that F n Fui E and Fn GBi E fcr allae A and 8 € B,
then Card.A= Card.B.

PROOF. Vide Ringrose [4 ] where this theoremis known

as theorem of generalizad invariance of dimension.

SOME LEMMAS. As mentioned in §2 W will denote a von
Neumann algebra on H with its ¢ommutant W' abelian.
In this section we shall give two leummas which general
ize respectively Theorcem 2, 8§60 and theorem 3, §61 of

Halmos { 2] for projections in W,

»



LEMMA 3.1, For each vector x in H the cyclic projection

E= [ W'x ) is abelian in W,

PROOF. Suppose x is a non-zero vector in H, If E=
= [W'x ], then W'E is an abelian von Neumann algebra
on E(H) and has a generating vector x. Then from
Cofollary 2 to Proposition 4, §6, Chapter I of Diximier
[1] it follows that (W'E)'= W'E and hence (W'E)' is
abelian. But by Proposition 1(i), §2 Chapter I of
Diximier [ 1 ],(W'E)'= EWL so that EWE 1is abelian

and hence E 1is abelian in W,

LEMMA 3.2. Given a projection E in W, there existsan

.= C

abelian projection F ¢ 'E in W such that C}

E
PROOF. Let E be a non-zero projection in W. By Lemma
3.1 and Zorn's lemma there exists a maximal orthogonal
family « Ea} of non-zero abelian subprejections of E

in W such that {CE } is an orthogonal family. Then

a
In fact, on the contrary, there exists a

E <1 CEQ'
non-zero vector x in the range of E suc'. that CEx= o
a
"for alla . Then for T'e¢ W' and foralla, CT'x= T'Cpx=
a a

o and hence C.[{W'x ]= o for allq.ThenbyProposition

n

E
e}
) = = ' 1
A ﬁW’xlCE qW'x] CE o for all a . As [ W'x]is
a o]

ro

abelian in W by Lemma 3. 1,this contradicts themaximality

of (Ea}.\ As E < E, CE;i Cg fot all ¢ and thus Cg =

= ZCE . If F= LE,> then by Proposition 2.6(1ii)F is
a

abelian in W and CF= ECEQ= CE'



MULTIPLICITY OF PROJECTIONS.Making use of the lemmas
of 83 and Theorem 2.7 we shall associate with each
projection E' in W' a well defined cardinal number
u(E') called the multiplicity of E' and prove that
u(VE3)= min{u(Ei)L whenever {Ei} is an orthogonai

family of non-zero projections in W',

LEMMA 4.1, Let E' be a projection in W'. Then there

exists a maximal orthogonal family{E} of abelian
o

projections in W such that CE = E' for all a.
a

PROOF. Suppose E' is a non-zero projection in W',
By Lemma 3.2 there exists an abelian projection F

in W such that CF= E'. Then the collection of all

orthogonal families of abelian projections inW such
that each of their members has the central support
E' is a non-empty partially ordered <t under set
inclusion and every linearly ordered set in this
collection has an upper bound which corresponds to the
union of all the members of the family . Appealing to

-orn's lemma we obtain the result.

PROPOSITION 4.2. Let E' be a projection in W'. Then

for two maximal orthogonal families (E_ ) and
o ‘o e d

(FB)B e X of abelian projections in W such that CE:
C

= E' for allae J and B e K, Card.J= Card.K.

F
g

PROOF. By Proposition 2.5(iii) Ea«,FB for alla e J

and 8 € K. Besides, by Proposition 2.5{v) they are

all finite projectioss. Now the proposition follows

3



from fheorem 2.7,

By virtue of the above proposition we are justified

1n giving the following

DEFINITION 4.3. A non-zero projection E' 1in W' is
said to have multiplicity n if there exists amaximal
orthogonal family of n abelian projections {Ei} in

W with CE = E' for each i. The multiplicity of the
i

zero proyection is defined to be zero.

NOTATION 4.4, Let B denote the collection of all
projections in W',
Since W' is abelian and strongly closed,B is acomplete

Boolean algebra of projzsctions on H.

THEOREM 4.4. Let u be th2 function associating each

projection in W' with it: multiplicity and N={n:' n

a cardinal number < dimH }. Then:

(1) u is well defined, che domain of u is B and
the range of u is a subset of N,

(i1) If E', F' are membe-s of B and o < E'< F,then
u(E')> u(F').

(111) If {Fi} isan orthogonal family of non-zero members

in B and 1if F'=V?3, then u(F')= min {u(Fi)}.

PROOF.

(1) Immedaiate from Lemma 4.1, Proposition 4.2
and Definition 4.".
(11) If {Fj} is a maxiial orthogonal family ofabelian

projections in W such that CF = F', then by
j



Proposition 2.1 CF.E'= E' and FjE‘ 1s abelian
for all j. Hence the conclusion(ii),

(111) As B is a complete Boolean algebraof projectiors,
F' belongstoB . Let min{ u(Fi) }=n., By (ii)
it 1s obvious that u(F') <n,To prove the reversé
inequality let I, be a set with Card.Io=n. As
u(Fj)_g n, for each j there exists an ortogonal

family {ij} K ¢ IOof abelian projections in W

with C = F! for all k € I_. Since F!F!, = o
ij o 3]
for j # j', it follows from Proposition 2.6 that
- . . . . ~ = o
Gk z.ij is abelian in W with LGk F', for all

KN € Io. In other words, u(E') > n and hence the

conclusion(iii).

UNIFORM MULTIPLICITY OF PROJECTIONS. The concept of
uniform multiplicity for projections inW'isintroduced
We give a theorem characterizing those projections in
W' which have uniform multiplicity and deduce the well
known type In decomposition of a type I von Neumann
algebra as a corollary to another theorem on uniform

multiplicity.(Vide Theorems 5.4,5.6 and Corollary 5.7)

DEFINITION 5.1. A non-zero projectionE'inW'is said
to have uniform multiplicity n 1if every non-zero

projection F'< E' in W' has multiplicity n.

DEFINITION 5.2, Let B be a von Neumann algebra on H.
An orthogonal family {E } of projections in Ris said
o

to be a complete orthogonal system for a central
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projection Q of R1f [ Ea= Q.

LEMMA . .3. Let E'be a non-zZero projection in W'and {%J
a maximal orthogonal family of abelian projections

in W such that CE = E' for all q. Then there exists

a A
a non-zero vector x in H such thati{C,,_ ,E } is a
W'x ] a

complete orthogonal system of abelian projections

1in W for C ] and the central support Of(%W'x] Ea

[W'x

1S for each a.

W' x|
PROOF. If Eo= ZEQ, and F= E' - Eo’ then by the
max.mality of tEa}and by Lemma 3.2 G'= E'- CF # o.
Then G'CF= o and hence by Proposition 2.1 G'F = o.
Conscquently, G'= G'E'= G'E = ZG'EQ , {G'Ea} is an
orthogonal family of abelian prjections in W and CGTf

a
= G'CE = G'k' = (' by Proposition 2.1, Now let
x be a non-zero vector in the range .7 G'. Then as

W' is abelian, and G' € W' it follows that [W'x])] <

G'. Evidently { QW'X]EJ 1s a complete systemof abelian

projections in W forC[w,xJ. Besides, CF,QW| =C[W'xJC€

=Cpy k' =C ince € PR >
=l E T e x) since [W'xji < .

lhe following theorem gives a necessary and sufficient
condition for a non-zero projection E' in W' to have

uniform multiplicity.

THEOREM 5.4. A non-zero projection E'inWhas uniform
multiplicity n if and only if there exists a complete
orthugonal system {Ei} of n abelian projections in W

for E' with CE = E' for all i.Thus E! has uniform
i
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multip. 1ty n 1f and only 1f WE' 1s a von Neumann
algebra of type hr

PROOF. suppose there exists an orthogonal familylE s

E' for

of abelian projections in W such that CE
al{ a and such that LE = E'. Let F' be aa non-zero
subprojection of E' in W', As CF'E= F', F'EOl # 0
tor each o . Evidently tF'Ea} 1sac(<;1pleteorthogonal
system of abelian projections 1n W for F'. Since a
complete orthogonal system of projections for F' is
also a maximal orthogonal system of projections for
F' and since CF'E s F'CE = F'E'= F' for allea by
Proposition 2.1, %t follgws that u(F')= n.Thus the

condition 1s sufficient.

Conversely, suppose E' has uniform multiplicity n.
By Lemma 5.3 and Zorn's lemma there exists a maximal

orthogonal family |{ Fi} of non-zero subprojections

) ed
of E' 1n W such that each FJ'. has acomplete orthogonal

}
Jk' ke I0

for all ke Io’ where Card.Io=n.Inconsequence,

svstem F of abelian projecticrs inWwith

(. = !

})k J
hlI:Jk= F;, 3 € J. Then by the maximalityof{ijJEJ
ind by Lemma 5.3 we conclude I F!'= E', Let Gk=

j ed
N F]A' Then by Proposition 2.6 G, 1is abelian
tu w and C. = i F! = E' for all k ¢ I_. Besides,
Gk JEg j o

= .2 I F.= . Fi=E'.
= b3 .
CoonThE g jEfiKT JET kelgTik §ed)

)

Hence the necessity of the condition in the first part



o1 the 'eorem.
The se.ond part of the theorem s an umediate consequerce
of the t.rst i1t one appeals to Proposition 2.5(1v) and
the detinition of type ln von \eumann algebras 1in{}]

This ompletes the proof of the theorem.

PROPOSITION 5.5. Suppose {Ej} 1S an orthogonal famly
in B such that each E; has uniform multiplicity n.
It F'=..t3, then E'e 8 and L' hasuniformmulplicaty
n.

PROOF. As B 1s a complete Booleanalgebra of projections
and t'- VE;, 1t follows that E' ¢ B. Let Eo be a non-
Zero subprojection of E' 1n B. Then E6= VE&E;,where
we consider only those 1ndices j for wich EéE; # o

Bv hypothesis,for each of such j u(EéE3)= n and the
proposition 1s an immediate conseque«ace of Theorem

4 4 (111)

THEOREM 5.6, Suppose, for each cardinal number n not
eaveeding the dimension of H, Pl 1s the supremum of
all those projections i1n W' which haveuniformmultiplicity
n Then PA} is an orthogonal family of projections in

LI ZPL= " and for each n either Pﬁ= o or Pﬁ has unifomm

wililpilaelty N

PROOF. ‘tor a fixed cardinal number n < dimH, Ilet
L'+ be a maximal orthogonal fdmily of projections
i b such that each E' has uniform multiplicity n,.
If nu such family exists we take the supremum PA to

be the :ero projection. If P' - V§1 > o, then there



ex1sts some non-zero projection F' in W' such that
o< F'<P - VE, and such that F'has uniformmltiplicity
n. Since this contradicts the maximality of { E%J,we
conclude Pﬁ= VE& . Thus, if Pﬁ # o, then by Proposition
5.5 PA has uniform multiplicity n. In consequence fér
n #m with PIPY # o, we have n= the multiplicity of
Pﬁ= the multiplicity of PﬁP$= the multiplicity of Pﬁ=
= m. This contradiction establishes that {P'} is an
orthogonal family. Finally, 2Pﬁ= I by Lemmas 4.1 and

5.5. This completes the proof of the theorem.

COROLLARY 5.7. Let R be a type I von Neumann algebra
on H. Then Rr=, I,8R, where R, are von Neumann alge

brasof type I~ where n, # n., for i # i' in I
i

PROOF. By the definition of a type I von Neumann al-

o*

gebra, there exists a von Neumann algebra W with W'
abelian on a Hilbert space H' such that R and W arex-
1somorphic. Let¢ be ax-isomorphism frvs R omto W.

Let I = {n,: n.< dimH' with ' # o }in Theorem 5.6
0 1 i- n,

with respect to W, Then W= jEFIGWPﬁ and by Theorem

' o i

5.4 WPI'L is of type In for each i ¢ Io.Asaconsequence,
. -1 ! -1,

R= ¢ W= @ ¢ (WP' )= . L. ® RQ. , where Q =¢ (P')

15%0 n, 1510 ny n. n
is a central projection of R and each RQn is a von
i
Neumann- algebra of type In
i

CONCLUDING REMARKS.

Suppose(X, S} is a measure space with 8§ a g-algebra

»
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and E(.) a spectral measure on § with values in
projections on H. In [ 2 ] Halmos uses the following
terminology and notation:

E={EM) Me S}

P

{F: FE(M)= E(M)F for all Me S, F a projection}

F="1{G: GP= PG for all P ¢ P, G a projection },

For P ¢ P, the column generated by P, in symbols
C(P), 1s defined as C(P)= A{F: P< F ¢ F}. A row
projection R in P is one such that if R > P ¢ P,then
P= C(P)R. For a vector x in H the cycle generated by
X, in symbols Z(x), is the projection [ E(M)x: M ¢ S]
and it 1s shown that Z(x) € DP.

The above definitions of rows, cycles and generated
columns can be related to abelian projections,cyclic
projections and central supports respectively if we
define the von Neumann algebra W suitably. In fact,
let W be the von Neumann algebra of all operators T
1in B(H) which commute with the members of P. Then the
commutant W' of W is the von Neumann algebra generated
by F and F is the Boolean algebra of all projections
in W', Thus for a projections Pe P the column C(P)
generated by P coincides with the central support CP
since the centre of W is W'. By Proposition 2.5
(11), a row P € P is nothing but an abelianprojection
in W. Finally, the cycle Z(x) is the cyclic projection
[W'x) since W' is closed in the strong topology of

operators. Consequently, Z(x)e W'"= W and hence Z(x)
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belongs to P.

As a consequence of the above remarks, it is evident,
as commented in Sectionl,thatour results subsume those

of Halmos in §854-64 of [2].
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