
Universidad de 10s Andes 

Facultad de Ciencias 

Departamento de Matemdtica 

Analytic topologies over countable sets 

Stevo TodorEevid and Carlos Uzciitegui 

Notas de Materniitica 
Serie: Pre-Print 

No. 196 

- 

Mkrida - Venezuela 
1999 



N o t a s  d e  M a t e r n i t i c a ,  N o .  196 

M e r i d a .  1999. 

Analytic topologies over countable sets 

Stevo TodorEevii and Carlos Uzcitegui 

Abstract 

In this article we attempt to a systematic study of analytic topolo- 
gies over the natural numbers N (or any countable set X) .  

K e y  Words: Analytic sets, countable topological spaces 
1991 Mathematics Subject Classification. Primary 54H05,04A15,54D55. 
Secondary 54A10 

1 Introduction 

In this article we attempt to a systematic study of analytic topologies over 
the natural numbers N (or any countable set X). We can identify every 
subset of N with its characteristic function, so its power set P ( N )  is iden- 
tified with the Cantor space 2N. Since every topology over N is a subset of 
P ( N ) ,  it is clear then what we mean by saying that T is closed, open, G6, 
Borel, analytic, etc. That this kind of restriction on a topology shows up in 
purely topological results is perhaps not as widely known as it should. For 
example, it shows up in Godefroy's characterization of separable compacta 
I( that can be embedded in the first Baire class equipped with the topology 
of pointwise convergence (see [lo] and 7.3 below). Namely, this happens 
exactly when the topology K induces on any of its countable dense sub- 
sets is analytic. It is perhaps not surprising that many of the examples of 
countable topological spaces found in the literature are analytic. For exam- 
ple, Arens space ([I.]) or its more general version, the Arhangel'skii-Franklin 
space ([2]), have analytic topologies (see also 96 below). Questions involv- 
ing convergence in topology are frequently questions about countable spaces 
with analytic topologies. This is particularly true about spaces appearing 
as subspaces of some function space. The realization that they are analytic 
can sometimes be a powerful tool when dealing with these kind of question 
(see, for example, theorem 7.6). One of the goals of this article is to  make 
these connections between descriptive set theoretic properties and purely 
topological properties of a given space more explicit. 
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On the other hand, there are many results concerning the descriptive set 
theoretic properties of families of subsets of N, like ideals and filters (see 
[7, 12, 16, 20,24,26]). Every filter has naturally associated a topology, hence 
those results about the existence of Borel or analytic filters (or ideals) over 
N immediately provide examples of topologies over N of the same (Borel, 
projective) complexity. These topologies are not Hausdorff, however, given a 
filter 3 over N by an elementary construction it is easy to define a Hausdorff 
topology of the same complexity as the filter 3. It is known that every 
Ga filter is necessarily closed, but there are filters (and hence Hausdorff ' 
topologies) in all levels of the Borel hierarchy above the third level. 

The paper is organized as follows. In section 52 we analyze closed and 
Ga topologies. In 53 we present some results concerning the complexity of 
bases and subbases. In 54 we analyze the complexity of Hausdorff topolo- 
gies. It is well known that every analytic ideal (containing all finite sets) is 
meager. We will show in 55 that every analytic TI topology with infinitely 
many limits points is meager. In 56 we present some critical examples of an- 
alytic topologies of various complexities. In 57 we show that every analytic 
regular topology is homeomorphic to a countable subspace of the function 
space C , (N~) .  This result naturally leads to the notion of a Rosenthal 
compactification of an countable analytic space. 

The last three sections are devoted to the study of the ideal of nowhere 
dense sets NWD(r) ,  where r is a given topology over X .  One of the ques- 
tions we address is the following: given a Borel (analytic) ideal Z over X ,  
what are the possible topologies r such that Z = NWD(r)? We classify 
under equivalence the family NWD(r)  when r is an Alexandroff topology 
over N. We show that NWD(r)  is not a pideal for r analytic. Many of the 
structural properties of ideals over N have been established by using two 
important notions for comparing ideals: Tukey reducibility [8] and Rudin- 
Blass reducibility. We analyze the ideal of nowhere dense sets from these 
point of views. 

Some preliminary results concerning the problems studied in this paper 
appeared in [25]. 

We will use the standard notions and terminology of descriptive set theo- 
ry (see for instance [l:l]). X will always denote a countable set. wCW denotes 
the collection of finite sequence of natural numbers. If s E wCw and n E N 
then s-  (n) is the concatenation of s with n. Let A, B be subsets of topo- 
logical spaces Y and Z respectively, as usual A 5 ,  B denotes the fact that 
A is Wadge reducible to B, that is to say, there is a continuous function 
f : Y + Z such that x E A iff f(x)  E B. The ideal of finite subsets of N is 
denoted by FIN, 0 x FIN denotes the ideal over N x N given by A E 0 x FIN 
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iff for all n, { i  : (n, i )  E A )  is finite and FIN x 0 denotes the ideal given by 
A E FIN x 0 iff there is n such that A & n x N, where as usual we identify 
a natural number n with the set (0, , n - 1). 

2 Closed and Gg topologies 

In this section we will analyze topologies over a countable set X that are 
closed or Ga as subset of 2 X .  

We first recall some notions. A topology r over X is said to be Alexan- 
droff if it is closed under arbitrary intersection, equivalently, if N ,  = n { V  : 
x E V and V r-open) is r-open for every x E X. N ,  is called the mini- 
mal neighbourhood of x. It is well known that Alexandroff topologies are 
represented by quasi-orders as given by the following theorem: 

Theorem 2.1 A topology r over X is Alexandrofl ifl  there is a binary re- 
lation <, over X which is transitive and f l e x i v e  and such that A E r iff 
for every x E A we have { y  E X : x 2, y )  A.  Moreover, the minimal 
neighbourhood of x is { y  E X : x 5,  y ) .  Furthermore, r is To iff 5 ,  is 
antisymmetric (i.e. <, is a partial order). Also, cl,(A) = U x E A  cl ,({x))  = 
U x E A { y  E X : y <, x ) .  Thus 2, is given by y 5 ,  x i f f y  E cl ,({x)) .  

We start by considering the question of when a given topology r over a 
countable set X is an open, closed or dense subset of 2 X .  

Theorem 2.2 Let r be a topology over X .  

( i )  r E 2X is closed if, and only if T is Alexandrofl. 

(ii) r 2X is open if, and only i f  there is a r-clopen, discrete and co-finite 
subset of X .  In particular, every open topology is clopen. 

(iii) The closure of r i n  2 X ,  denoted by 7, is a topology. Therefore 7 is the 
smallest Alexandrofl topology containing r. 

(iv) r is dense in  2X if, and only i f  r is T I .  

Proof: First, it is not difficult to show that if S & 2X is a closed set which is 
closed under finite intersections (resp. unions), then S is closed under arbi- 
trary intersections (resp. unions). From this (iii) follows, since 7 is a closed 
set closed under finite intersection and unions. Also from this observation 
half of (i) easily follows. For the other half of (i), let r be a n  Alexandroff 
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topology and A, a sequence of T-open sets converging (pointwise) to A. If 
x E A, then N,, the minimal neighbourhood of x, is a subset of eventually 
every A, and therefore a subset of A. Hence A is open. For (ii), let r be an 
open topology, then 0 and X are interior points of r. Then, it is not hard to 
see that there is a finite set F such that F is T-clopen and X - F is discrete. 
From this it follows that r is clopen. Finally, for (iv) let us suppose that T 

is dense in 2X. Let A, be a sequence of open sets converging pointwise to 
{x). Let y # x, then there is n such that x E A, and y @ A,. Hence { y )  
is closed. Conversely, suppose T is T I .  Then the collection of r-closed sets ' 
contains all finite sets and hence it is dense in 2X. Since the map A I+ X - A 
is an homeomorphism then r has to be also dense. 

The simplest example of a F, topology is the co-finite topology. Given 
a filter 3 over w, we will identify 3 with the topology 3 U  (0). Since filters 
and ideals are dual objects, we will also identify an ideal with the topology 
associated with its dual filter. Nice examples of F, ideals can be found in 
[16]. Next we give an elementary method to construct a Hausdorff topology 
based on a filter, it will be used to give examples in the sequel. 

Example 2.3 Let 3 be a filter over w. We define a topology r (3 )  over w+ 1 
by ~ ( 3 )  = {{w) U A : A E 3) U P(w). It is clear that if 3 is non principal 
then r(3) is a Hausdorff topology. Since the function f : 2W + 2W+1 given 
by f (A) = A U {w) is continuous and A E 3 iff f (A) E r ( ~ ) ,  then 3 is 
Wadge reducible to ~(3) .  Also notice that if 3 is a non trivial filter, then 
w is the only limit point of (w + 1, ~(3)). In fact, it is clear that this is 
a characterization of such spaces. We state this observations in the next 
proposition for later reference. 

Proposition 2.4 (i) For every filter 3, r(3) is a Hausdorff topology and 
3 5 w  ~(3).  

(ii) Let (X, r) be a Hausdorfl space such that x(') = {xl, . . a ,  x,). Then 
there is a partition of X in finitely many clopen pieces XI, - , X, with 
xi E Xi and there are non principal filters Fi over Xi - {xi) for 1 5 i 5 n 
such that (X, r) is homeomorphic to $?(Xi, ~ ( 3 ; ) ) .  In fact, the filters are 
given by 3 i  = {A (Xi - {xi)) : A U {xi) E r ) ,  thus 3 i  S w  r. 

Since every Ga filter is necessarily principal (and hence closed), then 2.4 
does not provide examples of Ga topologies. In fact the situation is quite 
different. We show next that there are no non-discrete T I  topologies over N 
that are Ga as subsets of 2N, and later we give an example of a Gg-complete 
To topology. 
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Theorem 2.5 Let G be a dense Gs subset of 2N. If G is closed under finite 
unions and intersection then G = 2N. In  particular, if T is a TI topology 
over N and T s 2N is Gs, then T is the discrete topology. 

Proof: First we recall that  2N is a Polish group (i.e. a topological group such 
that  its topology is separable and completely metrizable) with symmetric 
difference as the group operation (it is the countable product of the group 
{0,1) with addition module 2). We will use the following fact about Polish 
groups (see for instance, 1.9.6 of [ l l]) .  If G is a Polish group and N is a Gs ' 
subgroup of G,  then N is closed. 

- Let G be closed under finite unions and intersections. Let CL(G)  = {A E 
2N : A, AC E G), then CL(G) is a subgroup of the cantor group 2N. Since 
G i s G s  t h e n C L ( G ) = G n { N - A : A ~ G ) i s a l s o G ~  (since A - N - A i s  
an homeomorphism). Thus CL(G) is closed. But G is dense, hence CL(G)  
is also dense and therefore G = 2N. The last claim follows from 2.2(iv). 

There are some simple A; topologies over N (i.e., they are both Gs 
and F,). For instance, let X = w + 1 with the usual order and T be the 
corresponding Alexandroff topology. Let T' = T - {{w)). Then it is easy to  
check that  7 = T and also that  T' is A;, i.e., it is both F, and Gs. Next 
example shows that  there are true Ga topologies. 

Example 2.6 A To topology on a countable set X which is a Gs-complete 
subset of 2X. 

We first show a general result that points to  a natural place where t o  
look for Gs topologies. 

Claim 1: Let T be an  Alexandrofl topology over a countable set X and let 
D(T) = {A E T : A is T-dense) and p = D(T) U (0). Then p is a Gg  
topology. Moreover, if T has no isolated points then T = j?. 
Proof: It is straightforward to  check that  A E D(T) iff for all x E X there 
is y E A such that  x 5,  y, where 5, is the order given by 2.1. So D(T) is 
Gs and so is p. For the second claim observe that  T has no isolated points 
if, and only if every finite set is T-nowhere dense. We will show that  T = j?. 
Let 0 E T and F,  K disjoint finite sets such F 0 and K n 0 = 0. Let 
V = X - K, then by hypothesis V is T-open dense, F V and V n I( = 0. 

In general, the topology given by the previous result is not a true Gs set. 
For instance, let < be the usual order on w + 1 and consider the Alexandroff 
topology. An open set V is T-dense iff w E V. Hence D(T)  is closed. 




























































