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Abstract

The Golden Number ¢ = (1 4+ v/5)/2 appears in many fields
of mathematics like proportions, continuous fractions and Fibonacci
Sequences. We give a sequence of quadratic irrational numbers ¢, ,
such that ¢; = ¢ and ¢, tends to 1 as n increases. This yields a
generalization of the golden number. We give an interpretation of ¢, ,
for each n, in terms of equations, proportions, continuous fractions, and
Fibonacci Sequences.

1 Introduction

We start by considering those pairs of rational numbers (x,y) which satisfy
the relation

=3 &)

Yy
This equation can be interpreted as a ” wrong method ” for simplification
of fraction, usually found in freshmen students. The method fails for many

numbers, for instance 3.0
+ 5
— =379

Let us look at the set of all pairs (z,y) satisfying (1), such that the
second component y is a natural number.If we solve (1), for x we obtain

Y

y—1

As y runs over the set 2, 3,4, 5, ... etc the corresponding values of z, gives
rise to the sequence

45
2, ,E,Z,..-

N w

So equation (1) has infinitely many solutions and this shows that it is pos-
sible for student to get right answers infinitely many times, using a wrong
method.
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. . n
For the decreasing rational sequence z, = —1 we have
n —

lim z, =1
n—00

Consider now a slightly different equation given by

T+y 2
- Y =z 2
; @
Solving for = produces

1++/1+4y?

= 2

We are interested again in considering those pairs of solutions (z,y) with
y a natural number, and z > 0. This gives us the following sequence of
cuadratic irrationals

1+ V1 +4n?
<pn=% n=12,... (3)

We observe that ¢; = (14+1/5)/2 = ¢ is the golden number. Moreover,
{pn} is a decreacing sequence approaching to 1. So again we have

Jim on =1

Let’s look at the first ten values of ¢y,
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n Pn Pn
1 1 +2‘75 1.61803399
2 1+ 4‘/ﬁ 1.28077641
1437
3 o 1.18046042
4 1+ . 65 1113278222
5 | LF 1°01°1 1.10498756
1+ 135
6 i 1.08679955
7 | 1297 1.07397635
8 1+1— ”6257 1.06445122
9 1—4“1— ;325 1.05709758
10 -1+2— “0401 1.05124922

By looking at this table, one concludes that ¢, converges to 1 very
fast.

Now we may ask. What kind of interesting properties does ¢, have,
for each n?. To answer that question we recall some of the nice properties
of the golden number, and somehow we will try to reproduce them for these
numbers. We will see that for every n, ¢, is a very special number, so we
call ¢,, the n- Golden Number.

To begin with, notice that the n- Golden Number satisfies a quadratic
equation, very similar to the equation for the Golden Number, namely

n(‘Pn)z_ on —n=0

2 Proportions and The Golden Rectangle

If we construct a rectangle,whose sides are in proportion X:Y, then it is called
a Golden Rectangle if & = ¢. It is possible to divide # Golden Rectangle
by a vertical line in two adjacent subrectangles, such that something fairly
good happens {see the picture}

The rectangle 00 ABCD is a Golden Rectangle since its sides are in
proportion 1: ¢ — 1, and it follows



4 F. Rivero

®
1 A B
1
C D
Figure 1:
1 —
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It is possible to carry out a similar analysis for the n- Golden Numbers.
Suppose n > 2, and draw a rectangle whose sides are in proportion X: Y,
such that % = @y. Then we call that rectangle a n- Golden Rectangle. We
will see that that rectangle can be subdivided into n squares and another
rectangle with the same proportion y,.

( see the picture)

So we start by subdividing rectangle ' ABCD , by a horizontal line
and n-1 vertical lines in (n+1) subrectangles. It is clear that each of the n
rectangles at the bottom of the big rectangle are congruent squares, having
sides <.

But the remainig rectangle 0 EFCD is again a n-Golden Rectangle,
since its sides are in proportion X : Y — %, and

X = nx n _
Y-%£ nY-X np,-1

¥n (4)

Now we want to repeat this process over and over to obtain a double sequence
of rectangles
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Notice that each rectangle R, contains a reduced copy of itself and n
squares. Thus

Ri = Ris1 | JGi

where G}, is a union of n squares. Here G, represents the difference between
two succesive rectangles and is called the gnomom of Ry.

For the special case kK = 2, we have the following picture of an infinite
subdivision of a 2- Golden Rectangle in rectangles with the same propor-
tions.
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Figure 3:
We see that the sequence of the gnomon describes an infinite spiral on
the plane, like stairs on a winding staircase.

We are interested now in obtaining a formula for the area of rectangle
R, 41 in terms of the area of R,. Lets call A, = area of R, = x.y, where

z >y, and gj— = (. Then we have

An+1 = (y+§)-z
= zy+%

2

= A +Z

P24n
— An + 22

= Any}

Thus Apy1 = Anp3. Therefore, each rectangle in the sequence increases
its area by a factor 3. This is called the growing factor of the sequence. If
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we start the sequence taking a basic rectangle with sides ¢ and 1, we obtain
the geometric series
<Py <<

representing the areas of an increasing sequence of 2- Golden Rectangles.

3 Continuos Fractions

Let ny,7m2,n3,... be an infinite sequence of natural numbers. Then the '
expression
1
=n; + 1 (5)
ng + ————
n4 _+- -

is called a continuos fractions (see [1]) and we use the notation

r=<ni;,N2,N3,y... >

One of the most striking properties of the Golden Number ¢ is given
by its expression as a continuos fraction, namely

p=<111,...>

It is a well know fact that if z is a quadratic irrational, and therefore a root
of a second degree equation, then its continuos fraction is periodic. That is

T=<M1,MN2, .., N, MNye.. s Npye.o. >

We use the shortest notation

r=<n;,N2,...,Nt >

For example ¢ =<1>
For the Golden Numbers we have the following result, concerning con-
tinuos fractions.

Theorem: For every n > 1, let ¢, be defined as in (2). Then we
have

o =< 1,1,1>
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wheret =2n —1

Proof: Let n > 1, and for every ¢ > 1 make
;=< 1,t,1>

Then we have
1
=1+ —1
t+ i

1+ —
Tt

After doing some elementary algebraic operations we get

(t+2)z +1+1
(t+ 1z +t

Tt =

Y

and from this we obtain the quadratic equation

Thus we have

So we get the result.

Example:

1+ VIT
T4

©2 =<1,3,1,1,3,1,... >

4 Fibonacci Sequence:

The sequence of natural numbers 1,1,2,3,5,8, - - - is called the Fibonacci
Sequence. It is easy to show that the Fibonacci Sequence is defined by the
recurrence relation

Fn)=F(n—-1)+ F(n-2), (6)
for n = 2,3,4,... and initial values given by

F(0)=F(1)=1.
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It is a well know fact (see [2]) that the Fibonacci Numbers satisfy the equa-
tion

V5 2 V5 2
forn=0,1,2,...
So the Golden Number ¢ = ! +2\/5 is related to this sequence. Now .

we may ask ourselves: What kind of sequence is related to ¢,, for every
n > 27

1 17
Consider the special case of ¢, = + 4\/_. We know that ¢y satisfy
the equation:
205 —p2—2=0 (N

On the other hand, we may consider a recurrence relation F(n), given
by

F(n) = %F(n— 1)+ F(n —2), (8)

To get a solution we can set F(n) = ¢" for some value of ¢ #0 to be
determined. Then we have
n 1

¢"=50""+q

n—2

S0 1
"¢’ - 54-1)=0
Therefore ¢ is a solution of the quadratic equation

202 —2-2=0

and so we conclude

S

q_1+\/ﬁ 1-

1 e ora=—g

Hence a solution of (6) is given by

1+V17 n+l1 1-V17 n+l
(——) )

F(n)=C + O ——
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Where C; and C; are constants to be determined. Thus we have found a
generalize Fibonacci sequence given by (6), which is related to the 2-Golden
Number ¢;. Let’s get the first 10 values of the sequence F(n), with initial
values F(0) =1,F(1) =2.

n |0[1|2]|3]| 4 5 6 7 8 9 10
Fn) |1|2|2|3(35|4.75|5.87|8.81|10.27 | 13.94 | 17.24

*We observe that this sequence increases more slowly then the Fibonacci
Sequence. Using the same argument as in obtaining formula (7), we give
the next generalization

Theorem: For any k > 1, the recurrence relation

F(n) = %F(n — 1)+ F(n—2) ©)

has the solution

1+ vI+4Z\"
Fn)=|——F—] =()". (10)
2k
The set of all solutions of relation (6), is given by
1+ vVI+4k2\" 1-VI+4kZ\"
F(n) = C¥ (%) +Ch (+’“) (11)

where C¥ and C¥ are constants to be determined.

Proof: It is clear that both (1++/1+ 4k2)/2k and (1-—+/1+ 4k2)/2k
are independent solutions of (8). Since the recurrence relation is linear; we
conclude that (11) is general solution.

O

Golden Numbers are also connected to limits of quotients of Fibonacci
Sequences.

Theorem: For every k > 1 let

1+ VIt k2
= T aL

Pk 2k
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and {zX} be the sequence defined by

k 1
zn = "zn—l + -'Bn—Z-
k
Then we have: .
.z
lim "—k'H = Pk
n—o0 I
n
Proof: We have
k k
k —T T
$n+1 _ k n + n—1
Kk k
zn zn
1 + 1
k :L'ﬁ
k
Tp-1

Thus we obtain
kL? - L—k=0,

and from this we get the solution

L=(pk
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