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Abstract

Let T be a locally compact Hausdorff space and let C,(T) be the Banach space of all complex
valued continuous functions vanishing at infinity in T, provided with the supremum norm. Let X
be a locally convex Hausdorff space (briefly, an IcHs) which is quasicomplete. A simple proof of
the Grothendieck theorem on the Dieudonné property of C,(T') is given and its proof is based on
Lemma 1 and Theorem 2 of [7], the first part of Theorem 1 of [13] and the theorem on regular
Borel extension of X-valued Baire measures on T. The present proof is much simpler than that
given in [13]. It is further noted that, as observed in [14], the original techniques of Grothendieck
in [7] are not powerful enough to prove his theorem if T is not further o-compact.

1. INTRODUCTION

Let T be a locally compact Hausdorff space and C,(T) the Banach space of all complex
valued continuous functions f vanishing at infinity in 7, endowed with the supremum norm
[|fllr = supser | f(t)]. Let M(T) be the dual of C,(T'), consisting of all bounded complex Radon
measures on T, with their domain restricted to the o-algebra of all Borel sets in T. Let X be a
locally convex Hausdorff space (briefly, an IcHs), which is quasicomplete.

In [14] we observed that, contrary to Remark 2 of [7], the Grothendieck techniques in [7] are
not powerful enough to prove the locally compact analogue of Theorem 6 of [7] if the locally com-
pact space is not further o-compact and hence the Dieudonné property of C,(T) for T arbitrary
remained unsettled until the publication of our paper [13]. Employing new techniques, we not only
obtained in [13] the locally compact analogue of Theorem 6 of [7] (which establishes the Dieudonné
property of C,(T)), but also provided several new characterizations for a continuous linear map
u:C,(T) = X to be weakly compact. The proof given in [13] makes use of Lemma 1 and Theorem
2 of [7], Theorem 1 of [13] (which provides a technique, similar to that of Bartle-Dunford-Schwartz
in [1], for IcHs case) and Theorems 1 and 2 of [12], which characterize relatively weakly compact
sets in M(T) in terms of the Baire, o-Borel and Borel restrictions of the members of the set in

question. The proof of Theorem 1 of [12] is quite involved and deep.
¢
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In this note we dispense with the use of Theorems 1 and 2 of [12] and give a simple proof of
the Grothendieck theorem on the Dieudonné property of C,(T'). The present proof is based on
Lemma 1 and Theorem 2 of [7], the first part of Theorem 1 of [13] and the theorem on regular
Borel extension of X-valued Baire measures on T'. We obtain in Theorem 1 below, excepting four,
all the remaining 31 characterizations given in [13] for a continuous linear map u : Co(T) = X
to be weakly compact and the Dieudonné property of C,(T) is an immediate consequence of the
equivalence of the assertions (1) and (8) or of (1) and (34) in the said theorem. Of course, the
present techniques deviod of the use of Theorem 1 of [12] are not powerful enough to obtain all the
35 characterizations given in [13] (see Remark 3).

2. PRELIMINARIES

In this section we fix notation and terminology. For the convenience of the reader we also give
some definitions and results from [5,11,13].

In the sequel T', Co(T), || - ||7, M(T) and X will be as stated in Introduction.

Let K (resp. K,) be the family of all compacts (resp. compact Gss) in T. The o-ring B,(T)
(resp. B.(T)) of all Baire (resp. o-Borel) sets in T is the o-ring generated by K, (resp. K). The
o-algebra B(T') of all Borel sets in T is the o-algebra generated by the class of all open sets in
T. Note that a subset F of T is o-Borel if and only if it is a o-bounded Borel set in T, thereby
justifying our terminology.

Recall that M (T) is the Banach space of all bounded complex Radon measures on T with their
domain restricted to B(T') so that each p € M(T) is a regular (bounded) complex Borel measure
on T and has norm given by ||p|| = var(u, B(T))(T). For p € M(T), |u|(E) = var(u, B(T))(E),
for E € B(T).

We recall the following result from [13, Lemma 1].
PROPOSITION 1. For u € M(T),

|l (1) (") = var(pls, 1), Bo(T))(-) and |uls.(1)() = var(uls. (1), Be(T))(")-

A vector measure is an additive set function defined on a ring of sets with values in an IcHs. In
the sequel X denotes an IcHs with topology 7. T is the set of all 7-continuous seminorms on X.
The dual of X is denoted by X*.

The strong topology 8(X™, X) of X* is the locally convex topology induced by the seminorms
{pB : B bounded in X}, where pg(z*) = sup,cg|z*(z)|. X** denotes the dual of (X*, (X", X))
and is endowed with the locally convex toplogy T of uniform convergence on equicontinuous subsets

of X*. Note that (X*, 8(X*, X)) and (X™*,.) are IcHs.,
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It is well known that the canonical injection J : X — X™** given by < Jz,z* >=< z,z* > for
all z € X and z* € X*, is linear. On identifying X with JX C X** one has 7.|jx = Te|x = T.

Let £ = {A C X*: A is equicontinuous }. Then the family of seminorms I'e = {p4 : A € £}
induces the topology 7 of X and the topology 7. of X**, where pa(z) = sup,.¢,4 |z*(z)| for z € X
and p4(z™*) = supgeeya |2 (2*)| for z** € X™*.

DEFINITION 1. A linear map u : Co(T) — X is called a weakly compact operator on C,(T)
if {uf:||fllT <1} is relatively weakly compact in X.

The following result is the same as Lemma 2 of [13], where the hypothesis of quasicompleteness
of X is redundant.

PROPOSITION 2. Let X be an lcHs and let u : Co(T) — X be a continuous linear map.
Then u*A is bounded in M(T) for each A € £.

For each 7-continuous seminorm p on X, let p(z) = ||z||,, = € X.

Let S be a o-ring of subsets of a non empty set Q. An X-valued vector measure m on S is said
to be bounded if {m(E): E € §} is bounded in X.

For the theory of integration of bounded S-measurable scalar functions with respect to a
bounded quasicomplete lcHs-valued vector measure defined on the o-ring S, the reader may re-
fer to [11] or [13]. We need the following results from Lemma 6 of [11] and Proposition 7 of [13].

PROPOSITION 3. Let X be a quasicomplete IcHs and let S be a o-ring of subsets of Q.
Then:

(i) If f is a bounded S-measurable scalar function and m is an X -valued bounded vector measure
on S, then f is m-integrable and

a:“(/Q fdm) = /Qfd(a:* om)
for each t* € X*.

(i) (Lebesgue bounded convergence theorem) If m is an X -valued o-additive vector measure on S
and (f») is a bounded sequence of S-measurable scalar functions with lim, f,(w) = f(w) for
each w € Q, then f is m-integrable and

/ fdm = lim / fodm
E n JE
for each E € S.

The following result is due to the first part of Theorem 1 of [13] which is analogous to The-
orem VI.2.1 of [2] for IcHs-valued continuous linear maps‘on C,(T). It plays a vital role in Section 3.
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PROPOSITION 4. Let X be an lcHs and let u : Co,(T) = X be a continuous linear map.
Then there ezists a unique X **-valued vector measure m on B(T) satisfying the following properties:

(i) z* om € M(T) for each z* € X* and consequently, m : B(T) — X** is o-additive in
o(X**, X*)-topology.

(11) The mapping z* — z* o m of X* into M(T) is weak*-weak* continuous. Moreover, u*z* =
z*om, z* € X*.

(111) z*uf = Jr fd(z* om) for each f € Co(T) and z* € X*.
(tv) The range of m is T.-bounded in X**.
(v) m(E) = v*(xg) for E € B(T).

DEFINITION 2. Let u : C,(T) — X be a continuous linear map. Then the vector measure
m as given in Proposition 4 is called the representing measure of u.

DEFINITION 3. A o-additive vector measure m : Bo(T) — X (resp. B(T) = X, B.(T) —
X) is called an X-valued Baire (resp. Borel, o-Borel) measure on T

DEFINITION 4. Let S be a o-ring of sets in T' with § D K or K,. Let m : § —+ X be a
vector measure. Then m is said to be S-regular (resp. S-outer regular, S-inner regular) in E € S
if, given a seminorm p € I" and an € > 0, there exist a compact set K € § and an openset U € §
with K C E C U (resp. an open set U € § with E C U, a compact set K € § with K C E) such
that ||m(B)||, < € for all B € § with B C U\K (resp. ||m(B)||, < € for all B € § with B C U\F,
[|m(B)|l, < € for all B € § with B C E\K). Even though T does not belong to S one can define
S-inner regularity of m in T as follows. Given p € T and ¢ > 0, there exists a compact K € S such
that ||m(B)||p < e for all B € § with B C T\ K. The vector measure m is said to be S-regular (resp.
S-outer regular, S-inner regular) if it is so in each E € §. When S = B(T) (resp. B,(T), B.(T)),
we use the terminology Borel (resp. Baire, o-Borel) regqularity or outer regularity or inner regularity.

Remark 1. In the above definition one can replace I' by any other family of T-continuous semi-
norms on X which induces the topology 7.

The following proposition is well known and plays a key role in the next section. It was first
proved in [4,9] for Banach spaces and extended to group-valued measures in [15]. For a simple and
direct proof, see [5].

PROPOSITION 5. Let m be an X -valued Baire measure on T and let X be a quasicomplete
lcHs. Then m is Baire regular. Moreover, there ezxists a unique X -valued Borel (resp. o-Borel)
regular o-additive estension m (resp. mic) of m on B(T) (resp. B.(T)). Moreover, 1|g () = .

3. CHARACTERIZATIONS OF WEAKLY COMPACT OPERATORS ON C,(T)
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In the following definition we weaken the second part of Definition 4 of [7].

DEFINITION 5. Let X be an IcHs. The first Baire class of X** is the subspace of X**
formed by the o(X**, X*)-limits of ¢(X, X*)-Cauchy sequences of elements in X. Let H be the
first Baire class of X**. Then we say that X has Dieudonné property if for each quasicomplete
lIcHs Y, each continuous linear map u : X — Y with u**(H) C Y satisfies u**(X**) C Y.

LEMMA 1. Letm: B(T) = X** be a vector measure and let m; = m|g () and m, = m|g 7.
If m (resp. m¢, m,) is Borel (resp. o-Borel, Baire) inner regular (in 7.) in B(T) (resp. B.(T),
B,(T)) then m (resp. m., m,) is o-additive in 7.

Proof. Let A be an equicontinuous subset of X* and let ¢ > 0. Let S = B(T) and y = m
(resp. & = B,(T) and v = m; § = Bo(T) and v = m,). Let (E,){° be a non increasing se-
quence in § with {° E,, = 0. By hypothesis, for each n, there exists a compact K, € S with
K, C E, such that sup,.c 4 |[(z*07)(B)| < 3= for all B € § with B C E,\K,. Then it follows that
SUp,ec 4 var(z* 07, S)(En\Ky) < 35 for all n. Now adapting the proof of (d)=>(e) of Lemma 13 on
pp.158-159 of [2], one can show that there exists n, such that sup .. 4 var(z* o, S)(E,) < 4¢ for
all n > n,. Consequently, |[Y(Ey)||p, < 4€ for n > n, and hence v is o-additive in 7.

THEOREM 1. C,(T) has Dieudonné property. More precisely, let u : Co(T) — X be a
continuous linear map, where X is a quasicomplete IcHs. Let m be the representing measure of u,
and let m. = m|g () and m, = m|g,(1)- Then the following assertions are equivalent.

(1) u is weakly compact.

(2) The range of m is contained in X .

(3) The range of m, is contained in X.

(4) The range of m, is contained in X.

(5) m(U) € X for all open sets U in T.

(6) m(F) € X for all closed sets F in T.

(7) m(U) € X for all o-Borel open sets U in T.

)
)
)
(8) m(U) € X for all open Baire sets U in T.
(9) m(U) € X for all open sets U in T which are o-compact.
(10) m(F) € X for all closed sets F in T which are Gs.
(11) m(U) € X for all open sets U in T which are Fy,.

(12) For a non decreasing sequence (fn)3° C Co(T), with 0 < f, < 1, (ufn) converges weakly in
X. ‘
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(13) m is o-additive in the topology T, of X**.
(14) m. is o-additive in the topology T, of X**.
(15) m, is o-additive in the topology T, of X**.
(16) m is strongly additive in the topology T. of X™*.
(17) m, is strongly additive in the topology T. of X**.
(18) m, is. strongly additve in the topology 7. of X**.

(19) m is ezhaustive in the family of all open sets in T with respect to the topology T. of X** in
the sense that for each disjoint sequence (U,){° of open sets in T, lim, m(U,) = 0.

(20) m. is ezhaustive in the family of all o-Borel open sets in T with respect to the topology 7. of
X

(21) m, is exhaustive in the family of all open Baire sets in T with respect to the topology 7. of
X,

(22) m is Borel regular in 7, of X**.
(23) m is Borel inner regular in 7. of X**.

(24) m is Borel outer regular (in 7.) in each compact set K in T and Borel inner regular (in t.)
in the set T.

(25) m. is o-Borel reqular in 1. of X**.
(26) m. is o-Borel inner regular in 7, of X™**.

(27) m. is o-Borel outer regular (in 1.) in each compact set K in T and o-Borel inner regular (in
Te) in the set T.

(28) m, is Baire regular in T, of X™**.

(29) m, is Baire inner regular in 1. of X**.

(30) All bounded Borel measurable scalar functions f on T are m-integrable and [, fdm € X.
(31) All bounded B.(T)-measurable scalar functions f on T are m-integrable and [, fdm, € X.
(32) All bounded B,(T)-measurable scalar functions f on T are m-integrable and [, fdm, € X.

(83) All bounded scalar functions f belonging to the first Baire class in T are m,-integrable and
Jr fdm, € X.

(34) w*f € X for all bounded scalar functions f belonging to the first Baire class in T.
¢
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Proof.
In the following we shall prove only those implications which are not obvious.

(1)=(2) by Corollary 9.3.2 of Edwards [6], by Proposition 4(v) and by the fact that xg € C3*(T)
for all E € B(T). .

(8)=(1) In fact, on the contrary, by Corollary 9.3.2 of Edwards [6] there would exist an equicon-
tinuous set A in X* such that u*(A) is not relatively weakly compact in M (T). As u*(A) is bounded
in M(T) by Proposition 2, by (3) of Theorem 4.22.1 of [6] there would exist a disjoint sequence
(Un){° of open sets in T and an € > 0 such that sup .c 4 |(z* o m)(Uy,)| > € for all n. Consequently,
there would exist z}, € A such that |(z} o m)(U,)| > € for all n.

Since z},om € M(T) by Proposition 4(i), z}, om is Borel regular in U, and therefore there exists
a compact K, C U, such that |(z}, om)(K,)| > € for all n. Let D(K,) = {U : U open, K, CU C
Un,}and let U >V for U,V € D(K,) if U C V. Then, as z}, om is outer Borel-regular in K, we
have limy_, k, vep(kn)(zn © m)(U) = (27, o m)(K,). Thus there exists an open set W,, € D(K5)
such that |(z}, om)(V)| > e for all V € D(K,) with V C W,. As K, C W,, by Theorem 50.D of
Halmos [8] there exists an open Baire set V,, such that K, C V,, C W, so that |(z}, o m)(V,)| > e.
Thus we have found open Baire sets (V,,){° in T such that K, C V,, C U, for all n and such that
|(zx o m)(Vn)| > € for all n. Let V = J7° V,,. Then V is an open Baire set and by hypothesis (8)
we have m(V) € X and m(V,) € X for all n. Now by (i) of Proposition 4 and by the Orlicz-Pettis
theorem for IcHs (see [10]) we conclude that m(V) = Y°1° m(V;,), the series converging uncondi-
tionally in the topology 7 of X. As 7 = 7|, it follows particularly that p4 (m(V,)) = 0 as n — oc.
But, on the other hand, pa(m(Va)) = supgecy [(2* o m)(V4)| > |(zk o m)(V,.)| > € for all n. This
contradiction proves that u is weakly compact and hence (1) holds.

(10)=(11) Let U be open and F, in T. Then T\U is closed and Gs. Then by (10) we have
m(U) = m(T) — m(T\U) € X. Hence (11) holds.

(9)=(8) by § 14 of Dinculeanu [3].

(2)=(12) Let (fn) be as in (12). Then lim, f,(t) = f(t) exists in [0,1] for each t € T and f
is Borel measurable. Then by (2), by Proposition 4(i) and by the Orlicz-Pettis theorem for IcHs,

m has range in X and is o-additive in B(T). Then by Proposition 3(ii) we have lim, [ f,dm =
Jr fdm € X. Consequently, by Propositions 3(i) and 4(iii)

limz*uf, = lim/ frd(z*om) = z*(lim/ fndm) = z*(/ fdm)
n noJr nJr T
for all z* € X*. Thus (12) holds.
(12)=(8) Let U be an open Baire set in T. Then by § 14 of Dinculeanu [3] there exists a

sequence (K,) C K, such that K, / U. By Urysohr’s lemma we can choose a non decreas-
ing sequence g, of non negative continuous functions with compact support such that g, ,/ xu.
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Then by hypothesis there exists a vector z, € X such that lim, z*ug, = z*z, for all z* € X*.
Therefore, by Proposition 4(iii) and by the Lebesgue dominated convergence theorem we have
t*z, = lim, [pgnd(z* om) = z*m(U) for all z* € X*. As m(U) € X**, it follows that
m(U) = z, € X. Hence (8) holds.

(2)=(13) by Proposition 4(i), by the Orlicz-Pettis theorem for IcHs and by the fact that
Te|lx = T.

(21)=(1) In fact, on the contrary, following the argument in the proof of (8)=(1), we have
an € > 0, an equicontinuous subset A of X*, a disjoint sequence (V,){° of open Baire sets in T
and a sequence (z})$° in A such that |(z} o m)(V,)| > €. This contradicts the hypothesis that
lim, ||m(V,)||p, = 0. Hence (1) holds.

(2)=(22)(resp. (25), (28)) By (2), Proposition 4(i) and the Orlicz-Pettis theorem for IcHs, m
is 0-additive on B(T) in the topology T of X. Then m, is o-additive on B,(T) and has range in
X. Therefore, by the first part of Proposition 5, m, is regular and hence (28) holds. Moreover,
by the second part of Proposition 5, there exists a unique X-valued o-additive (in ) regular Borel
extension 71 of m, on B(T') and i, = 1|g (r) is o-Borel regular. Then by Proposition 4(iii) and
by the fact that each f € C,(T) is bounded and Baire measurable (see Theorem 51.B of [8]), we
have

a:*uf:/de(a:*om):/de(a:*omo)lefd(a:‘om)

for each z* € X* and f € Co(T’). Since z*om and z*orh are in M(T') and represent the continuous
linear functional z*u on Co(T'), we conclude that z* o m = z* o 7n for all z* € X*. Since m has
range in X** and 7 in X, it follows that m = 7 and hence (22) (resp. (25)) holds.

(22)=(27) Given K € K, A € £ and € > 0, by hypothesis there exists an open set U with U D K
such that ||m(B)||,, < € for all B € B(T) with B ¢ U\K. By Theorem 50.D of Halmos [8], we
can choose an open Baire set V in T such that K C V C U so that ||m(B)||,, < € for all B € B(T)
with B C V\K and hence, particularly, ||m.(B)||,, < € for all B € B,(T) with B ¢ V\K. Thus
m, is o-Borel outer regular in K. Clearly, m. is o-Borel inner regular in T as by hypothesis (22)
m is Borel inner regular in T. Thus (27) holds.

By Lemma 1, we have (23)=(13), (26)=(14) and (29)=(15).

(24)=(1) Let K € K and let A be an equicontinuous set in X*. Given ¢ > 0, by hypothesis
there exists an open set U in T such that K C U and ||[m(B)||,, < € for all B € B(T) with
B C U\K. Since u*z* = z* om, we have sup .4 |(z* o m)|(U\K) < 4¢. Thus condition (4)(a)
of Theorem 4.22.1 of Edwards [6] is satisfied by u*(A). Again by hypothesis, there exists C € K
such that ||m(B)||p, < € for all B € B(T) with B C T\C so that supg.cy4 |(z* o m)|(T\C) < 4e.
Hence condition (4)(b) of the said theorem is also satisfied by u*A. Since ©*A is bounded in M(T)
by Proposition 2, we conclude by Theorem 4.22.1 of [6] that u*A is relatively weakly compact in
M(T) and hence, by Corollary 9.3.2 of Edwards [6], u is*weakly compact.
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(27)=(1)) Let K € K. Proceeding as in the proof of (24) implies (1), there exists a o-
Borel open set U containing K such that sup,.¢4 |(z* 0 m:)(B)| < ¢, for all B € B.(T) with
B C U\K. Then, we have sup,.¢ 4 var(z* o m¢, Bc(T))(U\K) < 4e. Therefore, by Proposition
1, supgees|(z* o m)|(U\K) < 4e where |[(z* o m)| = var(z* o m,B(T)). Thus, condition 4(a)
of Theorem 4.22.1 of Edwards [6] is satisfied by u*A. Again by hypothesis, there exists a com-
pact C such that ||m¢(B)||,, < € for all B € B.(T) with B C T\C. Thus, for each compact
K C T\C, supgecy |(z* o m)(K)| < e. Then by the Borel regularity of z* o m it follows that
SUPgecy |(z*om)|(T\C) < 4e. Thus u*A also satisfies condition 4(b) of Theorem 4.22.1 of Edwards
[6]. Since u*A is bounded in M(T) by Proposition 2, by Theorem 4.22.1 of [6] u*A is relatively
weakly compact in M (T'). Hence, by Corollary 9.3.2 of [6], (1) holds.

Obviously, (2) implies (31) since m is 7.(= 7)-bounded by Proposition 4(iv). (32)=(8) as the
hypothesis implies that m(U) € X for every open Baire set U in T. As shown in the proof of
(12)=(8), xu belongs to the first Baire class for each open Baire set U in T and hence (33)=(8)
(resp. (34)=(8) as w**(xv) = m(U)). By Corollary 9.3.2 of Edwards [6], (1) implies that the range
of u** is contained in X and hence (1)=>(34).

In the light of Corollary 9.3.2 of Edwards [6], the equivalence of (1) and (34) implies that C,(T)
has Dieudonné property.

This completes the proof of the theorem.

Remark 2. Corollary 9.3.2 of Edwards [6] is essentially due to Lemma 1 of [7], and Theorem
4.22.1 of [6] is the same as Theorem 2 of [7].

Remark 3. The techniques used in the above proof are not strong enough to prove the equiva-
lences of the statements (i), (xxi), (xxv), (xxix) and (xxx) given in [13].

REFERENCES

1. R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector measures, Canad. J.
Math.7, (1955), 289-305.

2. J. Diestel and J. J. Uhl, Vector Measures, Survey No.15, Amer. Math. Soc.Providence, R.L., (1977).
3. N. Dinculeanu, Vector Measures, Pergamon Press, New York, (1967).
4. N. Dinculeanu and I. Kluvédnek, On vector measures, Proc. London Math. Soc. 17, (1967), 505-512.

5. 1. Dobrakov and T. V. Panchapagesan, A simple proof of the theorem on Borel extension and repre-
sentability of operators, submitted.

6. R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York,
(1965).

7. A. Grothendieck, Sur les applications linéares faiblement compactes d’espaces du type C(K), Canad.
J. Math. 5, (1953), 129-173.

8. P. R. Halmos, Measure Theory, Van Nostrand, New Yo;'k, (1950).



10

T.V. Panchapagesan

10.
11.

12.

13.

14.
15.

I. Kluvanek, Characterization of Fourier-Stieltjes transforms of vector and operator valued measures,
Czech. Math. J. 17, (1967), 261-277.

C. W. McArthur,On a theorem of Orlicz and Pettis, Pacific J. Math. 22, (1967), 297-302.

T. V. Panchapagesan, Applications of a theorem of Grothendieck to vector measures, J. Math. Anal.
Appl. 214, (1997), 89-101.

T. V. Panchapagesan, Baire and o-Borel characterizations of weakly compact sets in M(T), to appear
in Trans. Amer. Math. Soc. (Dec. 1998).

T. V..Pa.ncha.pa.gesan, Characterizations of weakly compact operators on C,(T), to appear in Trans.
Amer. Math. Soc. (Dec., 1998).

T. V. panchapagesan, On the limitations of the Grothendieck techniques, submitted.

M. Sion, Outer measures with values in a topological group, Proc. London Math. soc., 19, (1969),
89-106.

Departamento de Matematicas, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela. E-mail
address: panchapa@ciens.ula.ve



