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Abstract

Let T be a locally compact Hausdorff space and let Co(T) be the Banach space of all complex valued continuous
functions vanishing at infinity in T, provided with the supremum norm. Let X be a locally convex Hausdorff space
(briefly, an IcHs) which is quasicomplete. By using Rosenthal’s lemma it is shown that every lcHs-valued uncon-
ditionally convergent operator on Co(T) is weakly compact. Then it is deduced that every continuous linear map
u: Co(T) — X is weakly compact if ¢, ¢ X.

1. INTRODUCTION

Let T be a locally compact Hausdorff space and C,(T") the Banach space of all complex valued
continuous functions vanishing at infinity in T, endowed with the supremum norm.

If X is a Banach space and K is a compact Hausdorff space, then Pelczynski [11] showed that
every X-valued unconditionally convergent operator on C(K) is weakly compact. This result was
extended in Theorem 12 of [9] to unconditionally convergent continuous linear maps on C,(T') with
values in a locally convex Hausdorff space (briefly, an IcHs) which is quasicomplete. In this note,
adapting the proof of Theorem VI.2.15 of Diestel and Uhl [1] in which Rosenthal’s lemma plays
a key role, we give a simple measure theoretic proof of Theorem 12 of [9] and then deduce the
result of Thomas [12] to the effect that every continuous linear map u on C,(T) with values in a
quasicomplete IcHs X is weakly compact whenever ¢, ¢ X. The Banach space analogue of the
latter result is due to Pelczynski [10].

2. PRELIMINARIES

In this section we fix notation and terminology. For the convenience of the reader we also give
some definitions and results from the literature.

In the sequel T will denote a locally compact Hausdorff space and C,(T') the Banach space of
all complex valued continuous functions vanishing at infinity in T, endowed with the supremum
norm ||f||r = supser | £(¢)]-
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2 Weak compactness of unconditionally convergent operators on Co (T)

DEFINITION 1. Let B(T) be the o-algebra of the Borel sets of T. A complex measure p
on B(T) is said to be Borel-regular (resp. Borel-outer regular) if, given E € B(T) and € > 0, there
exist a compact K and an open set U in T with K C F C U (resp. an open set U in T) with
E C U such that |u(B)| < € for every B € B(T) with B ¢ U\K (resp. B C U\E).

M (T) is the Banach space of all bounded complex Radon measures on 7' with their domain
restricted to B(T') so that each p € M(T) is a regular (bounded) complex Borel measure on T and
has norm || - || given by ||x|| = var(x,T) where the variation of p is taken with respect to B(T).
We denote var(u, E) by |u|(E), for E € B(T).

A vector measure is an additive set function defined on a ring of sets with values in an IcHs. In
the sequel X denotes an IcHs with topology 7. T is the set of all 7-continuous seminorms on X.
The dual of X is denoted by X™*.

The strong topology G(X*, X) of X* is the locally convex topology induced by the seminorms
{pB : B bounded in X}, where pg(z*) = sup,cpg|z*(z)|. X** denotes the dual of (X*, 8(X*, X))
and is endowed with the locally convex toplogy 7. of uniform convergence on equicontinuous subsets
of X*. Note that (X™*, 8(X* X)) and (X**,7.) are IcHs.

It is well known that the canonical injection J : X — X** given by < Jz,z* >=< z,z* > for
all z € X and z* € X*, is linear. On identifying X with JX C X**, one has 7¢|;x = 7e|x = 7.

Let £ = {A C X*: A is equicontinuous }. Then the family of seminorms I's = {p4 : A € £}
induces the topology 7 of X and the topology 7. of X**, where p4(z) = sup .y |2*(z)| for z € X
and p4(z**) = supgeey |2**(2*)| for 2** € X**.

DEFINITION 2. A linear map u : Co(T) = X is called a weakly compact operator on C,(T)
if {uf :||f|lT < 1} is relatively weakly compact in X.

The following result is the same as Lemma 2 of [9], where the hypothesis of quasicompleteness
of X is redundant.

PROPOSITION 1. Let X be an lcHs and let u : Co(T) — X be a continuous linear map.
Then u*A is bounded in M(T) for each A € £.

The following result (Corollary 9.3.2 of Edwards [3] which is essentially due to Lemma 1 of
Grothendieck [4] ) plays a key role in Section 3.

PROPOSITION 2. Let FE and F be lcHs with F' quasicomplete and let v : E — F be linear
and continuous. Then the following assertions are equivalent:

(i) u**(E**) C F.
4
(11) u maps bounded subsets of E into relatively weakly compact subsets of F.
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(iii) u*(A) is relatively o (E*, E**)-compact for each equicontinuous subset A of F™*.

The following result is due to Theorem 2 of Grothendieck [4], and is needed in Section 3.

PROPOSITION 3. A bounded set A in M(T) is relatively weakly compact if and only if, for
each disjoint sequence {Un}5° of open sets in T,

+

sup |#(Un)| — 0
HEA
as n — 00.

For each r-continuous seminorm p on X, let p(z) = ||z||,, ¢ € X, and let X, = (X,]|-|l)
be the associated seminormed space. The completion of the quotient normed space X,/p71(0) is
denoted by X,. Let II,, : X, & X,,/p~1(0) C X, be the canonical quotient map.

Let S be a o-algebra of subsets of a non empty set 2. An X-valued vector measure m on S is
said to be bounded if {m(F) : E € 8} is bounded in X.

For the theory of integration of bounded S-measurable scalar functions with respect to a
bounded quasicomplete IcHs-valued vector measure defined on the o-algebra &, the reader may
refer to [7] or [9]. We need the following results from Lemma 6 of [7] and Proposition 7 of [9].

PROPOSITION 4. Let X be a quasicomplete IcHs and let S be a o-algebra of subsets of Q2.
Then:

(1) If f is a bounded S-measurable scalar function and m is an X -valued bounded vector measure
on S, then f is m-integrable in Q and

:l:"‘(/Q fdm) :/Qfd(z*om)
for each z* € X*.

(1) (Lebesgue bounded convergence theorem) If m is an X -valued o-additive vector measure on S
and (f,) is a bounded sequence of S-measurable scalar functions with lim,, f,(w) = f(w) for
each w € Q, then f is m-integrable in each E € § and

/ fdm = lim / fudm
E n JE
for each E € S.

The following result is due to the first part of Theorem 1 of [9], which is analogous to Theo-
rem VI.2.1 of [1], for IcHs-valued continuous linear maps on C,(T’). It plays a vital role in Section 3.

PROPOSITION 5. Let X be an lcHs and let u : €,(T) = X be a continuous linear map.
Then there ezists a unique X **- valued vector measure m on B(T') satisfying the following properties:
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(i) (z* om) € M(T) for each z* € X* and consequently, m : B(T) — X** is o-additive in
o (X**, X*)-topology.

(i1) The mapping z* — z* om of X* into M(T) is weak*-weak* continuous. Moreover, u*z* =
z*om, z* € X*.

(i) z*uf = [; fd(z* om) for each f € C,(T) and z* € X*.
(iv) The range of m is Te-bounded in X**.
(v) m(E) = u**(xE) for E € B(T).

(vi) If X is quasicomplete, then by (iii) and (iv) and by Proposition (i), uf = [ fdm for
f € Co(T).

DEFINITION 3. Let u : C,(T) — X be a continuous linear map. Then the vector measure
m as given in Proposition 5 is called the representing measure of u.

DEFINITION 4. Let X and Y be quasicomplete IcHs and let » : X — Y be a continuous
linear map. Then u is called an unconditionally convergent operator if for every unconditonally
weakly Cauchy series ) {°z, in X (in the sense that (z,)3° C X with Y} °|z*(z,)| < oo for all
z* € X*), the series 3 {° u(z,) is unconditionally convergent in Y.

3. MAIN THEOREM

In [11] Pelczynski proved that unconditionally convergent operators on C(K), K a compact
Hausdorff space, with values in a Banach space are weakly compact. This result was generalized
to quasicomplete IcHs in Theorem 12 of [9], but its proof uses some deep results such as Theorem
1 of [8] (characterizations of weakly compact sets in M(T') in terms of the Baire restrictions of the
memebers of the set in question) and Theorem 3(vii) of [9] whose proof is also based on the former
result of [8]. The aim of the present section is to provide an elementary proof of Theorem 12 of
[9]. For this we generalize in Lemma 1 the first part of Theorem VI.2.15 of Diestel and Uhl [1] to
quasicomplete IcHs. As in the original proof of [1] we use Theorem 2 of [4] and Rosenthal’s lemma
on p.18 of [1]. Using Lemma 1 and the fact that C,(T) has the strict Dunford-Pettis property
(see Lemma 2) we deduce Theorem 1 which is the same as Theorem 12 of [15]. Thereafter, we
obtain the first part of Theorem 5.3 of Thomas [12] by applying (i)=>(ii) of Theorem 1 (and hence
is independent of Lemma 2 ).

LEMMA 1. Let X be a quasicomplete IcHs and let u : C,(T') — X be a non weakly compact
continuous linear map. Then C,(T) contains a subspace Y isometrically isomorphic to ¢,. More-
over, there exists an equicontinuous set A4 in X* such that II,, o u is a topological isomorhism of

Y into )F(;;.

Proof. Since u is not weakly compact, by Proposition 2 there exists an equicontinuous subset A
of X* such that u*A is not relatively weakly compact in M(T). By Proposition 1, u*A is bounded
in M(T) and hence by Proposition 3 there exist a disjoint sequence {U,}${° of open sets in T and
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an € > 0 such that supg.c 4 |(z* 0 m)(Uy,)| > 2¢ for each n. Consequently, there exists z}, € A such
that |(z} o m)(Uy,)| > 2¢ for each n. Since z}, o m is Borel regular by Proposition 5(i), there exists
a compact K, C U, such that |(z} o m)(K,)| > 2e.

Let D(K,) ={U :U open ,K, CU C U} andfor U,V € D(K,),let U > VifU C V. Then by
the Borel outer regularity of 2% om in K, there exists U, € D(K,) such that |(zXom)(U\K,)| < €
for all U > U,, U € D(Ky,). Then by Theorem 50.D of Halmos [5], we can choose an open Baire
set Vj, such that K, C Vn, C U, so that [(z} o m)(V,\K,)| < e. Consequently, |[(z} o m)(V,)| >
|(z;, o m)(Ky,)| — |(z5 0om)(Va\K,)| > €. Thus |[(z}, 0 m)(Vy)| > € for each n.

Claim 1. Suppose V is an open Baire set in T with |[(z* o m)(V)| > €. Then there exists
f € Co(T) such that 0 < f < xv, ||fllT = 1 and | [ fd(z* o m)| > €. Consequently, there exist
(f2)° C Co(T) with || fallr =1, 0 < fn < xv,, and | ;. fad(z}, 0o m)| > € for all n.

In fact, by § 14 of Dinculeanu [2], V is a countable union of compact Gss and hence, there exists
{Cr}%2, of compact Gs such that Cx /' V. Now by Urysohn’s lemma there exists hy € C,(T)
such that 0 < kg < xv with hg(t) = 1for all t € Ci. Let g, = maxy<k<p hi. Then {g,}52, C Co(T)
and g, /" xv. Then by the Lebesgue dominated convergence theorem there exists p, € N such that
| f7 9p.d(z* 0o m)| > €. Taking f = g,,, the first part of the claim is established. The second part is
immeditate from the first as |(z% o m)(V,,)| > € for all n.

By Proposition 1, (2}, 0 m)32., is uniformly bounded in M(T). Then by Rosenthal’s lemma (see
p.18 of [1], which holds for complex measures too) we can assume that the sequences (z};) and (V;,)
have been chosen such that

(25, 0m)(Va)l > ¢ and o 0om|(|] V) <
p#EN

(1)

DO e

for all n. Then by Claim 1 and Proposition 5(iii) we have
ghufal =1 [ frd(ziom)] > ¢ (2)
for all n. Moreover, ||f.||r =1 and supp f, C V, for all n.
Let Y = {3°02, o fn : (0n)S2, € ¢o}. As || fn||T = 1 for all n and as (f,,) have disjoint supports,

Y is isometrically isomorphic with ¢,. Moreover, if f =Y 72, a, f, for some sequence (a,)3, € c,,
then by (1) and (2) we have for each n

Sl = | [ fdom)
= lan [ fad(@rom) + /U

janle= [ Ifld{laz om)

p#n P

fd(z7, 0om)|
Vi

p#n P

v
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v

|anle — |27 0 m|(|J Vo)l fllr
pEN

€
lon € — §||f||T~

v

But || f||T = sup,, |@n| and hence

|(Tpa 0 uw)()llps = pa(uf) = sup [("u)(f)]

T*€EA

sup|(z3u)()| 2 ellllz = SISl = ()| fllr-

v

Hence (Il,, ou)|y is a topological isomprphism of Y with a subspace of )?p , and this completes
the proof of the lemma.

COROLLARY. If X is a Banach space and ¢, ¢ X, then every continuous linear map
u:Co(T) = X is weakly compact.

Remark 1. In the proof of Theorem VI1.2.15 of [1] there is no hint as to the construction of the
sequence (f,) in C'(Q) with the desired properties. One has to invoke Theorem 50.D of [5] and the
fact that every open Baire set is a countable union of compact Gss. (See the proof of Claim 1 above.)

We need the following result from [9]. For the sake of completeness we include its proof.

LEMMA 2. C,(T) has the strict Dunford-Pettis property (briefly, (SDP)-property). That is,
for each weakly compact operator u : Co(T) = X, X a quasicomplete lcHs, u transforms each weak
Cauchy sequence in C,(T) into a convergent sequence in X .

Proof. 1f (f,) is weakly Cauchy in C,(T'), then it is a norm bounded sequence converging
pointwise to some function f in T and clearly, f is also bounded and is Borel measurable. By
Proposition 2 and by the fact that m(F) = v**(xg) for E € B(T) (see Proposition 5(v)), the
representing measure m has range in X and consequently, by Proposition 5(i) and by the Orlicz-
Pettis theorem for IcHs (see [6]) m is o-additive in 7. Then by (vi) of Proposition 5 and (ii) of
Proposition 4 we have

limuf, = lim/ fndm = / fdm e X.
n n T T
Hence the result holds.

This completes the proof of the lemma.

From Lemmas 1 and 2 we shall now deduce the main theorem (which is the same as Theorem
12 of [9]).

THEOREM 1(Theorem 12 of [9]). Let u: Co(T) = X be a continuous linear map and let X
be a quasicomplete IcHs. Then the following are equivalent:



T.V. Panchapagesan

(1) u is uncoditionally convergent;
(11) u is weakly compact.
(iii) u maps sequences that tend to zero weakly into sequences convergent to zero.

(iv) u maps weak Cauchy sequences into T-Cauchy sequences.

[

(v) If (f,) is a bounded sequence in C,(T) with fn - fi =0 for n # 1, then lim, u(fn) = 0.
Proof.

(i)=(ii) If u : Co(T) — X is not weakly compact, then by Lemma 1 there exist an equicon-
tinuous subset A of X* and a subspace Y of C,(T) isometric with ¢, such that (II,, o u)|y is
a topological isomorphism with a subspace of )?p .- By (i) Il,, o u maps weakly unconditionally
Cauchy series in Y into unconditionally convergent series in X 4. This is impossible as ¢, contains
plenty of nonconvergent weakly unconditionally Cauchy series. Hence u is weakly compact.

(ii) =(i) and (iv) by Lemma 2.

(iv)=>(iii) A sequence weakly convergent to zero in C,(T) is norm bounded and converges to
zero pointwise. Then (iii) holds by Proposition 5(iii), the Lebesgue bounded convergence theorem,
and the Hahn-Banach theorem.

(iii)=>(v) Such a norm bounded sequence (f,) converges to zero pointwise and hence by the
Lebesgue bounded convergence theorem is weakly convergent to zero. Then by hypothesis (iii),
limp u(fn) =0in 7.

(v)=>(ii) If u is not weakly compact, then as in the proof of Lemma 1 we have an equicontinuous
subset A of X*, an € > 0, a sequence (f,){* C C,(T) with disjoint supports such that || fu|l7 = 1
for all n and a sequence (z}){° in A with | [ fod(z} om)| > € for all n. Then by Proposition 5(iii),
Nu(fo)llpa > |25n(ufn)| = | f7 fad(z}, 0 m)| > € for all n. This contradicts (v) and hence u is weakly
compact.

This completes the proof of the theorem.
Now we deduce the first part of Theorem 5.3 of Thomas [12] as a corollary of the above theorem.

COROLLARY (First part of Theorem 5.3 of [12]). Let X be a quasicomplete lcHs with
co ¢ X. Then every continuous linear map u : C,(T) — X is weakly compact. (Then by Proposi-
tions 2 and 5 and the Orlicz-Pettis theorem, the representing measure m of v has range in X and
is o-additive in T.)

Proof. Let (fa)3%, be a sequence of functions in CofT) such that 3532, | fr fad(p)| < oo for

n=1
each p € M(T). Let u : Co(T) = X be a continuous linear map with the representing measure m.
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Then by Proposition 5(i), z* o m € M(T) for each z* € X* and hence by hypothesis on (f,)%2,

and

by Proposition 5(iii) we have

ngl |z*(ufn)| = 72 |Afnd(z* om)| < oo.

Since ¢, ¢ X, by Theorem 4 of Tumarkin [13] it follows that 5", u(f,) converges unconditionally
in X (in 7). Thus u is an unconditionally convergent operator and hence by (i)=>(ii) of Theorem

1, u

is weakly compact.

Remark 2. The above corollary is deduced from Lemma 1 via Theorem 1, while its Banach
space analogue is immediate from Lemma 1. Note that strict Dunford-Pettis property of C,(T) is

not

N =

10.
11.

12.

13.

used in proving the corollary.
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