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MOTIVATION OF THE MULTILINEAR REPRESENTATION
THEOREM OF DOBRAKOV

BY
T. V. PANCIIAPAGESAN!, Mérida,
In 1910, F.Riesz proved his famous representation theorem for the bound-
ed linear forms on C[0,1], which has been generalized later to compact and
locally compact Hausdor{l spaces by Markoff, Kakutani and others. Let us

present this theorem in the general form as follows:

THEOREM 1. (Riesz representation theorem)v Let T be a locally
compacl Hausdorff space and let B(T) be the o-algebra of the Borel scts of
T. Let Co(T) be the Banach space of all complex valued conlinuous functions
on T vanishing at infinity, with the supremum norm ||fllr = sup{|f(?)| :
t € T}. Then the dual Co(T)* of all continuous linear forms on Cy(T) can
be identified with the Banach space M(T) of all regular (Compler) Borel
measurcs on 1", in the sense thatl there exists an isometric isomorphism I :

Co(1)* — M(T) such that

o1 = [ £aF(@), 1 & ColT)
for ¢ € Co(1)*, and ||¢]| = |F(S)|(T'), where |u| is the variation of the (com-

plex) measure .

Later, in 1955, Bartle, Dunford and Schwartz extended the above theorem
to bounded linear operators 7' : C(S) — Y, where S is a compact Hausdor(l
spacc and Y is a Banach space. For this, they developed the thcory of inte-
gration of scalar functions with respect to a vector mecasure. Now we shall

state their representation thicorem.

THEOREM 2. (Bartle-Dunford-Schwartz representation theorem)
Let S be a compact Hausdorff space and let U : C(S) — Y be a bounded
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linear operator, where Y is a Banach space. Then there exists a weak® o-
(o <]

additive measure G(.) on B(S) with values in Y"(y"G(U E) = Zy‘G(Ei)
1

1
for ecach y* € Y*, whenever (E;){° ts a disjoint sequence in B(S)) such that

(i) y*G(.) is a reqular o-additive Borel measure (a complez Borel measure)

for each y* € Y*;
(11) the mapping y* — y*G(.) of Y™ into C(S)* is weak® to weak*-continuous;
(i) yU(f) = [, fd(y*Q), for each y* € Y*; and

(i) ||U|I.= lIG||(S), where

IGI1(8) = sup{|| D aiG(E)| : BNE; = ¢, i # j, i € B(S), |au| < 1}

=1

is called the semivariation of G(.) on S.

Conversely, if G(.) is any Y**-valued vector measure (=additive set {func-
tion) defined on B(S) for which (i) and (ii) hold, then (iii) defines a bounded
linear operator U : C(S) — Y which satisfies (iv). G(.) is called the repre-

senting measure of U and is unique by (iii).
They also proved the following results.

Recall that a Banach space Y is said to be weakly complete if, cach
sequence of vectors in Y which is Cauchy in the weak topology, is wecakly

convergent to a vector in Y.

THEOREM 3. (Bartle-Dunford-Schwartz representation theorem)
IfY is weakly complete, then the represeting measure G(.) assumes values in

Y itself and moreover, G(.) is o-additive in the norm topology of Y.




A bounded linear operator U/ : X — Y, X,Y Banach spaces, is said to

be weakly compact if {||Uz]| : ||z|| < 1} is relatively weakly compact in Y.

THEOREM 4. (Bartle-Dunford-Schwartz) If U: C(S) — Y is weakly
compact, then the representing measure G(.) of U assumes values in Y and

G(.) is o-additive in the norm topology of Y.

In 1967, Kluvanek extended the Bartle-Dunford-Schwartz representation
theorem (theorem 2) to locally compact Hausdorfl spaces T, with B(S) being

replaced by oB(T), the o-ring generated by the compact subsets of 1.

In 1958, Bessaga and Pelczynski studied the Banach spaces which behave
well like weakly complete spaces. Let ¢ = {(a,) : ¢ € C, limA, = 0}
with ||(a,)|| = sup|as|. A Banach space X is said to contain a clcl)py of ¢ if
there cxists a closed subspace Z of X such that Z is topologically isomophic
1o ¢y i.c. there is a linear bicontinuous isomophism from Z onto ¢y, Z being

cndowed with the relative topology.

THEORLEM 5. (Bessaga-Pelczyniski) A Banach space Y docs not con-

tain a copy of co (in symbols, co ¢ Y) if and only if, for each sequence (1, )$°
o0

of vectors in Y with Z [y*(yn)| < oo for each y* € Y=, the formal serics
1

> yn 1s unconditionally convergent in norm of Y.

Pclezynski extended Theorem 3 of Bartle-Dunford-Schwartz to Banach
spaces Y 2 ¢p. Moreover, all these theorems can be extended to locally con-

pact Hausdorlf spaces suitably.
Thus we have the following representation theorem:

THEOREM 6. Suppose U is a bounded linear operator from Co(T) to
Y, where (A) U is weakly compact, or (B) cog ¢ Y. Then the representing




measure G(.) of U takes vélues in'Y, G(.) is o-additive in norm of Y and
Uf=/deG, f € Co(T)
where G(.) : 9B(T) = Y is oB(T)-regular. Moreover,
Uil = IIGINT) = sup{||Gl|(4) : A € oB(T)}.

Besides, if co € Y, then every bounded liﬁcar operator U . Co(T) = Y s

necessarily weakly compact.

In this context, it will be interesting to know whether such a representa-

d
tion theorem can be given to bounded multilinear operators U : }1( Co(T3) —
Y when ¢ ¢ Y, or when U is weakly compact. This type of study naturally

leads to the notion of vector valued multimeasures (=polymeasures).

Historically speaking, the study of bimeasures goes back to Morse, M.,

and Transue, W. They studied complex valued bimeasures in their memoirs

»C-bimeasures A\ and their superior integral A*”, Rend. Circ. Mat.
Palermo (2) 4 (1955) 270-300

and

"C-measures A and their integral eztension”, Ann. of Math (2) 64 (1956),
480-504

using an aproach similar to Bourbaki. Unfortunately, their theory was not

sufficiently developed to give such representation theorems.

K. Ylinen introduced the notion of vector bimeasures in 1978 and these
bimeasures were found useful in the study of stochastic processes and also in

Harmonic Analysis.

Later, from 1987 onwards, Dobrakov published a series of papers on mul-
tilinear integration with respect to operator valued polymeasures: “On inte-

gration in Banach spaces, VIII,... XIII" in Czech. Math. J. His theory was
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influenced by his earlier theory on vector integration given in “On inlegration

in Banach spaces, LII,...,VII" in the same journal.

Based on this theory, Dobrakov proved in 1989 the multilinear integral
representation of bounded multilinear operators U : Co(T;) X...X Co(Ty) —
Y, when U is weakly compact, or when ¢ ¢ Y. But this theorem of rep-
resentation was derived from the earlier multilinear extension theorem of
Pelezynski given in 1963. Since the representation theorem is one of the
peaks of the multilinear integration theory, it is desirable to have a proof of
this theorem directly, without any reference to Pelczyiiski’s result. In our
present note, with Dobrakov as coauthor, we have achieved in giving such a

direct proof.
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A Direct Proof of a Theorem of Representation of
Multilinear Operators on XCy(T;)

Ivan Dobrakov and T. V. Panchapagesan

Dedicated to Professor Mischa Cotlar on the occasion of his esghtieth birth day

ABSTRACT. Let T;,i = 1,2, ....d, be locally compact Hausdorff spaces
and let Cy(T;) be the Banach space of all scalar valued continuous func-
tions on T; vanishing at infinity ( with the supremum norm ). Suppose
U: )T{C’(J(T,') — Y is a bounded d-linear operator, where either (4) Y
is a Banach space such that ¢o ¢ Y, or (B) U is weakly compact. Using -
the multilinear extension theorem of Peleczyniski, Dobrakov obtained in
.an ealier work a multilinear integral representation of U with respect
to a unique Y-valued Baire d-multimeasure on 1{:(080(1“,'). The aim of
the present note is to provide a direct proof of this representation the-
orem , without any reference to the said result of Pelczyriski. Then the

multilincar extension theorem of the latter follows as a corollary.

1. Introduction

In [14] Pelezyniski proved the following extension theorem of multilinear
operators on XC'(S;), where C(S;) is the Banach space of all scalar valued

continuous functions on the compact Hausdorff space S;.

T HE()REM{ (Pelczyniski). Suppose Sy, ...,Sq are compact Hausdorff spaces
(

and U : )FC(S,-) — Y s a bounded d-lincar mapping, where cither Y 1s a

Banach space such that ¢o ¢ Y, or U s weakly compact. Then there crists a

o
untque bounded d-lincar mapping U™ : }1( B%(S;) = Y such that
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The research of the second author was supported by the C.D.C.H.T.
project C-586 of ULA and the CONICIT(Venezuela)-CNR(Italy) inter-
national cooperation project.

This paper is in final form and no version of it will be submitted for
publication elsewhere.




d
(i) U **I)'(C(S,-) =U, and
(1) if (fin), C B*(S;) such that
lim fi.(s:) = fi(si), for each s; € S,

and
sup  [fin(si)] £ C(< 00)

s,€85;, n=1,2,...

fori = 1,2,...,d, then

Lm U™ (finy -, fan) = U™ (f1y ey fa)-

n—oo

Morcover, in the case (B) the oprator U™ is also weakly compact.

Using the above theorem, Dobrakov proved in [8] that there is a d-

d
multimeasure Y : )l( oBy(T;) — Y such that

U (g) = /( NOL,

for cach (gi) € XBYT;), where T; is a locally compact Hausdorff space,
aBy(T;) is the o-ring of all Baire sets of T; and B%(T;) is the class of all
bounded Baire functions on T;,for i = 1,2,....d. Moreover, U** extends U/
and is a bounded d-linear operator with |[U**|| = ||U|| = ||Y||(T;), where
[|TI(T;) is the scalar semivariation of T in (7}).Finally, the range of T is

relatively weakly compact if and only if U is weakly compact.

The object of the present note is to present a direct proof of the multi-
linear integral representation theorem of Dobrakov and then to deduce the
cited theorem of Pelczynski as a corollary. Then all the results of Dobrakov

in (8] remain independent of Pelczyriski’s multilinear extension theorem.




2. Notation and Terminology

In the sequel, T\, T;, i = 1,2,...,d, are locally compact Hausdorff spaces.
Co(T) is the Banach space of all scalar valued continuous functions on T van-
ishing at infinity, with the supremum norm ||||T, where ||f ||T = e;,g%) |£(2)].
Similarly, we define Co(T;), for ¢ =1,2,...,d.

The family of all compact Gss of T is denoted by Ko(T) and of T; by
Ko(T;), for i = 1,2,...,d. The o-ring generated by Ko(T) (resp. Ko(T})) is
denoted by oBo(T')(resp. oBy(T;)), whose members are called Baire sets of
T (resp. T;).

The scalar field is denoted by K (=R or C ). Let Y be a Banach space
over K , the scalar field of Co(T') and Cy(T).

d
DEFINITION 2.1. A mapping U : }ICCO(T.-) — Y s said to be d-linear if it

is separately linear on each coordinate.

Such a mapping U 1is said to be bounded if

Sup{IU s o)l 1Al € 1,1 = 1,2, 0} < 0

where |.| denotes the norm of Y. When U is bounded, the above supremum
is denoted by ||U||. If U is a bounded d-linear mapping and if {U(f;, ..., fa) :
||f.-HT. <1, fi € Co(Ty), t = 1,2,...,d } is relatively weakly compact in Y,

then U 1s said to be weakly compact.

We now proceed to state some definitions and results from the theory of
multilinear integration of scalar functions. The reader may refer to Dobrakov
[5,6,7,8,9).

If S;, i =1,2,...,d, are o-rings of sets in T}, then let

d
¥S.' = {(Al,...,Ad) 1A € S.', 1= 1,2,...,d}.
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The rectangle (A, ..., Aq) is denoted by (A;).

DEFINITION 2.2. Suppose Y : XS; — Y 1is a set function such that it is
separately o-additive in norm of Y. Then Y is called a Y — valued d-
multimeasure (or d-polymeasure).

DEFINITION 2.3. Let f; = Za.,-xm_j,a,'j €K, A; N Ay =0 forj # 7,

i=1
A €S, forj=1,2,..,r; andi = 1,2,...,d. Such functions f; are called S;-

simple functions and (f;) is said to be XS;-simple. The set of all XS;-simple

functions is denoted by XS(S;). If T : XS; = Y is a d-multimeasure, then
we define

™ g
)(f,)dT = Z E aljl azjz...adde(A N Aiji)
A

J(Ai i=1 da=t

where (f;) is given as above.

DEFINITION 2.4. For (A;) € XS; and for a d-multimeasure T : XS§; — Y,

we define the scalar semivariation ||Y||(A;) by
ITllA) = sup || (£ (5) € XSS ISl S 16 =1,

and ||Y|(T;) = sup{[|Y]|(4:) : (4)) € X&:}.

THEOREM 2.5. For a Y-valued d-multimeasure Y : XS; — Y, ||Y||(T:) s
finite.

THEOREM 2.6. Let S(S;) be the closure of S(S;) with respect to the topology
of uniform convergence in the space of the bounded scalar functions on T;.
Let f; € S(S;) and let (fin,)30—1 C S(Si) be such that

Tim [Ifi = fimll =0
fori =1,2,..d IfYT:XS; =Y is a d-multimeasure, then

. s
lim /(.Ai)(f,,,,')d

B ,n,,...,N 00
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exists in Y, uniformly with respect to (A;) € XS;. Moreover, this limit is

independent of the converging sequences (f; .).
The above theorem motivates the following

DEFINITION 2.7. Let f; € S(S;) and let (fini)oo=1 and YT be as in Theorem
2.6. Then we say that (f;) is Y-integrable and the Y -integral of (f;) over
(A;) € XS; 1s defined as
(fi)d¥ = lim (f, n)dY.
(4:) mine Jiay
Moreover, the T -integral of (f;) over (T}) is defined as that on XN(f;), where
N(f)={t.€T;: filt;) #0},1 = 1,2,....,d.

We have the following generalized Lebesgue bounded convergence theo-
rem (shortly, LBCT) for the T-integrable functions in X.5(S;).See Theorem
3 of [8].

THEOREM 2.8. Suppose f.',n'- € S(S,) forn; = 1,2,... and f,',m(t,') — f,'(t,')
as n; — oo, for each t; € T; and fori = 1,2,...,d. Also suppose

sup  llfimlly, < C(<o0).
n.—12 ,...,d +

Then
lim (f.',n,-)dT=/ (fi)dY
{A)

nl,...,nd—ooo (A;)

for all (A;) € XS;.

Let BY(T;) denote the smallest class of bounded scalar functions on T;
containing Co(T;), which is closed under the operation of pointwise limits of
uniformly bounded sequences of functions. In other words, if Co(T;) C C and
if, for (fn)$° C C with sup,, ||f,,|| < oo and with f,(¢;) — f(t;) as n — oo,
for each t; € T;, it follows that f € C, then BT;) C C. Thus BXT;) is

the class of all bounded Baire functions on T;, which also coincides with the

5




family of all bounded Baire measurable scalar functions on T;.

d
THEOREM 2.9. Let T : )1( oBy(T;) — Y be a Baire d-multimeasure. Then:

T = supf) [ (T] < £ € Co(T) Iilla <1, 4 € 7Bl

3. A Theorem of Uniqueness
The following theorem states that a Y-valued d-multimeasure T on XoBy(T;)

is determined by the integrals f(ﬁ )( f)dY, (fi) € XCo(Ty).

d
THEOREM 3.1. Suppose T1, T, : }l( oBy(T;) — Y are d-multimeasures such
that

(1) [Ti)(fi)drl = [n)(fi)drz

d
for all (f)) € X Co(T;). Then T =T1,.

Proof. Let C; € Ko(T;). By Theorem 55.B of Halmos [12] there exists a
sequence {h;n, }30_, in Co(T;) such that k() o X, (t:), for each t; € T;

n=

and for i = 1,2,...,d. Then by (1) and by LBCT (Theorem 2.8) we have
TL(CI) = Tz(Cz) Thus

(2) T(Cyy ..y Ca) = T3(Ch, ..., Ca)
for C; € Ko(T3), i = 1.2,

Let
5, = {E1 € 0Bo(T1) : T1(Ey, Cyy ey Ca) = To(Ey, Cyy o0y Co)

forC; € Ko(Ty),i = 2,3, ...,d}.

By (2) it follows that Ko(T1) C ¥;. Consequently,by the separate finite
additivity of Y, and Y, we conclude that R(Ko(T1)),the ring generated by
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Ko(T)) is contained in ;.

Let (E,)S2, be a monotone sequence in ¥,, with E = lim E,,. Then by
n

the separate o-additivity of T; and Y9 we have
T] (E, Cg, ooy Cd) = lim TI(E,,, Cg, veey Cd) = lim TQ(E,-,, Cg, veey Cd)

= T2(Ea CZa ey Cd)

for each C; € Ko(T3), ¢ = 2,3,...,d, since E, € T, for all n. Thus E € T,
and consequently, ¥, is a monotone class containing R(Ky(T})). Then by
Theorem 6.B of Halmos [12], &; coincides with ¢By(T}) and thus

(3) TI(EI’C%-"acd) =T2(E1,Cg,.-.,Cd)
for all E, € 0By(T) and for all C; € Ko(Ty), i = 2,3,...,d.

Now let

Ly = {E; € aBy(T3) : Yo(En, B, Ch, ..., Cyq) = To(Ey, By, Cy, ..., Cy)
for all E; € oBy(T)) and for all C; € Ko(T3),i = 3,...,d }.

By (3), Ko(T32) C X,. By an argument similar to that given above for ¥,
it is easy to show that R(Ko(T3)) C I and that £, is a monotone class. Then
by Theorem 6.B of Halmos [12] we conclude that £, = 0By(T3). Continuing

this argument step by step, in the d*" step we have
TI(EUEZ’ "'Ed—l ) Cd) = TZ(ED EZ’ very Ed—la Cd)

for all E; € oBy(T;), i = 1,2,...,d-1 and for Cyq € Ko(Ty), which shows that
K:()(Td) - Ed, where

2d = {Ed € UBO(Td) : Tl(Ela "'aEd-—l,Ed) = TZ(E1>---aEd-I,Ed)
for E; € 0By(T}),i = 1,2,...,d — 1}.

Then, as in the above, ¥y is a monotone class containing R(K¢(Ty)) and
hence 4 = aBg(Ty). This shows that T; = T,.
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4. Direct Proof of Theorem 2 of Dobrakov [8]

With the preparation given in the earlier sections, we shall now present
a direct proof of the said theorem of Dobrakov (Theorem 2 of [8]) and then

deduce the multilinear extension theorem of Pelczyniski [14] as a corollary.

d
THEOREM 4.1. Let U : )ICCO(T,-) — Y be a bounded d-linear operator.
Suppose either (A) co ¢ Y, or (B) U is weakly compact. Then there ezists a
d

unique d-multimeasure T on )1( oBy(T;) with values in Y such that
d
wm=£¢mwwm6§%m»
., d
IfUe: X BYT;) — Y is defined by
rd % RO
Uy, = (T.)(g,.)dT, (9) € XB(T)

then U9 is well defined, bounded and d-linear. Moreover, U% extends U,

||[7‘1|| = ||U|| = [|T||(T;) and Ud satisfies the following property (P):

Let (fin,)22, C BYT;) with

n;=

sup ||fimll, < C <o

n;=12,... T
and with
Jim fin, () = fi(t:)
for each t; € T; and for i = 1,2,...,d. Then

lim Uiy oo fama) = U1, 0 fa).

LOOUTIRL (7 i

If U is weakly compact, then U4 is also weakly compact.

Finally, the bounded d-linear extension U® is determined uniquely either
by property (P) or by the multilinear integral representation; the range of T

is relatively weakly compact if and only if U is weakly compact.




Proof. Let us prove the theorem by induction on d. Let d=1. Suppose
co ¢ Y. Let T) be the Alexandroff compactification of T} by adjunction
of the point {co} and let U :C(Tl) — K be defined by U(f) = U(f —
f(00)). Then by Theorem VI.2.15 of [2],U is weakly compact and hence U
= U|Cy(T}) is weakly compact. Thus, in both the cases (A) and (B), by
Lemma 2 of Kluvanek [13] there exists a unique Y-valued o-additive regular

Borel measure G on B(T}) such that
Uf= | fiG, fecuTy).

Let T = G|oBy(T}). Then by Theorem 8 of [3], f is T- integrable,
Uf= /T fdY, feCoTy)

and by Theorem 1 of [8],||U|| = ||Y||(T}). Clearly, for the second adjoint U**
of U we have ‘

vei= [ 7dx, feBYT)

T
Now let us define U! = U**|BY(T}) .Condition (P) holds in virtue of LBCT.
As BY(T)) is closed for pointwise limits of bounded sequences, it follows that
property (P) implies the uniqueness of the extension Ulof U by an argument
of transfinite induction. The integral representation of U also determines U’
uniquely by Theorem 3.1. Moreover, if U is weakly compact, then U** is
weakly compact by the Gantmacher theorem and hence U! is weakly com-

pact.
Upto some stage we closely follow the proof of Pelczyniski [14]. Suppose
d-1
the result holds for d-1. For (f;) € X Co(T3), let
Ufl,--~,f4-1 : CO(Td) -Y

be given by
Ufl)"'y.fd—l(fd) = U(fh reey fd)a fd € CO(Td)

Then Uy, ;,_, is a bounded linear operator on Cy(Ty) with values in Y,
Then, by the case d=1 established above, for both the cases (A) and (B)

9




there is a unique o-additive vector measure
Tfl"")fd—l : GBO(T) q Y

such that
Uy, fd_l(fd)=/T fad¥y 5 fa € Co(Ty).
d

Fixing f4 in Co(Ty), let us define

by
de(fla"'7fd—-l) = U(fl7 "'7fd) €Y.

Clearly, Uy, is a bounded (d-1)-linear mapping. When U is weakly compact,
clearly Uy, is weakly compact. Thus, when ¢y ¢ Y, or when U is weakly

compact, the induction hypothesis implies that there is a (d-1)-multimeasure
d-1

Ty, }]( o0Bo(T;) — Y such that
(1) Us,(fise fa-1) =/ (f1y .00 fa-1)d Y,
(T :
d—1
for (i)' e X Co(T;). On the other hand,
(2)  Up (i fa) =U(fis e fa) = Upy o (fa) = /7 fadYp fuie
Jld
Thus by (1) and (2)
3) [ Gieda@¥s = [ fodty g
J(ry JTy

for all f; € C()(T,), i =1,2,...,d.

Forg € B(Ty), let us define

10




by

(4) Uyd(fl,...,fd_l)—_—/ 9,4 fur
Ta )

Since g, is a bounded Baire measurable function, U, is well defined.Moreover,
d

de fa dTﬁv-~,f.'—1,afi+ﬂf{,fi+x ----- fi-1— U(fb""fi—l’afi + ﬁfilvfi-H""afd)
= aU(fh“')fd) + ﬂU(flv"'a ;7"'7fd>

= a/ fadXy g+
Ty

+ﬁ/F fa del;-v-yfi—l:f.";fi-}-l ,,,,, fa
d

for o, € K ,fi € Co(T3), i = 1,2,...,d. Then by Theorem 3.1 it follows that

Tfh-":fi—l,‘Ifi+/3f£;fi+1,~---afd—l = anl,--'afd—l + ﬂfo,---,fi—t,ff>fi+1,m,fd—l‘

Using the above equality in (4), we conclude that Ugd is a (d-1)-linear

operator.

We claim that Ugd is bounded. In fact,

11U, ll= sup{|U (Fir oo fac0)l < AL, <1, fi € Co(T), 1 < € d =1}

< llg N, sup{lI T, p ) < VAl S 1, fi€ CulT), 1 < i < d -1},

Since Uy,,..1u-(fa) = [y, fa dX g0, DY (2),

NUs ot = Wy pa | (T).

Therefore,

WU NI Mg Il sup{iUs,.poes (F)l = NIAi], <1, Fi € CGo(Ti)}
(5)

=llg ]I, IVl < o0

11




If ¢y ¢ Y, then by induction hypothesis there exists a (d-1)-multimeasure
d-1
T-"d : )1( oBy(T;) - Y
such that

(64) Uy (oo i) = [ (s S,

for each g € BY(Ty), f; € Co(Ti),i= 1,2,...,d — 1. Moreover, its unique
bounded (d-1)-linear extension (7% satisfying property (P) is given by

) Dyl )= [ 60, )T,

for g € BYTy),i=1,2,...,d — 1. Further, by induction hypoethesis, ||U, || =
N 2 “d
16,1l = 11t T

Suppose now U is weakly compact. Let B; = {fi € Co(T3) : || f,-||7‘ <1}
Then the range U(By X...X By) is convex and is relatively weakly (%cilll[)nc-t,

in Y. Therefore, by Corollary V.3.14 of Dunford and Schwartz [11], the

norm closure of U(By X...X By) is weakly compact. Let K = closure of

I7(B, X..X By).

We claim that U, is weakly compact, whenever U is so. In fact, by (1)
y(l

it suffices to prove the result for ||gd||T <1
d

Let “'(]l”'/‘ < 1. Let (fan)py C By and let lim fy (1) = g (1), Ior codl
¢ d n t
t € Ty. Let fi € By, i =1,2,...,d-1. Then by LBCT and by (3) and (4)

12




Ugd(fla"wfd—l):/T gd de]y---afd—]
d

= lim fd,n dTﬁ ,,,,, Ja-1

n Jr,

= hln/ (fl7"'7fd—l)ded,n,
(T

n

= liglU(fh"wfd—lyfd,n) € K.

Let £ = {g, € BYTy) : ||gd||Td <1 and Ugd(Bl X..XBy;) C K}. By
the above argument, the closed unit ball of the first Baire class B'(Ty) of
bounded functions is contained in ¥. By a usual argument of transfinite
induction, and by applying LBCT as in the above, it can be shown that‘ )y
coineides with the closed unit ball of B*(Ty). Thus Ugd is a weakly compact
operator for g € BY(Ty) with ||g d”n < 1 and consequently, for arbitrary
9,€ BY(Ty).

Thus in case (B), by induction hypothesis, there is a (d-1)-multimeasure

d-1
T, X oBo(T;) — Y such that

9

(6B) Uy, fat) = [ (e fa)T,
. (T~ ¢

for each g9, € BY(Ty), f; € Cy(T}), i = 1,2,...,d-1. Moreover, its unique
bounded (d-1)-linear extension ﬁgd satisfying property (P) is given by

(gl,...,gd_l)dTg

d

(7B) ﬁgd(gl,...,gd*l) =/

(1!

for g. € BYT)), i = 1,2,...,d-1, in virtue of LBCT. Further, by induction
hypothesis, “Ugd“ = “ﬁgd“ = ”ng“(Ti)‘li_l-

In the light of (6A) and (7A), or (6B) and (7B), the (d-1)-multimeasure
T-"d is well defined for g, € B(Ty) and hereafter let us treat cases (A) and

(B) simultaneously.
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We define
Ut: Co(Th) X..X Co(Tu_) XBYTy) - Y
by putting
U"(fl, ...,fd_l,gd) = Ugd(fl,...,fd_l), forgd € BQ(Td).

~ Since Ugd is (d-1)-linear, U? is (d-1)-linear in the first (d-1) coordinates.
Moreover, by (4) it is clear that U? is separately linear on the d** coordinate

also. Therefore, U? is d-linear.

1U4]1= sup{|Uy,(fr, s -l Al , < 1, Mg ll . <1, fi € Co(To), g, € BH(Tu)}
= sup{[IT, || 9, € BT llg,|I <1}
<|IU]| < o0
d
by (5). Thus U? is bounded. Moreover, since U9| X Cy(Ti) = U, it follows
that ||U?]| = [|U]|.
We define
Ud: BYT) X..XBY(Ty) = Y

by putting

- _ -
Ulg,r-9,) = /(’Ti);i_1 (9,59, 4L = Uy (91, ga-1)-

By Theorem 2.6 and Difinition 2.7, the integral, and hence the operator
U4, is well defined. By (6A) (resp. (6B)) U? extends U?. Obviously, U is

separately linear in the first (d-1) coordinates.
Now

(8) Ud(gla"-agd_laagd"'ﬁg; =\/(‘T‘ _l(gla"-agd_l)d’ragd+[igé

)
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and

fvl/"(.(l,,---,gd_,,gd)+/3U“(gl,---,gd_1,g;)=a/ -
(9) (Tf)l

o 'Ai‘i)f_l (gl, I )d‘r'qllt,

for g, € BYT,), i = 1,2,...,d, and ¢, € BY(Ty). Let 9, =fi € Co(T;), for i =
i.2,...,d-1. Then by (6A) (resp.(6B))

(gl Y ‘(jd-—- i )dT!]d

If/""(fla -"afd—-la(x.qd + ﬂg;)': A (agd + ’Bgzi)d‘rflu-'-»fd—l :
d
co [ Gdain, 4
(T~ !
+,H ( (fls'“s fd—l)dry:i

T:)2?

=/( y (f1,...,fd_1)d(rng +HT!I'I)
Ti 1—1 d K

1oy

Thus by Theorem 3.1, (8) and (10) we have
oY, : + 8T,y = Tag 0

and consequently, by (9) it follows that U4 is separately linear on the '™

coordinate also. Thus U? is d-linear.

[1U)|= sup{ 109, 9,)] < llg ]l <1, 9, € BXT)}
= sup{[0y (1,09, Dllgl, < 1,9, € BYT), 1< i <)
= suplIE I s, <1, 0, € BT}
— sap{lU, 1 llg I, <1, 9, € BT}
<|IUll < o0

by Theorem 2.9 and by (5). Thus U? is bounded. Since U extends U* and
[174)| = ||U||, we conclude that ||U4]| = ||U|.
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d
We define T(.) : )1( oBy(T;) — Y by putting
T(A,) = TXAd (Al, ---,Ad-—l)-
Since x, € BY(T,);,
T(A;) = :/(.T')d—l(XAJ,.“,XAd_] )dTXAd = f]"'(xA1 ""’XAd) €Y

and is well defined. By (4) and (6A) (resp. (6B))

(11) /XAddel ..... f¢-1=/ s fa)d Xy
Ty (T

for f; € Co(T;), ¢ = 1,2,...,d-1. By induction hypothesis, TXAd is a (d-1)-
1

z

d-
multimeasure on )]( oBy(T;) and hence Y is separately g-additive in the first
d-1 coordinates. To show that Y is separately o-additive on the d* coordi-

d-1
nate also, let us extend (11) to (gi)‘f_1 in )l( BYT;).
n=|
t;eT;, i =1,2,.,d-1. Then by LBCT and by (11)
lim / XA,,del,n,l..,fd_l,,,=Iim/ (f1msoes fa-1,0)d Ly
JTy nJ(T,.  Tamn) ¢

‘/(T.l,.u,Td_])( 1 ’ d—l) Xa,

Thus, for the sequence of o-additive set functions 210 W SR S ol

Let (fia)22, C Co(T;) be bounded and let lim f; .(t;) = g',(t,-), for each

lim Yy, . 5., (Ag)existsin Y
n—oo ’ '

for each Aq € 0By(Ty). Since Theorem 1.4.8 of [2] is valid for ¢ -rings too and
since the uniform o-additivity is the same as uniform strong additivity on o-

rings for o-additive vector measures, it follows that there exists a o-additive

.....

and the measure T, .,  depends solely on 909, and is independent
g -

d—1
of the converging sequences {fin}aoz; , ¢ = 1,2,...,d-1. Then
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= ].inl/ XAdd’rfl,ﬂ.y--)fd—L":
Tq

= ]iIIl/ (fl,m ey fd_l,n)dTAd
(Ty .\ Ty_1)

= (9,559, )dT4
\/(ATl,--Ade—l) v d-1 ‘

by (11) and by LBCT. Thus (11) holds with g,in placeof f;, fori=1.2,...,d-
1. This shows that (11) is valid for (g‘,)‘li_1 € d):(l BY(T:), where B'(T;) is the
first Baire class of bounded functions on T;. Assuming the validity of (11) for
(g‘_)’f_"1 € d);{l BA(T;) for all ordinals 8 strictly less than a countable ordinal
v, one can show by the above argument that the equality (11) holds for all
(g‘,)‘{"] € d):(] B*(T;). Now, by transfinite induction we conclude that (11)

d-1
holds for all (¢){™" € X B*(T}).
Thus T, g oBy(Ty) — Y is well defined and is o-additive for each
d—1 d—1
(gi)',‘"l € X BY(T;). Consequently, for (4;) € X oBy(T;),

T(A)="T,, (A1,..., Ad-1)

Ag

" - /(Tv)d-l(xm""’Xﬂa~1)drxfad
12 Jort

because of the validity of (11) for (x Ai)‘f“. Therefore, YT is separately
o-additive on the d* coordinate too and thus Y is a d-multimeasure on

d
¥ (TB()(T,)

By (12) and by the definition of Ud we have
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Ud(XA”"'aXAd): (XA,?"WXAd_l)dTXAd
(T

(13) = T(Al, ceey Ad)
=/ (Xarr-rXa, )T
(Ti)é

for A; € oBy(T), + = 1,2,...,d. Fixing Ay, ..., Ag-1, and replacing x,, by a
aBy(T,) - simple function s, by the separate linearity of U4 and the definition
of the integral we deduce from (13) that

f]d(xAl,...,XAd_l,s)=/( (g Xay Y,
Ti)j

Since each 9,€ B%(T,) is the uniform limit of a sequence of 0By (Ty) - simple

functions, it then follows by LBCT that

0¢{(XAIa'-'aXAd_1agd) =/(‘T)d(XAI""’X"d—l’gd)dT'
i)

Similarly, replacing x,, , by 9,., € B (Ty-;) and keeping Xaros Xag_yr 9y

fixed, it cau be shown that

U (Xoa > s Xag_p2 94 p9y) = /(T)d(x,,l,---,xAd_z,gd_l,gd)dT
i

forg € B%(T,-,). Proceeding step by step, finally it follows that

U5 9, 19,) =/

- (9,59, 9,)dT
iN

for g € BYTy), i = 1,2,...,d.
. d
Since U )l( Co(T)) =U,
d
(14) vy = [ (ot () € Xaum)
Property (P) holds for U4 by LBCT.

By Theorem 3.1 and by (14), Y is determined uniquely by U. Consequent-
ly, the operator U4 is also determined uniquely by U. If U is a bounded
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d
d-linear extension of U to X B®(T;), satisfying property (P), then by an
argument of transfinite induction one can show that property (P) implies
U="0"

Now, let us show that U is weakly compact if and only if the range of
T is relatively weakly compact. If U is weakly compact, then let By, ..., By
and K be as in the above, where we proved the weak compactness of the
operator Ugd in case (B). If (f; )32, C Co(T;) are bounded sequences with
||f,-),,||T5_ <1, and if fin(t;) — g,(i) for each ¢; € Ti, then by LBCT

04(g1, .., ga) = lim / (fim)dT € K.
STt
By an argument of transfinite induction it then follows that
{0%g,r09,) 19, € BTN, fig |, <1,i=1,2,..,d} C K

and hence U? is weakly compact. Consequently, the range of Y, being con-

tained in K, is relatively weakly compact.

If the range of T is relatively weakly compact, then by the argument

given on p.292 of [8] we conclude that U and hence U, is weakly compact.
This completes the proof.

COROLLARY 4.2. Pelczyriski’s theorem [14] on multilinear extension (scc

d
Introduction) holds also for multilinear operators on )l( Co(T;).

Proof. If we define U™ = U®, where U¥ is as in Theorem 4.1, then U** is

the required bounded d-linear extension of U as in Pelczyriski’s theorem.

COROLLARY 4.3. Condition (i) in Pelczyriski’s theorem (in Introduction)

is the same as condition (P) given in Theorem 4.1.

19




Proof. Clearly, condition (P) of Theorem 4.1 implies condition (ii) of Pel-
czynski’s theorem, since U** = U? by Corollary 4.2. Conversely, if condition

(i1) of Pelczyniski’s theorem holds, then as shown by Dobrakov [g],
YAy s A) = U™ (X s Xa,)

d
is a separately o-additive d-multimeasure on 7l( B%(T;) and

U“(g~) = / (gl,...,gd)dT.
(To)f
Then U** satisfies property (P) by LBCT of multimeasures.

5. Concluding Remarks

The range of a o-additive Banach space valued measure defined on a o-
ring of sets is relatively weakly compact. This result is essentially due to
Bartle, Dunford and Schwartz [1]. This result implies that, for a o-additive
vector measure G(.) : dBy(T) — Y, Y a Banach space, the operator U :
BYT) — Y given by

Uf = / fdG
T

is weakly compact, where T is a locally compact Hausdorff space.

Since there are examples of non weakly compact multilinear operators
(see p. 385 of [14]) from C(S) into a Hilbert space , S a compact Hausdorff
space, the integral representation of a bounded multilinear operator U on
j‘l(Cn(ﬂ), with range in a Banach space Y not containing ¢4, does not guar-
antee the weak compactness of the operator U. Consequently, by Theorem
4.1, the range of the associated multimeasure of U is not relatively weakly

compact.

d )
Thus the integral representation of a multilinear operator U on )l{ Co(T)

d
with respect to a d-multimeasure T on )1( oB,(T;) with values in Y does not
imply that the multilinear operator U is weakly compact. This is contrary
to the situation of bounded linear opearators on Cy(T').This observation has

motivated our recent note [10].
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