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T.V. PANCHAPAGESAN

ABSTRACT

The aim of the present part is to develop the theory of £,-spaces for the Bartle-Dunford-Schwartz
integral with respect to a Banach space-valued o-additive vector measure m dfined on a §-ring
of sets and obtain results analogous to those known for such spaces in the theory of the abstract
Lebesgue and Bochner integrals. For this we adapt some of the techniques employed by Dobrakov
in the study of integration with respect to operator valued measures. Though a few of these results
are already there in the literature for p = 1 (sometimes with incorrect proofs as observed in Part I
[P1])), they are treated here differently with simpler proofs. ‘

1991 Mathematics Subject Classification. Primary: 28B05

In the sequel, Definitions, Propositions, Theorems, Remarks, etc., of Part I([P1]) such as Def-
inttion 2.3, Proposition 2.10, Theorem 3.5, etc., will be referred to without any explicit reference
to Part I. Moreover, the enumeration of sections will be continued from Part I. We use the same
notation and terminology given in Part L

5. THE SEMINORMS mj(-,T) ON £,M(m), 1< p < o0

Dobrakov introduced a seminorm m(-,T') in [Do2] to define and study exhaustively the £;-spaces
associated with an operator valued measure m which is o-additive in the strong operator topol-
ogy on a d-ring of sets and studied very briefly the corresponding L£,-seminorms, 1 < p < oo,
idicating the difficulties in developing analogous theory for the L,-spaces. Similar seminorms, for
p = 1, were introduced in [KK], [MN], [Ri], etc., for studying the space of (KL) m-integrable func-
tions when m is a o-additive vector measure. In the present section, we introduce the seminorms
my(-,T), 1 < p < oo, similar to those in [Do2], define the spaces L, M(m), Z,(m) and £,Z(m) and
study their basic properties. As in [Dol, Do2| we introduce various notions of convergence similar

to those used in the theory of the abstract Lebesgue integral and study their interrelations.

Hereafter, most often, without mentioning Theorem 4.2 we shall directly apply The-
orems 3.5 and 3.7 and Corollaries 3.8, 3.9 and 3.10 for functions m-integrable in T.
(See Remark 4.3.)

Definition 5.1. Let g : T — K or [—00, 00| be an m-measurable function. Let 1 < p < oo and
let E € o(P). Then

my(g, E) = sup{|/ sdm|% 18 € I, |s(t)] < |g(t)|P m-a.e.inE}
E

is called the L,-gauge of g on E. We define

m,(g,T) = sup my(g, E).
Eco(P)

* Supported by the C.D.C.H.T. project C-01-1079-B of the Universidad de los Andes,Mérida, Venezuela.
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2 T.V. PANCHAPAGESAN
By Proposition 2.10, my(g, E) and m,(g, T) are well defined and belong to [0, oo].

Lemma 5.2. Let g : T — K or [—00,00] be m-measurable and let 1 < p < oo. Let z* € X*
and let £ € o(P). Then:

(i) (*m)3(g, B) = sup {| [ sd(z*m)|» : s € I, |s(t)| < |g(t)/P m-ae.inE}.
(i) (z*m);(g, E) = ([ |glPdv(z*m))7 .
Proof. (i) By Definition 5.1,

(=" m)3(g, E) = sup {| | sdtam)

o

vise Zs, |s(t)] < |g@®)|P (z*m)-a.e. inE} .

Let @ = sup{]fE 3dm|zl’ : 8 € Iy, |8(t)| < |g(t)|P m-a.e. 1nE} Then clearly, o < (z*m); (g, E). To
prove the reverse inequality, let 0 < ¢ < (z*m); (g, E). Then there exist so € Z; and M € o(P) with

v(z*m)(M) = 0 such that |so(t)] < |g(t)|P for t € T\M and ¢ < | [ sod(z m)|P. If s = soxE\M>
then s € I, |s(t)| < |g(t)|P for t € E and hence |s(t)| < |g(t)}|P m-a.e. in E and ‘moreover,

c< | [psd(z m)|11’ Hence (i) holds.

(ii) Since | [ sd(z*m)| < [ |g[Pdv(z*m) for s € T, with |s(t)| < |g(t)[P (z*m)-a.e. in E, we have

1
(z*m)3(g, E) < ([ |g/Pdv(z*m))?. To prove the reverse inequality, let 0 < ¢ < (g |g|pdv(x*m))11_’.
Then by Proposition 2.10 there exists s = Y ] aixg;, (E;)] C P, E;N E; = 0 fori # j, with

|s(t)] < |g(t)|P (z*m)-a.e. in E such that ¢ < (3] Iak|v(m*m)(EﬂEk))%. Hence there exist
(Ekj)?':1 C P, pairwise disjoint, such that Uf.":l Eyx; C ENEg, k=1,2,...,r and such that

T £
¢ < Yl Y It m) (B
k=1 j=1

- /E hd(z*m)

where h = Y _ 12 * | lax[sgn ((z*m)(Ey;)) xE,,;- Then h € I; and [h(t)| < [g(t)|P (z*m)-a.e. in
E. Hence (ii) holds.

Theorem 5.3. Let g : T — K or [—o00,00| and let 1 < p < oo. If g is m-measurable and
E € o(P), then

m, (g, E)

sup ([ |g|"dv(m*m))’% = sup (e"m)3 (s, E)

lz*|<1 |lz*|<1

sup{|/Efdm|% : f€Z(m), |f| < g/’ m-ae. in E}

Consequently, | [ |f|”dm|% <my(f, E) for |f|P € Z(m) and for E € o(P). Moreover,

I/ fdm| < mi(f, E) (5.3.1)
E

for f € Z(m) and for E € o(P).
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roof. By Definition 5.1 and Lemma 5.2(i) we have
my(g,E) = sup{|/ sdm|% 1 s € T, [s(t)| < |g(t)|P m-a.e. inE}
E

1
= sup { ( sup | sd(z*m)|5> 18 € Ig, |s(t)| < |g(t)|P m-a.e. inE}
E

lz*|<1

= sup (z'm);(g, E).
lz*|<1
The other equalities hold by Lemma 5.2(ii), by the fact that Z; C Z(m), and by Corollary 3.9. The
second part is evident from the first.

Definition 5.4. Let g : T — Kor [—00,00] be m-measurable. Let E € o(P) (see Section 2,
paragraphs preceding Notation 2.7), and let 1 < p < oo. Then E is of the form E = FUN,
F € o(P), NC M € o(P) with ||m|[(M) = 0. We define my(g, E) = mj(g, F'). We also deﬁne
Jg 1glPdv(z*m) = [ |g|Pdv(z*m). Then

1
m, (g, E) = sup (/ |g|pdv(:r*m)) " (5.4.1)
lz*|<1 \JE

To verify that mj(g, E) and [, |g[Pdv(z*m) are well defined, let E = Fy UN, = F U N;
with F; € o(P), N; C M; € o(P) and |m]||(M;) = 0 for ¢ = 1,2. Let M = M; U M,. Then
lm||(M) =0 and F UM = F, UM. Hence [, sdm = [p , sdm = [, sdm = [, sdm for
s € T, and therefore, my(g, E) is well defined. Moreover, fFl |g|Pdv(z*m) = fFluM |g|Pdv(z*m) =
szuM |g|Pdv(z*m) = sz |9|Pdv(z*m) and hence [g|g[Pdv(z*m) is also well defined. Then (5.4.1)
holds by Theorem 5.3.

Remark 5.5. When P is a o-algebra S, the gauge in Definition 5.1 above is given in [KK] for
p = 1 and that too for (KL) m-integrable S-measurable functions only. Of course, there m has
values in a real IcHs. The analogue of Theorem 5.3 for p = 1 is given in Lemma I1.2.2 of [KK].
But our proof is more general and elementary than that of the said lemma in [KK] and is adapt-
able to the case of IcHs-valued vector measures defined on P (see Definition 13.1 and Theorem 13.2
of [P2]). A similar result for operator valued measures is given in Theorem 4’ of [Do2] without proof.

Theorem 5.6. Let 1 <p < oo. Let f: T — K or [—00,00] be m-measurable and let | f|P be m-
1
integrable in T'. Let 7( f 0 | fIPdm. Then my(f, E) = (|[7|[(E))? , E € o(P) and consequently,

my(f,T) = (||v[(T P < 00. Moreover, my(f,-) is continuous on o(P) (in the sense of Definition
2.1).

Proof. For z* € X* and for E € o(P), v(z*y)(E) = [g|f[Pdv(z*m) by Theorem 3.5(ii) and
Proposition 2.11. Therefore, by Theorem 5.3 and by (iii)(a) of Theorem 3.5 we have (m m,(f, E))P =

SUP|z+|<1 U($*7)(E) = ||7||(E) Consequently, (m;(f’ T)) = SUPEgcq(P) ( (f’ )) = SUPgcq(P)
YII(E) = ||¥||(T) < oo as = is an X-valued o-additive vector measure on a(’P) by Theorem 3.5(ii).

The continuity of mp(f,-) = (||')'||());7 is due to Proposition 2.3.

The converse of Theorem 5.6 is not true in general; i.e., if f : T — Kor [—00, 00| is m-measurable
with mp(f,T) < oo for some p, 1 < p < oo, then |f|” need not be m-integrable in T'. In fact, we
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have the following counter-example (see also p.31 of [KK]).

Counter-example 5.7. Let T = N and § = o-algebra of all subsets of T. Let X = cg.

Let 1 < p < oo and let f(t) = t%, t €T For F €S8, let m(E) = (a,) € ¢y, where
an = % if n € E and an, = 0 otherwise. Clearly m is og-additive on S. If ¢* € ¢§ = [,
let z* = (zn). Then |z*| = Y{°|za| < co. Now (mp(f,T))? = supz«<; [y |fIPdv(z*m) =

Supp <1 2o; nv(z*m)({n})) = sup. <1 Y57 nilzn] < 1 < co. But |f|P is not m-intergrable in
T. In fact, on the contrary we would have f{n} |fIPdm = e, for n € T, where e, = (dn;)52; and
0nj = 1if j = n and = 0 otherwise; and if y(:) = f(.) | f|Pdm, then v would be o-additive on S with
Y(T) € ¢g. But, ¥(T) = > 7°v({n}) = 37" en = (1,1,1,...) & co. This contradiction shows that
fP=\fIP ¢ Z(m).

However, when ¢y ¢ X, we have the following characterization of m-integrability of | f|P.

Theorem 5.8. Let ¢g ¢ X and let 1 < p < 0o. Then for an m-measurable function f on T
with values in K or [—o00,00], |f|P is m-integrable in T if and only if my(f,T) < oo.

Proof. In-the light of Theorem 5.6, it is enough to show that the condition is sufficient.
Let mp(f,T) < oo. Then supjg|<; fp |f[Pdv(z*m) = (mp(f,T))P < oo by Theorem 5.3. By
Proposition 2.10 there exists a sequence (sp,) C Z; such that 0 < s,  |f|P m-a.e. in T. If
Up = Sp — Sp—1, for n > 1, where s =0, then > 7°u, = |f|P m-a.e. in T. Let E € o(P). Then, for
each 2* € X*, by the Beppo-Levi theorem for positive measures we have 3 7° [ |up|dv(z*m) =
S0 [pundv(z*m) = [, |f[Pdv(z*m) < oo and consequently, by Proposition 4, §8 of [Dinl],

T lz*(fg undm)| < co. As ¢y ¢ X, by the Bessaga-Pelczyniski theorem there exists a vector
rg € X such that zg = 3 1° [ updm = lim, [ spdm. Since this holds for each E € o(P), by
Definition 4.1, |f|? is m-integrable in T'.

Following [Do2] we give the following

Definition 5.9. Let 1 < p < oo. Then we define LM(m) = {f : T - K fm-measurable
with my(f,T) < oo}; Zp(m) = {f : T — K f m-measur-
able and |f|P € Z(m)} (so that Z;(m) = Z(m) by Theorem 3.5(vii)); and £,Z(m) = {f € Z,(m) :
m;,(f, T) < oo}.

The following result is immediate from Theorems 5.6 and 5.8.

Theorem 5.10. Let 1 < p < co. Then £,Z(m) = Zpy(m) C L,M(m). If ¢¢ ¢ X, then
LyM(m) = L,Z(m) = Z,(m).

As an immediate consequence of Definition 5.4 and Theorem 5.3 we have the following theorem,
whose easy proof is omitted.

Theorem 5.11. Let g : T' — K or [—00, 00] be m-measurable and let E € O/'(\'P/). Let1 <p < o0.
Then the following assertions hold:

——

(i) my(g,-) : o(P) — [0, 00] is monotone and o-subadditive and vanishes on 0.
(ii) mp(ag, E) = |a|m;(g, E) for a € K where 0.00 = 0.

(iii) (infecr |g(®)) - (Iml|(E))? < my(g, E) < (supeeg l9(t)]) - (|[ml[(E))>.

3=
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(1 ) If h is m-measurable and if || < |g| m-a.e. in E, then my(h, E) < my(g, E).

(v) my(g, E) = m; (g, EN N(g)). (See Notation 2. 7)

(vi) m;,(g,E) =0 if and only if |m|| (E N N(g)) =0.

—~—

Theorem 5.12. Let g : T — K or [—00,00] be m-measurable, n a positive real and F € o(P).
Let 1 < p < 0co. Then:

(i) (The Tschebyscheff inequality).

Im|| ({t € E: |g(t)] > n}) < ni (m3(g, B))? .

(ii) If my(g, E) < oo, then g is finite m-a.e. in E. Consequently, if m3(g,T) < oo, then g is
finite m-a.e. in T'.

Proof.
(i) Let F ={t € E : |g(t)| > n}. Then F € o(P) and by (i) and (iii) of Theorem 5.11 we have

1

(il ) < (inglo)1) - Ol ()

and hence (i ) holds.

| =

< my(g, F) <my(g, E)

(i) Let F={t € E: |g(t)] = co}. Then F € o(P) and F C F, = {t € E : |g(t)| > n} €
J(P) n € N Now by (i), by Theorem 5.11(i) and by hypothesis, we have ||m||(F) < ||m||(F,) <
(£)P- (m3(g, E))” - 0 as n — oo and hence g is finite m-a.e. in E . Since my(g,T) = my (g, N(g)),

n

the last part of (ii) also holds.

Theorem 5.13. Let f, g be m-measurable on T with values in K and let F € <7/(73/). Let
1§p<ooandif1<p<oo,let%4—%:1. Then:

(i) mp(f +g, E) < my(f, E) + my(g, E).
(ii) my(f + ¢, T) < my(f,T) + my(g, T).
(iii) Let 1 < p < co. Then m3(fg,T) < mp(f,T)-my(g,T). Consequently, if f € L, M(m) and
g € LoM(m), then fg € L;M(m). (The last part is improved in Theorem 9.1.)

Proof. In the light of Definition 5.4, without loss of generality we shall assume that E € o(P).
Then by Theorem 5.3 we have

myi+0.8) = sup ([ 1+ opivter m))l

lz*|<1

1
<  sup (/ |f|Pdv(z* m) + sup (/ |g|”dv(m*m))p
|z*|<1 |lz*|<1 E
= mi(f, E) + m3(g, E).
Consequently,
my(f +9,7) = sup my(f+g,E)
Eco(P)
< sup my(f,E)+ sup my(g, E)
Eco(P) Eeo(P)

= m;;(fa T)+ m;;(g7T)'
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Hence (i) and (ii) hold.

(iii) By Theorem 5.3 and by Holder’s inequality we have

mi(fg,T)

sup / |fgldv(z*m)
(PYJE

|z*|<1,E€0

sup {( 1f|”dv(x*m>)"’-(/ |g|qdv(x*m))5}
|z*|<1,E€0(P) E E

< my(f,T) -my(g,T).

IN

Consequently, if f € LM (m) and g € L,M(m) then fg € LM (m).

Theorem 5.14. If 1 < p < oo, then (L,M(m), my(,T)) and (£pZ(m), my(-,T)) are semi-
nomed spaces. :

Proof. By.Theorems 5.11(ii) and 5.13(ii), (£,M(m), m;(:,T)) is a seminormed space. Let
f,9 € £,I(m) and let a be a scalar. Then |f|? € Z(m) and |g[° € Z(m). Since |f + gP <
27 max(|f|P,|gP) < 2P(|f|? + |g|P), by (iv) and (vii) of Theorem 3.5 |f + g’ € Z(m) and hence
f+ g € L,I(m) by Theorem 5.10. Clearly, |af|? € Z(m) and hence £,Z(m) is a vector space.
Then by Theorem 5.10 and by the fact that (£, M(m), m,(-,T)) is a seminormed space, it follows
that (£,Z(m, my(-,T)) is a seminormed space.

Notation 5.15. By L,M(m) and £L,Z(m), 1 < p < oo, we mean the seminormed spaces
(LpM(m), m3(-,T)) and (£,Z(m), m3(-,T)), respectively.

In [P2] we generalize Theorems 5.10 and 5.14 to IcHs-valued o-additive m on P. See Definition
13.6 and Theorem 13.7 of [P2].
Following [Dol, Do2] we give the following concepts of convergence for m-measurable functions.

Definition 5.18. Let f,(fn)nek; (fa)ac(p,>) be m-measurable on T with values in K where
(D, >) is a directed set. Then:

(i) The sequence (f,){° is said to converge in measure to f in T (resp. to be Cauchy in measure
in T') with respect to m (when there is no ambiguity of the measure in question we drop
m) if, for each n > 0, limy |[ml] ({t € T : | fa(t) — F(H)] 2 n}) = O (resp. limp,, o0 [[m]
({teT:|fn—frl 2n}) = 0). Similarly we define convergence in measure to f in E and
Cauchy in measure in E for E € o(P). Similar definitions are given for the net (fa)ac(n,>)-

(i1) The sequence (f,)$° is said to converge to f almost uniformly (resp. to be Cauchy for
almost uniform convergence) in T (with respect to m) if, given € > 0, there exists a set
E, € o(P) with ||m||(E¢) < € such that the sequence (f,) converges to f uniformly in T\ E,
(resp. is Cauchy for uniform convergence in T\ E,). Similarly we define almost uniform
convergence and Cauchy for almost uniform convergence in F € o(P).

(iii) Let 1 < p < oo. If we further assume that f, f,, n € N (resp. fo,a € (D,>)), are in
LpM(m), then the sequence (resp. the net) is said to converge to f in (mean’) (with
respect to m) if limy, 0o my(fy — f,T) = 0 (resp. limy my(fo, —f,T) = 0). It is said to be
Canchy in (mean®) if limy, 00 my(fr, — fr,T) = 0 (resp. limg g 0o my(fo — f5,T) = 0).
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efinition 5.17. Two functions f,g € £, M(m) are said to be m-equivalent or simply, equiva-
lent if f = g m-a.e. in T. In that case, we write f ~ g.

Theorem 5.18. Let 1 < p < co. Let f,g,(fn)newn and the net (fo)ae(p,>) be m-measurable
scalar functions on T. Then:

(i) ' ~' is an equivalence relation on £, M(m) and we denote L, M(m)/~ by L,M(m).
(ii) For f,g € LyM(m), f ~ g if and only if my(f —g,T) = 0.
(iii) For f € L,M(m), my(f,T) = 0 if and only if ||m||(N(f)) = 0 and hence if and only if
f=0m-ae. inT. _
(iv) If (fn) (resp. (fa)ae(p,>)) converges in measure to f and g in T, then f = g m-a.e. in T
If (fn) (resp. (fa)) converges in measure to f, then (f,) (resp. (f,)) is Cauchy in measure.
(v) Let (fa)3° C LpM(m) (resp. (faae(p,2) C Lp(m)). IF (fn) (re5p. (fu)a(p,)) converges
in (mean®) to f and g, then f = g m-a.e. in T. If (f,) (resp. (fa)) converges to f in
(meanP), then it is Cauchy in (mean?).
() Let (f2)F C LoM(m) (resp. (fa)ac(p) C Lo(m)). If (fu) (resp. (fa)ae(n,2)) converges
to f in (mean”), then it converges to f in measure in T.
(vii) If f, = f in measure in T (resp. (fn){° C L,(m) and if f, converges to f in (mean”)),
then évery subsequence of (f,) also converges to f in measure in T (resp. in (mean”)).
(viii) (Generalized Egoroff theorem). Let P be a o-ring S and let (h,){° be m-measurable
scalar functons on T and let A : T — K If h, & h m-a.e. in T, then h is m-measurable,
hn — h in measure in T and also almost uniformly in 7'

Proof. The easy verification of (i)-(iii) is left to the reader. Since ||mj|| is non negative, monotone
and subadditive, the classical proof holds here to prove (iv). For example, see the proof of Theorem
22C of [H].

(v) Since my(-,T') is subadditive by Theorem 5.13(ii), my(f — g, T) < my(f — fn,T) + mp(fn —
9,T) = 0 as n — oo (resp. <my(f — fo,T) +mp(fa —g,T) = 0 as a@ — 00). Hence the first part
holds by (ii). Similarly the second part is proved.

(vi) is immediate from the hypothesis and the Tschebyscheff inequality (see Theorem 5.12(i))
while (vii) follows from the respective definitions of convergence.

(viii) Clearly, h is m-measurable. By hypothesis there exists N € ¢(P) with ||m||(N) = 0 such
that h,(t) — h(t) for t € T\N and such that h,x7\n, hxT\N are o(P)-measurable, since h,, is
equal to a o(P)-measurable function m-a.e. in T. (See the proof of Proposition 2.10.) Then, given
n>0,let B, = {t € T\N : |ha(t) — h(t)] > n}. As h, — h pointwise in T\N, lim, E, = 0
and hence by the hypothesis that P is a o-ring S and by Proposition 2.3, lim, |m||(E,) = 0. If
E,(n) = {t € T : |ha(t) — h(t)| > n}, then E,(n) C E, UN and hence lim, |m|| (E,(n)) = 0.
Therefore, h, — h in measure in T'. Since ||m|| is continuous and o-subadditive on S, the proof of
Theorem 1 in §21 of [Be] can be adapted here to show that h, — h almost uniformly in T. Hence
(viii) holds.

As ||m|| is non negative, monotone and o-subadditive on o(P), the following theorem can be
proved by an argument similar to the numerical case (for example, see [H, pp. 92-94 ]). The proof
is left to the reader.

Theorem 5.19. Let (f,)$° be a sequence of m-measurable scalar functions on T'. If it is Cauchy
in measure in T, then there exists a subsequence (fn, )72, of (fn){° such that (fn, )3, is almost
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uniformly Cauchy in T and thus there exists an m-measurable scalar function f on T such that

limg fn, (t) = f(t) almost uniformly in T and hence f, — f in measure in T and f,, — f m-a.e.
inT.

6. COMPLETENESS OF £,M(m) AND £,Z(m),1 < p < 00 AND OF L (m)

We first give a generalized Fatou’s lemma in Theorem 6.1 and then use it to show that the semi-
normed space £, M(m) is complete for 1 < p < oo (Theorem 6.3) . Then, following Dobrakov [Do2],
we introduce the spaces £,Zs(m) and £,(m) for 1 < p < 0o and show that £,(m) is complete. By
proving that £,7(m) = £,(m), we deduce that £,7(m) is complete for 1 <p < co. When p =1
we also give an alternative proof for the completeness of £;(m); this proof is based on inequality
(56.3.1) and is similar to the proof of the corresponding part in Theorem 7 of [Do2]. The proof of
Theorem 6.3 is analogous to that of the Riesz-Fischer theorem given in [Ru] and can be adapted
to give an alternative simpler proof of Theorem 7 of [Do2]. Finally we define (L (m), || - ||oo) and
show that it is a complete seminormed space.

Theorem 6.1. Let f, fn, n € N, be m-measurable on T with values in K or in [—o00,00]. Let
1 < p < o0o. Then: L

()(The Fatou property of my(,,E)). If |fa| /' |f| m-ae. in E € o(P), then my(f,E) =
Sup, m;z(fn,E) = lim, mp(fp, E).
(ii) (Generalized Fatou’s lemma). mz',(lin}linﬂfn[,E) < lin}linfmz',(fn,E) for E € af(\’P/).

Proof. In the light of Definition 5.4, without loss of generality we shall assume that E € o(P).

(i) By hypothesis there exists M € o(P) with [[m||(M) = 0 such that |fu(t)|xg\m(t)
|f(&)Ixe\p(t) for ¢t € T and foxp\m, » € K and fxp\a are o(P)-measurable (see the proof
of Proposition 2.10). Now, by Theorem 5.3 and by MCT for positive measures we have

m}(f,E) = sup ( /E lf\?dv(w*m)%

lz*|<1

= sup sup (/ |fn|pd'u(a:*m))
erl<t n \JE

1
= swp sup ([ IfaPavtatm))’
n |zt <1 \VE
= supmy(fn, E) = li7rlnmz',(fn,E)
k13

(ii) Let g, = infy>n |fx|. Then g, / and liminf,|f,| = ligngn = supgn. Therefore, by (i) we
n
have
m;,(lirr;linf|fn|,E) = mz',(lifrlngn,E) = li7rlnm1',(gn,E) < lin}linfm;,(fn,E)
as gn = |gn| < |fal, n € K

Remark 6.2. When p = 1, the generalized Fatou’s lemma for operator valued measures is stated
without proof in Lemma 1 on p.614 of [Do4].

Theorem 6.3. Let 1 < p < oo. Then:
(i) LpM(m) is a complete seminormed space.
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11) Ifeg g X then L,Z(m) is a complete seminormed space.
Proof. (i) Let (f,)$° be Cauchy in (mean?) in £,M(m). Then we can choose a subsequence
(fn) of (fr) such that m3(fn,,, — fn,) < 3¢, k € N Let hy = f,,, k € N Let

k oo
gk =Y |his1 — hi| and g = |his1 — hl.
=1 =1

Then by Theorem 5.13(ii), mp(ge,T) < 352, my(hip1 — hi,T) < 1for k € Nand gy /ginT.
Hence by the Fatou property we have my(g,T) = sup; my(gx, T) < 1. Then by Theorem 5.12(ii), g
is finite m-a.e. in T'. By this fact and by Deﬁnition 3.1, we can choose N € ¢(P) with ||m||(N) =0
such that g is finite in T\ N and such that h;xr\n, ¢ € N are o(P)-measurable. Then the series
S0, (hit1 — hi) is absolutely convergent in T\N. Let hg = 0. Define

£(t) = { %k:o (hi+1(t) — hi(t)) = limg hi(2), iglrr i 2 ﬁ\N

Then f is finite in T', is o (P)-measurable and is m-a.e. pointwise limit of (h;)$° in T'. Let.e > 0. By
hypothesis there exists ng such that mp(f, — f;,T) < € for n,r > ng and hence my(hy — hy, T) <€
for ng,mg > ng. Let F = Jgo; N(hg) N (T\N). Then F € o(P) and N(f) C F. Now by the
generalized Fatou’s lemma we have

m;(f_h'va) = m;(lf_hklvT)
= m; (1i§n|h5 - hk|,T)

= m, (lim inf |hy — hkl,T>
£—00

= m, (lim inf |hy — th,F)
£—00
lim inf m3(hy — hy, F)
£—00
< €

IA

for ng > ng, since liminfy_,o |h¢ —hg| = 0 in T\ F. Then by the triangular inequality, f € L, M (m)
and moreover, lim; my(f — Ay, T) = 0. Consequently, my(f — fn,T) < my(f — fn,, T) + mp(fn, —
fn, T) = 0 as ng,n — oo and hence lim, m3(f, — f,T) = 0. Thus (i) holds

(i) As ¢g ¢ X, by Theorem 5.10 £,Z7(m) = L, M(m) and hence the result holds by (i).

The following corollary is immediate from the last part of the proof of Theorem 6.3(i).

Corollary 6.4. Let 1 <p < oo. If (fn){° C L, M(m) is Cauchy in (meanP) and if there exist a
scalar function f on T and a subsequence (fy,) of (fn) such that f,,(t) — f(t) m-a.e. in T, then
f is m-measurable, f € L, M(m) and my(f, — f,T) — 0 as n — oo.

Following the terminology adopted by Dobrakov [Do2], we define two more spaces as below.

Definition 6.5. Let 1 < p < co. Then we define £,Z,(m) = the closure of Z, in £, M(m) with

respect to mp(-,T); and Ly(m) = {f € LM (m) : my(f,-) is continuous on o(P)}. If we consider
equivalence classes of functions, then we shall write L, instead of L,.
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Clearly, £,T,(m) is a linear subspace of L M(m). If f,g € L,(m), then by Theorem 13(i),

my(f +g,) <my(f, ) +my(g,-) and hence f +g € L,(m). Obviously, af € £,(m) for any scalar
a. Hence £,(m) is also a linear subspace of L, M(m).

1

Notation 6.6. By £,T,(m) and Lp(m) we mean the seminormed spaces (£,Z,(m), m;,(-,T)) and
(Lp(m), my (-, T)), respectively.

Theorem 6.7. Let 1 <p < oo. If f: T — Kis m-measurable and my(f, -} is continuous on

o(P), then f € L,M(m) and hence f € L,(m). Moreover, £,7(m) = L,(m).

Proof. Let my(f,-) be continuous on o(P). By Proposition 2.10 there exists a sequence
(sp) C Zs such that 0 < s,(t) 7 |f(¢)/P m-a.e. in T. Let v,(-) = f(.) spdm,n € N Then

all() = suppaeyes (fiy sndo(@*m)) < supjeejr (fi, 1FPdo(z*m)) = (m3(,))” by Proposition
2.11 and by Theorem 5.3 and hence ||v,||,n € K are uniformly continuous on o(P). Then, by
Proposition 2.5, v,,,n € K are uniformly o-additive on o(P). Consequently, by Theorem 4.4, |f|P
is m-integrable in 7. Then by Theorem 5.6, m,(f,T) < co and hence f € £, M(m). Then by hy-
pothesis and Definition 6.5, f € L,(m). Moreover, as |f|? € Z(m), by Theorem 5.10 f € £,Z(m).
This also proves that £,(m) C £,7(m).

Convesely, let f € £,Z(m)(= I,(m)). Then |f|P is m-integrable in T' and hence by Theorem
5.6, not only f € L, M(m) but also my(f,-) is continuous on o(P). Hence f € Ly(m). Thus
L,I(m) = L,(m).

Theorem 6.8 (Analogue of the Riesz-Fischer theorem). Let 1 < p < co. Then L,(m) is
closed in L, M(m) and hence £,Z(m) (= £,(m)) is a complete seminormed space. If L,(c(P), m) =
{f € L,(m: fo(P)-measur
able}, then L£,(o(P), m) is complete. Consequently, L,(m) and L,(c(P),m) are Banach spaces
and are treated as function spaces in which two functions which are equal m-a.e. in T are identified.

Proof. Let (fn)® C Lp(m) and let lim, m3(f, — f,T) = O for some f € L M(m). Let € > 0.
Then there exists ng such that my(f, — f,T) < § for n > no. Let (Eg) N\ 0 in o(P). As
fny € Lp(m), by Definition 6.5 mp(fn,,-) is continuous on () and hence there exists kg such that
my(fny, Ex) < § for k > ko. Consequently,

my(f, Ex) < my(f — fngs Ek) + mp(fng, Ex) < mp(f — fro, T) + mp(fng, Ek) <€

for k > ko. Hence f € Ly(m) and thus £,(m) is closed in £, M(m). Now by Theorems 6.3(i) and
6.7, £,7(m) is a complete seminormed space.

Now, let (fn)° C Lp(c(P),m) be Cauchy in (mean?). As L,(c(P),m) C L,(m) and as Ly(m)
is complete, there exists f € Lp(m) such that my(f, — f,T) - 0 asn — oco. As f is m-
measurable, there exists N € o(P) with ||m[|(N) = 0 such that fxp\y is o(P)-measurable and
clearly fxr\n € Lp(0(P), m) and lim,(m);(fn — fx1\n,T) = 0. Hence Lp(0o(P), m) is complete.
Then the last part is immediate from the previous parts.

For p = 1, we give below an alternative proof similar to that in the proof of Theorem 7 of [Do2].
By Theorem 5.10, £:Z(m) = Z(m) C L;M(m). Let (f,)° C Z(m) and let f € £L;M(m) be
such that lim, m3}(f, — f,T) = 0. We shall show that f € Z(m). By the proof of Theorem 6.3(i)
there exist a subsequence (fn, )%, of (f»)$° and a function g € £L;M(m) such that f,, — ¢ m-a..
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in T as k — oo and lim, m{(f, — ¢,7) = 0. Then, by Theorem 5.18(v), f = ¢ m-a.e. inT.
Moreover, by inequality (5.3.1),

|/fnkdm—/fnldm|Sm{(fnk—fm,T)—%Oask,K—%oo
E E

for E € o(P). Thus ([ fn,dm) is Cauchy and hence converges to a vector zg (say) in X for each
E € o(P). Consequently, by Theorem 4.8, f is m-integrable in T" and hence f € Z(m).

Remark 6.9. When P is a o-algebra ¥ and X is a real Banach space, the last part of Theorem
6.8 for p = 1 follows from Theorems IV.7.1 and IV.4.1 of [KK], where the proof is indirect and
complicated. A somewhat direct proof of the completeness of £1(c(P), m) when P is a o-algebra
¥ and when m has values in a complex Frechét space is given in [FNR]. Under the o-algebra hy-
pothesis, [Ri] gives a nice proof of the last part of Theorem 6.8 for p = 1, and the Rybakov theorem
plays a vital role in his proof. In our case we cannot use his argument as the Rybakov theorem is
not available for o-additive vector measures defined on d-rings. The last part of Theorem 6.8 for
p =1 is treated in Theorem 4.7 of [MN] for the d-ring case, and his proof is based on Lemma 3.4
and Theorem 3.5 of [L]. As noted in Remark 3.12, the proofs of these results as given in [L] are
incorrect. However, we have provided a correct proof of these results in the said remark and hence
Theorem 4.7 of [MN)] is restored. The proof of the first part of Theorem 6.3 for p = 1 is similar to
that of Lemma 3.13(a) of [MN]. Now let m : P — X be o-additive where X is an IcHs. When X is
a Frechét space Theorem 6.3(i) is generalized in Theorem 14.2 of [P2]; the second part of Definition
6.5 is generalized in Definition 14.4 in [P2] for lcHs-valued m on P and for such m, Theorem 6.7
(resp. Theorem 6.8) is generalized in Theorems 14.5 and 14.7 (resp. in Theorem 14.8) of [P2].

Definition 6.10. Let m : P — X be o-additive. We define Loo(m) = {f : T — K f m-essentially
bounded inT} and || f||co = €ss sup;er|f(2)| for f € Loo(m).

Theorem 6.11. Let m : P = X be og-additive. Then (Lo (m),|| - ||c) or simply, Loo(m) is a
complete seminormed space. Consequently, Lo,(m) = L(m)/ ~ is a Banach space.

Proof. Since ||m|| is a o-subadditive submeasure on o(P), the last part of the proof of Theorem
3.11 of [Ru] holds here and hence the theorem.

Remark 6.12. Relations between the spaces £,(m), 1 < p < 0o, are studied in Section 9 below.

7. CHARACTERIZATIONS OF £,Z(m), 1 <p < oo

Let 1 <p<oo. If (fp) C Lp(m), f: T — Kand if f, = f m-a.e. in T, then we first obtain a
characterization in Theorem 7.1 for (f,) to converge to f in (mean”). Then we deduce in Theorem
7.2 the analogue of an improved version of the Vitali convergence theorem in Halmos ([H], Theorem
26C) for £,(m). From Theorems 7.1 and 7.2 we deduce a.e. convergence (mean”)-version as well
as convergence in measure (mean’)-versions of LDCT and LBCT for £,(m). Using the present
a.e. convergence (mean?)-version of LDCT we prove that an m-measurable scalar function f on T
belongs to £,Z(m) if and only if f belongs to £,Zs(m) (see Definition 6.5). In other words, by this
result and by Theorems 5.10 and 6.7 we have Z,(m) = L,Z(m) = L,Z,(m) = L,(m) for p € [1, 00)
and this is the main result of this section. As in the cases of the abstract Lebesgue and Bochner
integrals (see [DS],[H]), we also show that the class of m-integrable functions f can be defined in
terms of convergence in measure to f of a sequence (sp) C Z; with m$(sp, —s,,T) — 0 as n, k — oo.



T.V. PANCHAPAGESAN

12
This result does not hold for the general Dobrakov integral. See Remark 7.13.

To obtain the analogue of an improved version of the Vitali convergence theorem in Halmos ([H],
Theorem 26C) for £,(m) we prove the following

Theorem 7.1. Let 1 < p < oo. Let (fn)5° C L,(m) and let f : T — K Suppose (fy) converges
to f m-a.e. in T. Then my(f, — f,T) — 0 as n — oo if and only if my(fn,-), n € K are uniformly
continuous on o(P). In that case, f € L,(m) and further, when p =1,

/Efdm = lirrln/Efndm, E €o(P)

and the limit is uniform with respect to E € o(P).

Proof. Clearly f is m-measurable. If my(f, — f,T) — 0, then, given € > 0, there exists ng
such that my(f, — fe,T) < § for n,£ > no. Let Ex \, 0 in o(P). Then by Definition 6.5,
there exists ko such that my(fn, Ex) < § for n = 1,2,..,n9 and for k& > ko. Consequently,
m;;(fnaEk) < m;;(fn ”‘fnoyEk) +m;1(fnank) < m;;(fn - fnoaT) +m;;(fno,Ek) < e for n > ng and
for k > ko. Hence my(fy,-), n € N, are uniformly continuous on o(P).

Conversely, let my(fp,-), n € N be uniformly continuous on o(P). Let E; \, ) in o(P) and let
€ > 0. By hypothesis there exists ko such that m}(f,, Ex) < € for all n € Nand for k > k. Con-
sequently, by the generalized Fatou’s lemma (Theorem 6.1(ii)), my(f, E) = my(liminf| f,|, Et) <

n

lirg infmy (fn, Ex) < € for k > ko. Hence mgy(f,-) is continuous on o(P) and consequently, by
n—oo
Theorem 6.7, f € Ly(m).

By Theorems 5.10 and 6.7, |fn|P, n € K and |f|P are m-integrable in T. Now, let v,() =
1
Ji) 1falPdm for n € Nand let vo() = [, |fPdm . By Theorem 5.6, ([[7,[l()? = m3(fn, ), n € N

and (||'70||())% = my(f,-). Then by hypothesis and by the fact that f € Ly(m), ||v,]], n € N[J{0},
are uniformly continuous on o(P). Therefore, by Proposition 2.5, «,,n € N|J{0}, are uni-
formly o-additive on o(P). Then by Proposition 2.6 there exists a o-additive control measure
g o(P) — [0,00) such that ||y,||,n € NU {0}, are uniformly u-continuous. Thus, given ¢ > 0,
there exists § > 0 such that [|yq||(E) < ()P, for n € N J{0}, whenever u(E) < é. By hypoth-
esis there exists M € o(P) with ||m||(M) = 0 such that f,(t) — f(¢) for t € T\M and such
that faxma, n € K and fxg\am are o(P)-measurable (see the proof of Proposition 2.10). Let
F = U,Z{ N(fn) N (T\M). Clearly, F € o(P). Then by the Egoroff-Lusin theorem there ex-
ist a set N € g(P) N F with u(N) = 0 and a sequence (F;) C P with F;, ~* F\N such that
fn — f uniformly in each Fy. As F\N\Fj N\, 0, there exists ko such that p(F\N\F,) < §. Then

1
[Yal|(F\N\Fy,) < (5)? for n € N|J{0}. Choose ng such that ||fn — f||r,, - (||m|(Fk))? < § for

n > ng. Note that ||y,|[(MUN) = 0 for n € NJ{0} . Then by (i) and (iii) of Theorem 5.11, by (i) of
Theorem 5.13 and by Theorem 5.6 we have my (fn—f,T) < mp(fo—f, Fio) +mp(fn—f, F\N\Fi,)+

MY (f, N)+ms(f, N)+mp(f, M)+mp(fa, M) < ||fa—fll 7y, - (1] [ (Fro))5 +(7al (FAN\Fy, ))» +

T 1 L L i
(7ol [(FAN\Fo))? + ([vall(N))* + ([[7oll(N))? + ([[voll(M))? + ([[7,/|(M))> < e for n > no.
Hence lim, my(f, — f,T) = 0. Then by the triangular inequality, f € £,M(m) and conse-

quently, by Theorem 6.8, f € L,(m). The last part is immediate from inequality (5.3.1) since
L1(m) = £,Z(m) = Z(m) by Theorems 6.7 and 5.10, respectively.
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heorem 7.2 (Analogue of an improved version of the Vitali convergence theorem ilri
Halmos ([H], Theorem 26C) for L,(m)). Let 1 <p < oo and let f : T — Kbe m-measurable.
A sequence (f,){° C L,(m) converges to f in (mean?) if and only if (f,) converges to f in mea-
sure in T, f € L,M(m) and mp(fn,-),n € KN are uniformly continuous on o(P). In that case,
f € Ly(m). Moreover, for p = 1, results in the last part of Theorem 7.1 hold here verbatim.

Proof. Let lim, my(f, — f,T) = 0. Then by the triangular inequality f € £, M(m) and then
by Theorem 5.18(vi), fn, — f in measure in T. Moreover, by the proof of the necessity part of
Theorem 7.1, my(fn,),n € K are uniformly continuous on o(P).

Conversely, let f, — f in measure in T, f € £, M(m) and m3(fn,-),n € K be uniformly con-
tinuous on o(P). If possible, let my(fn, — f,T) # 0 as n — oo. Then there would exist an € > 0
and a subsequence (gn) of (f) such that my(gn, — f,T) > € for n € N On the other hand, by
Theorem 5.18(iv), by the first part of Theorem 5.18(vii) and by Theorem 5.19 there would exist
a subsequence (gn,) of (gn) such that g,, — f m-ae. in T. Then, as my(gy,,-), k € N, are
uniformly continuous on ¢(P), by Theorem 7.1 there would exist ko such that my(gn, ~ f,T) <e
for all k > ko. This is a contradiction and hence lim, my(f, — f,T) = 0.

Remark 7.9. In the light of Theorem 7.2, Theorem 26C of [H] can be improved as below.

Let ¥ be a o-ring of subsets of T and let u : ¥ — [0,00] be a positive measure. Let P = {F €
Y : u(E) < 00}. Then P is a d-ring and a E-measurable function is u-integrable in T if and only
if it is o(P)-measurable and is p|p-integrable in T since N(f) is of o-finite measure whenever f
is p-integrable in T. Consequently, by Theorem 7.2, a sequence (f,) of u-integrable scalar
functions on T converges in the mean to the integrable function f if and only if (f,)
converges in measure to f in T and (v,(-)){° are equicontinuous from above at 0 (in the
sense of p.108 of Halmos [H]), where v,(:) = f(_) | fn|de. (Note that in our terminology, vn(-)
is the same as p}(fn, ) and equiconitnuity of (v,)$° from above at 0 is the same as uniform con-
tinuity of (u$(fn,))$° on o(P) .) Clearly, this is an improved version of Theorem 26C of Halmos [H].

The following versions of LDCT and LBCT are immediate from Theorems 7.1 and 7.2.

Theorem 7.4 (a.e. convergence and convergence in measure versions of LDCT and
LBCT for £,(m)). Let 1 < p < 0o. Let f,, n € N, be m-measurable scalar functions on T' and
let g € L,(m) such that |f,(¢)|] < |g(t)| m-a.e. in T (resp. let P be a o-ring S and let M be a
finite constant such that |f,(t)| < M m-ae. in T') for all n. If f,(t) = f(t) m-a.e. in T where f is
a scalar function on T or if f is an m-measurable scalar function on T' and if f, — f in measure
in T, then f, fn, n € N, belong to L,(m) and lim, my(f, — f,T7) =0. When p =1,

lirrln/ fndm = / fdm, E € o(P) (resp.E € §)
E E
where the limit is uniform with respect to E € o(P) (resp. E € S).

Proof. As g € £,(m), my(g,-) is continuous on o(P). By hypothesis and by Theorem 5.11(i),
my(fn,-) < mp(g,-) for all n and hence my(fy,,-),n € N, are uniformly continuous on o(P). Then
LDCT holds by Theorem 7.1 (resp. by Theorem 7.2) if f, — f m-ae. in T (resp. if f, — f in
measure in T').
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Now let P be a o-ring S and let |fn(¢)] < M m-ae. in T for n € N As Ly(m) = Z,(m) by

Theorems 5.10 and 6.7, and as S is a o-ring, by the last part of Theorem 3.5(v) the constant func-
tion M € L,(m) and hence the present versions of LBCT follow from the corresponding versions
of LDCT obtained above.

1

Using Theorem 7.4 we prove the following main theorem of the present section.

Theorem 7.5 (Characterizations of £,Z(m)). Let 1 < p < oo and let f : T — Kbe
m-measurable. Then the following statements are equivalent;:
(i) f € Zp(m).
(ii) mp(f,-) is continuous on o(P) (so that f € £,(m) by Theorem 6.7).
(iii) (Simple Function Approximation). There exists a sequence (s,) C Z, such that s,, — f
m-a.e. in T and lim, my(s, — f,T) = 0.
Consequently,
L,Z(m) = I,(m) = LpT,(m) = Lp(m).
If ¢ ¢ X, then
L,M(m) = £,Z(m) = Ty(m) = L,Z,(m) = L,(m).

Proof. (i)<(ii) by Theorems 5.10 and 6.7.

(ii)=(iii) By Proposition 2.10 there exists (s,) C Z; such that s, — f m-a.e. in T and
|sn| 2 |f| m-ae. in T. As f € L,(m) by hypothesis and by Theorem 6.7, Theorem 7.4 im-
plies lim, my(f — s,,T) = 0. (For p = 1, one can use (i) and Theorem 3.7.)

(iii)=(ii) Let € > 0 and let Ex N\, @ in o(P). By hypothesis, there exists ny such that
my (s, — f,T) < § for n > ng. By Theorem 5.6, my(sn,, ) is continuous on ¢(P) and hence there
exists ko such that my(sny, Ex) < § for k > ko. Consequently, my(f, Ex) < my(f — sy, Ex) +
my(Sng; Ex) < my(f —spy, T) + mp(8ng, Ex) < € for k > ko. Hence my(f,) is continuous on o(P).

Thus (1)< (ii)< (iii).

Since I; C Ip,(m) = £,Z(m) by Theorem 5.10, £,Z;(m) C closure of L,Z(m)
in L,M(m) = closure of L,(m) in L, M(m) (by Theorem 6.7) . But by Theorem 6.8, £L,(m) is
closed in LM (m) and hence L,Z;(m) C L,(m). On the other hand, Z;(m) is dense in £,(m) by
(iii) and hence £,Zs(m) D Lp(m). Therefore, £,Z,(m) = L,(m). Consequently, by Theorems 5.10
and 6.7 we have

LpI(m) = Ip(m) = L,I,(m) = Lp(m).
If ¢g ¢ X, use the second part of Theorem 5.10 along with the previous part.

Notation 7.6. In the light of Theorem 7.5, we shall hereafter use the symbol £,(m) not
only to denote the space given in the second part of Definition 6.5 but also any-
one of the spaces £,7,(m), £L,7(m) or Z,(m). The quotient £,(m)/~ is denoted by L,(m),
and is treated as a function space in which two functions which are equal m-a.e. in T are identified.

The following theorem is immediate from Theorem 7.5.

Theorem 7.7. Z; is dense in £,(m) for 1 < p < oo.
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emark 7.8. For p = 1, Theorem 7.7 subsumes Theorem 4.5 of [MN], which is assumed valid
by Theorem 3.5 in [L]. But the proof of the said theorem in [L] is incorrect as observed in Remark
3.12, where a correct proof for the said theorem of [L] (with the vector measure having values in a
sequentially complete 1cHs) is also given. Also see Remark 6.9.

Remark 7.9. Let X be an IcHs and let m : P — X be o-additive. Definition 6.5 is generalized
to such m in Definitions 14.4 and 15.4 of [P2] where Theorems 7.1, 7.2, 7.4 and 7.5 are generalized
in Theorems 15.1, 15.2, 15.3 and 15.5, respectively, when X is quasicomplete (resp. sequentially
complete (for o(P)-measurable functions)).

Convention 7.10. Let m : P — X be o-additive. If f € L(m), then there exists M € o(P)
such that ||m|[(M) = 0 and such that [|f|lcc = sup,er\ar|f(¢)]. If we define g(t) = f(¢) for
t € T\M and g(t) =0 for t € M, then f = g m-a.e. in T and ||f{|c = sup;cr |g(t)]. Thus, for
the equivalence class f determined by f € Lo (m), there exists a bounded m-measurable function
95 € f such that sup,, |gf~(t)| = ||f|loo and hence we make the convention to define Lo,(m) =

{97 : only one representative from f for f € Loo(m)}. Thus, for f € Leo(m), ||f||co = supser | f(2)]-
Similarly, the spaces L,(m), 1 < p < oo, are treated as function spaces (see the last part of Nota-
tion 7.6).

Theorem 7.11. Let m : P — X be o-additive. Let £3(m) = {f € L,(m), f real valued} for
1 <p < oo. Then Ly(m), 1 < p < 00, are Banach lattices under the partial order f < g defined by
f(t) < g(t) m-a.e. inT.

Proof. Under the given partial order, clearly LT (m) is a vector lattice. If | f| < |g|, f,g € L% (m),
then ||f|loo = supse; | f(t)| < supyer |9(t)| = ||g]|c (see Convention 7.10). Then by Theorem 6.11,
L7 (m) is a Banach lattice.

Let 1 < p < co. Then Lj(m) is a lattice by the facts that L}(m) is a vector space and that
max(f,g) = 5(f + g+ |f — g|) and min(f,g) = 5(f + 9 —|f — g]). (see Theorem 3.5(vii)). Clearly,
f < g implies f + h < g+ h and af < ag for f,g,h € L}(m) and a > 0. Hence Lj(m) is a vector
lattice. Consequently, by Theorems 5.11(iv) and 6.8, L;,(m) is a Banach lattice.

Using the convergence in measure of a sequence of simple scalar (resp. vector) functions which
are Cauchy in mean, the abstract Lebesgue integral (resp. the Bochner integral) is defined in [H]
(resp. in [DS]). The following theorem asserts that an analogous result holds for m-integrable
functions.

Theorem 7.12. Let f : T — Kbe m-measurable and let 1 < p < co. Then f € L,(m) if and
only if there exists a sequence (sp) C Z, (resp. (fn) C Lp(m)) such that s, — f (resp. fn — f)
in measure in T and (s,) (resp. (fn)) is Cauchy in (mean?). In that case, lim, my(s, — f,T) = 0
(resp. lim, my(f, — f,T) =0). When p =1, f € £;(m), and

/ fdm = lim/ Spdm (resp. lim/ fndm), E € o(P)
E n JE n JE

the limit being uniform with respect to E € o(P).

Proof. Let f € £,(m). Then by Theorem 7.5 there exists a sequence (s,) C Z, C £,(m) such
that s, — f m-ae. in T and my(s, — f,7) = 0 as n = oo. Then by Theorem 5.18(vi), (sn)
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converges to f in measure in T'. Clearly, (s,) is Cauchy in (meanP).

Conversely, let (5,)5° C Z, (resp. (fn)5° C Lp(m)) satisfy the hypothesis. Let u, = s, for all
n or up, = fp for all n, as the case may be. By hypothesis, u, — f in measure in T and (u,) is
Cauchy in (mean”). Then by Theorem 5.19 there exist a subsequence (un, ), of (un)® and an
m-measurable scalar function g on T such that u,, - ¢ m-a.e. in T and u,, — ¢ in measure in
T. Then by (vii) and (iv) of Theorem 5.18, f = g m-a.e. in T. Consequently, by Corollary 6.4,
f € LuM(m) and my(u, — f,T) — 0 as n — co. As Ly(m) is closed in £, M(m) by Theorem 6.8,
f € Ly(m).

Now let p = 1. Given € > 0, there exists ng such that m}(u, — f,T) < € for n > ng. Then, by
inequality (5.3.1) we have

j/ updm — / fdm| <mj(u, — f,T) <e¢
for n > ng and for all E € o(P). Hence the last part also holds.

Remark 7.13. The above theorem (for p = 1) fails for the Dobrakov integral of vector functions.
See p. 530 of {Dol].

8. OTHER CONVERGENCE THEOREMS FOR £,(m), 1 < p < o

In this section we give two versions of the Vitali convergence theorem analogous to Theorems
I11.3.6 and II1.6.15 of [DS]. We also give LDCT for nets analogous to Theorem II1.3.7 of [DS].
Finally we include some results of Dobrakov [Do3,Do4] specialized to vector measures.

Notation 8.1. For f € LM(m), 1 <p < oo, my(f,T\A) = my (f, N(f)\A) for A € o(P). (See
Definition 5.4.)

For p = 1, the following lemma is essentially the Banach space version of Lemma 3.4 of [L2]
whose proof is corrected in Remark 3.12.

Lemma 8.2. Let 1 <p < oco0. If f € L,(m), then, for each € > 0, there exists A, € P such that
1
SUP|z+|<1 fT\AC |f|Pdv(z*m) < € or equivalently, my(f,T\Ae) < €*.

Proof. Let f be a o(P)-measurable function such that f = f m-a.e. in 7. Then f € Lp(m)
and [ |fPdm = [, |f|Pdm for E € o(P). Let v : o(P) — X be given by v(-) = f | f|Pdm.
As N(f) € o(P), there exists an increasing sequence (E,) C P such that N(f) = U En. By
Theorem 3.5(ii), v is an X-valued o-additive vector measure on o(P), and hence by Proposition
2.3, |7l (N(f)\En) ¢ 0 as n = oo. Thus, there exists ny such that ||| (N(f)\En) < € for
n > ng. Let Ac = E,,. Then by Definition 5.4, Notation 8.1 and Theorem 5.3, we have

1

m;’(fa T\AG) = mz.l (faN(f)\AG) = sup (/N(f)\Ac |f|Pd1)(J;*m)) =

lz=|<1

1 1

p p
swp | [ UPavierm) ) = sup ([ |fpanietm) )
lz*|<1 \/T\Ae lz*|<1 \/N(H)\Ae
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(IWIV(NAD)” < er

and hence

sup / |f|Pdv(z*m) < e.
=<1 JT\Ac

Definition 8.3. A set function A : 0(P) — [0, 00] is said to be m-continuous on o(P) (in symbols,
A < m) if, given € > 0, there exists § > 0 such that M(E) < € whenever ||m||(E) < 4§, E € o(P).

Lemma 8.4. Let 1 < p < oco. For f € £,(m), my(f,-) < m on o(P).

Proof. By Theorem 7.5 there exists a sequence (s,) C Zs such tha s, — f m-a.e. in T and such
that my(f —s,,T) — 0 asn — oco. Thus, given € > 0, there exists ng such that my(f —sn,, T) < 5.
Let s = sp, = 3.1 aixg; with (E;)] C P, and let M = ||s||7. Let Ac = |J] E;. Let E € o(P)
with ||m||(E) < (Q‘(Mgﬁj)p‘ Then by Theorem 5.11(iii) we have my(s, E) < ||s||g - (]|m||(E))zlv <
L_GH) < 5. Consequently, by Theorems 5.11(i) and 5.13(ii) we have

2(M
m;;(fvE) < m;;(f - S,E) + mz.)('S’E) < m;)(f - 3no7T) + m;,(s,E) <e
Hence my(f, ) < m.

The following theorem is an analogue of Theorem IIL.3.6 of [DS] for £,(m).

Theorem 8.5 ( Analogue of the convergence in measure version of the Vitali conver-
gence theorem of [DS] for £,(m)). Let 1 <p < oo. Let (f,){° C Lp(m) and let f: T — K be
m-measurable. Then f € £Ly(m) and lim, my(f, — f,T) = 0 if and only if the following conditions
hold:

(i) fn — f in measure in each E € P.
(ii) my(fn,-), n € K are uniformly m-continuous on o(P), in the sense that, given ¢ > 0, there
exists > 0 such that my(f,, E) < € for all n € N whenever E € ¢(P) with ||m|[(E) <.

(iii) For each € > 0, there exists Ac € P such that m3(f,,T\Ae) < € for alln € N (See Notation

8.1.)

In such case, when p = 1, [ fdm = lim, [ fodm for E € o(P) and the limit is uniform with
respect to E € o(P).

Proof. Let f € £,(m) and let lim, mp(f, — f,T) = 0. Then by Theorem 5.18(vi), f, — f in
measure in T and hence (i) holds. Let € > 0 and let fo = f. By hypothesis there exists ny such
that my(f, — fo,T) < § for n > ng. By Lemma 8.4 there exists § > 0 such that mp(f;, E) < § for
i=0,1,2,...,n9, whenever E € g(P) with ||m||(E) < §. Consequently, for such E we also have

for n > no. Hence (ii) holds. By Lemma 8.2 there exists A. € P such that mp(fn, T\A4e) < 5
fOI’ n= Oa 1727 "'1"’0' FOI' n 2 nOa m;)(fnaT\Aé) S m;;(fn - anT\Aé) + m;)(anT\Aé) S m;;(fn -
fo,T) + my(fo, T\ Ae) < ¢, by Definition 5.4 and Theorems 5.13(i) and 5.11(i). Hence (iii) holds.

Conversely, let (i), (ii) and (iii) hold and let ¢ > 0. By (iii) there exists A € P such that
my(fn, T\A¢) < g for n € N By (ii) there exists § > 0 such that mp(f,, E) < § for n € Nwhenever

E € o(P) with |[m||(E) < 6. Let 6 = — <. Let E, = {t € Ac : |falt) — F()] > Jo}.
3(llml|(A)+1)?
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By (i), fo — f in measure in A, and hence there exists ng such that ||m||(E,) < § for n > nyg.

Therefore, my(fx, E,) < g for k € N and for n > ng. Since ||fn ~ f|l4.\E, < do, by Theorem
5.11(iii) we have

1 €

s (o — £, ANE) < bol([ml|(A\En) < §
for all n € N Then by Definition 5.4 and by Theorem 5.13(i) we have
m;;(fn -£,T)< m;;(fn — f,T\Ae) + m;;(fn — [, A\E,) + m;;(fn —fiEn) <e

for n > ng and hence lim, my(f, — f,T) = 0. Then by the triangular inequality, f € £, M(m) and
as Lp(m) is closed in Lp M (m) by Theorem 6.8, f € L,(m).

The last part is due to the first, Theorems 4.2 and 5.11(i) and inequality (5.3.1).
The following theorem is an analogue of Theorem I11.6.15 od [DS] for £,(m).

Theorem 8.6 (Analogue of the a.e. convergence version of the Vitali convergence
theorem of [DS] for £,(m)). Let 1 < p < oo. Let (fn) C Lp(m) and let f : T — K Suppose
fn = f m-ae. in T. Then f € £(m) and lim, my(f, — f,T) = 0 if and only if the following
conditions are satisfied:

(a) my(fn,), n € N, are uniformly m-continuous on o(P).
(b) For each € > 0, there exists A, € P such that m3(f,,T\A¢) < € for all n.

In such case, for p = 1, [ fdm = lim, [, fodm, for E € o(P) and the limit is uniform with respect
to E € o(P).

Proof. Let f € £,(m) and let lim, my(f, — f,7) = 0. Then (a) and (b) hold by Theorem 8.5.

Conversely, let (a) and (b) hold. By hypothesis, f is m-measurable. Let ¢ > 0. By (b) there
exists A € P such that .
my(frn, T\A) < 3 (8.6.1)

for all n. Let ¥ = o(P) N A. Then ¥ is a o-algebra of subsets of A and by hypothesis f, — f
m-a.e. in A. Therefore, by Theorem 5.18(viii), f, — f in measure in A. Moreover, (a) im-
plies that mp(fn,-), n € K are uniformly m|s-continuous on ¥. Hence conditions (i) and (ii)
of Theorem 8.5 are satisfied with P and o(P) being replaced by L. Further, as ||m||(4) < oo,
condition (iii) of the said theorem also holds with A, = A. Hence by Theorem 8.5, there ex-
ists ng such that my(f, — f,A) < § for n > ng. By (8.6.1) and by the generalaized Fatou’s

lemma (Theorem 6.1(ii)), my(f,T\A4) = my(liminff,, T\A) < lin}linfm;,(fn,T\A) < % Conse-
n

quently, my(fn, — f,T) < my(fn — f, A) + my(fa, T\A) + my(f,T\A) < € for n > ng and hence

lim, my(fn, — f,T) = 0. Then by the triangular inequality, f € £L,M(m). As Ly(m) is closed

in L, M(m) by Theorem 6.8, it follows that f € £,(m). The last part is due to the first part,

Theorems 4.2 and 5.11(i) and inequality (5.3.1).

Theorem 8.7. LDCT and LBCT as given in Theorem 7.4 are deducible from Theorems 8.5 and
8.6.

Proof. For the dominating function g in LDCT, Lemmas 8.2 and 8.4 hold and hence (ii) and
(iii) of Theorem 8.5 (resp. (a) and (b) of Theorem 8.6) hold. Thus, if f,, & f in measure in T
(resp. m-a.e. in T'), then LDCT holds by Theorem 8.5 (resp. by Theorem 8.6). If P is a o-ring,
then constant functions belong to £,(m) and hence both the versions of LBCT follow from the
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corresponding versions of LDCT.

Now we define a translation invariant pseudo metric p (similar to that in Section 2, Chapter
I1I of [DS]) in the set of all m-measurable scalar functions. Then the following lemma says that
fn — f in measure in T if and only if p(fy, f) — 0. Using this lemma, we obtain an analogue of
Theorem II1.3.7 of [DS] in Theorem 8.10 below.

e —

Definition 8.8. Let M(o(P)) be the set of all o(P)-measurable (i.e. m-measurable) scalar func-

——

tionsonT. For f € M(o(P)) and ¢ > 0, creal, let {t € T : |f(t)| > ¢} = T(|f| > ¢). Let ¢ be a con-
tinuous strictly increasing real function on [0, 00) such that ¢(0) = 0, p(z +y) < @(z) +¢(y) if 0 <

z < yand p(oo) = limg,c0 ¢(x) exists as a real number. (For example, ¢ given by p(z) = I satis-

fies these conditions.) For f,g € M(c(P)), we define p(f, g) = infoso{c+e (||m|| (T(|f — g] > ¢)))}.

—

It is easy to verify that p is a translation invariant pseudo metric on M(o(P)). (See p.102 of [DS].)

Lemma 8.9. Let (fa)ae(p,>) be a net of m-measurable scalar functions on T and let*f : T'— K
be m-measurable. Then f, — f in measure in T if and only if p(f,, f) = 0 as & = oo.

Proof. Let f, — f in measure in T. Let € > 0. By the continuity of ¢ in ¢t = 0, there exists § > 0
such that 0 < p(t) < eif 0 <t < 4. As f, — f in measure in T (see Definition 5.16(i)), there exists
oy such that ||m||(T(|fo — f| > €)) <6 for @ > o so that ¢ (||/m||/(T|fa — f| > €)) < € for a > ay.
Thus p(fa, f) < e+ @ (|m|| (T(|fa — f| > €))) < 2¢ for & > ap. This shows that lim, p(fa, f) = 0.

Conversely, let lim, p(fa, f) = 0. Let € > 0 and let o (||m|| (T(|fa — f| > €)))

> d > 0. Then, for 0 < n < ¢ T(fa — fl > n DO T(fa — f| > €) and hence
o (Il (T((fa — f| > m))) > & and thus 1 + @(Im||(T(fa — f] > 1)) > 6 for 0 < 5 < e. If
n > €, then 5+ o(||m||(T(|fa — f| > 7)) > n > €. Thus p(fo, f) > min{e, 6}. If (fo) does not
converge to f in measure in T, then there would exist € > 0, § > 0 such that for each a € (D, >)
there would exist 8, € (D, >) with 8, > « such that ¢(||m||(T(|fs, — f| > €))) > 6. Then by the
above argument we would have p(fs,, f) > min{¢,d}. This is a contradiction as there exists an
ag € (D, >) such that p(fa, f) < min{e, 0} for all @ > «p. Hence the lemma holds.

Theorem 8.10 (LDCT for nets-convergence in measure version for £,(m)). Let 1 <
p < o0o. Let (fa)ae(D,z) be a net of m-measurable scalar functions on T and let f : T — Kbe
m-measurable. Let g € £L,(m). If |f,(¢)| < |¢(t)| m-a.e. in T for each ¢, then f, — f in measure
in T if and only if f € £,(m) and lim,e(p,>) mp(fa — f,T) = 0. In such case, for p = 1, we have
f € L1(m) and

/Efdm = lién/E fadm, E € o(P)

where the limit is uniform with respect to E € o(P).

Proof. First let us consider the case of a sequence (f,) satisfying |fn(¢)| < |g(¢)| m-a.e. in
T, where g € Lp(m). If f, — f in measure in T, then by Theorem 7.4 or 8.7, f € L,(m) and
lim, my(f, — f,T) = 0. Conversely, if lim, my(fn, — f,T) = 0, then by Theorem 5.18(vi), fn — f
in measure in 7. Hence the first part of the theorem holds for sequences.

Now let us pass on to the case of nets. Let (fa)ae(D,z) satisfy the hypothesis of domination and
let fo = f in measure in T. Then my(fqa,T) < my(g,T) for all @ and hence (fa)ag(p,>) C Lp(m)
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by Theorem 3.5(vii). If my(fo — f,T) / 0, then there would exist an € > 0 such that for each

a € (D, >) there would exist 8, > a in (D, >) such that mp(fg, — f,T) > €. As fo — f in measure
in T, (fg,) also converges to f in measure in T. Then by Lemma 8.9, for each n € N there exists
f8a, With p(fs, ,f) < % and hence p(fg, ,f) — 0 as n — oo. Therefore, again by Lemma 8.9,
fa,, — f in measure in T and consequently, by the previous case of sequences m;,( [, =, T) =0,
which is a contradiction. Hence

limmp(fo - £,T) = 0. (8.10.1)

As (fo) C Lp(m), by (8.10.1) and by the triangular inequality we have f € L, M(m). As £,(m)
is closed in L, M(m) by Theorem 6.8, it follows from (8.10.1) that f € Lp(m). Thus the necessity
part of the theorem holds. ‘

Conversely, if f € L,(m) and if my(fo — f, T) — 0 as a@ — oo, then by Theorem 5.18(vi) fo, — f
in measure in T as a — oc.

Let p = 1. Then f € £;(m) and given € > 0, there exists o such that m}(f, — f,T) < €
for @ > ag. Then, by inequality (5.3.1) and by Theorems 4.2 and 5.11(i), we have | [, fdm —
fE fadm| <m{(f — fo, E) < mij(f — fo,T) < € for all @ > ap and for all E € o(P). Hence the
last part also holds.

Corollary 8.11 (LBCT for nets-convergence in measure version for £,(m)) . Let
1 <p<oo. Let P be ao-ring S and let 0 < M < co. Let (fa)ae(p,>) be a net of m-measurable
functions on T with values in Kand let f : T — K be m-measurable. If |f,(t)| < M m-a.e. in T
for each a, then fo — f in measure in T if and only if f € £,(m) and lim, my(fo — f,T) = 0. In
such case, for p =1, we have f € £;(m) and

/fdm:lim/ fodm, E€8
E @ JE

where the limit is uniform with respect to £ € §.

Proof. As P is a o-ring S, by the last part of Theorem 3.5(v) constant functions are in Z,(m)
(=L,(m) by Theorems 5.10 and 6.7) and hence the result is immediate from Theorem 8.10.

Remark 8.12. Theorems I11.3.6 and I11.3.7 of [DS] hold for any complex valued or extended real
valued finitely additive set function u defined on a o-algebra of sets £, even though the spaces
Lp(p), 1 <p < oo, are not complete. But, our proofs of the analogues of these theorems for m are
based on the facts that £,(m) is closed in £, M (m) and that m is o-additive. When X is an 1cHs
and m : P - X is o-additive, Theorems 8.5, 8.6, 8.7 and 8.10 and Corollary 8.11 are generalized
in Theorems 15.12 of [P2] for quasicomplete X (resp. sequential complete X (for o(P)-measurable
scalar functions)).

If ¢g ¢ X, then the hypothesis that P is a o-ring in LBCT can be weakened as follows.

Theorem 8.13 (LBCT). Let m : P — X be o-additive and let |m|[(T) < oo. If ¢p ¢ X, then
the versions of LBCT in Theorem 7.4 and Corollary 8.11 hold.

Proof. By hypothesis and by Theorems 4.2, 5.11(iii) and 5.8, constant functions are m-integrable
in T and hence the results hold. (See the proofs of Theorem 7.4 and Corollary 8.11).
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he following result is an analogue of Theorem 1 of [Do4] for £,(m), 1 < p < oo.

Theorem 8.14 (Extended Vitali convergence theorem). Let 1 < p < 0o and let (f,){° C
Lp(m). Suppose f, — f m-a.e. in T where f is a scalar function on T, or suppose there exists
an m-measurable scalar function f on T such that f, — f in measure in 7. Then the following
statements are equivalent:

(i) my(fn~ f,T) > 0as n — oo.
(ii) f € £,(m) and my(fn, E) — my(f, E) as n — oo, for each E € o(P).
(iii) mp(fn,-), n € K are uniformly continuous on o(P).

If anyone of the above statements holds for p = 1, then
lim/ fndm = / fdm, E € o(P)
n JE E

and the limit is uniform with respect to E € o(P).

Proof.(i)=(ii) Let lim, my(f, — f,7) = 0. Then by Theorem 5.13(ii), f € £, M(m) and conse-
quently, by Theorem 6.8, f € L,(m). Moreover, by Theorems 5.13(i) and 5.11(i) we have

|y (fn, B) — mp(f, )| < mp(fn — f,E) < my(fu — f,T) > Oasn — oo

for each E € o(P).

(if)=(iil) Let Ex \, 0 in o(P) and let € > 0. As f € L,(m), by Definition 6.5 there exists
ko such that my(f, Ex) < § for k& > ko. By hypothesis, there exists ng such that {mp(fn, Ex,) —
m;(f, Ex,)| < § for n > ng. Hence by Theorem 5.13(i), my(fn, Ek,) < € forn > ng. As f, € Lp(m)

for n = 1,2, ...,ng, there exists k; > ko such that my(f,, Ex) <€ forn =1,2,...,ng and for k > k.
Then by Theorem 5.11(i), (iii) holds.

(iii}=(i) by Theorem 7.1 if f, — f m-a.e in T' and by Theorem 7.2 if f, — f in measure in T
The last part is immediate from (i), inequality (5.3.1) and Theorem 5.11(i).
The following result is an analogue of Theorem 2 of [Do4] for £,(m), 1 <p < oc.

Theorem 8.15 (Monotone convergence theorem for £,(m)). Let ¢ ¢ X andlet 1 <p <
oo. Let fn, n € N be m-measurable scalar functions on T and let f : T — K Suppose f, — f
m-a.e. in T and |f,| /' |f| m-a.e. in T. Then the following statements are equivalent:

(i) sup, m3(fa, T) < o0.

(i) £ € Ly(m).
If (i) or (ii) holds, then f, fo, n € K belong to £,(m) and lim, my(f, — f,T) = 0. In such case,
forp=1,

lim /E fadm = /E fdm, E € o(P)

and the limit is uniform with respect to E € o(P).

Proof. By hypothesis and by Theorem 6.1(i),
supmy(fn, T) = my(f,T). (8.15.1)
n
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Then (i)=>(ii) by (8.15.1) and by Theorem 5.8; (ii)=>(i) by Theorem 5.8 and (8.15.1). If (i) or
(ii) holds, then then (ii) holds and hence the last part holds by Theorem 7.4.

The hypothesis that ¢y ¢ X in the above theorem cannot be omitted as shown in the following
counter-example.

Counter-example 8.16. Let T, S, X, m and f be as in Counter-example 5.7. Let f, = fx{i<n}
for n € N Then f,(t) = |fa(t)| / |f(t)| = f(t) for t € T. As shown in the discussion of the said
counter-example, my(f,T) < oo and by Theorem 6.1(i), sup, my(fn,T) = my(f,T). But, by
Counter-example 5.7, f & L,(m) = Z,(m) for 1 < p < oo.

The following result is an analogue of Theorem 6 of [Do3] for L,(m), 1 <p < oco.

Theorem 8.17. Let 1 < p < co. Suppose my,, : P — X is o-additive for n € N Let (fx)5>, be
m,,-measurable scalar functions for n € N let f be a scalar function on 7' and let limy, fx(¢) = fo(t)
for t € T\M, where M € o(P) with sup, |m,||/(M) = 0. Suppose sup,, ||m,||(E) < oo for each
E € P. Then: ‘

(i) If (m,;)z',(fk, -), k, n € N, are uniformly continuous on ¢(P), then
lim sup(mg)y(fx — fo,T) = 0. (8.17.1)
k—o00 g
When p =1,
lim/ frdm, =/ fodm,,, E € o(P)
kE JE E

and the limit is uniform with respect to n € N and E € o(P).

(i) (Extended LDCT for L,(m)). Let g € (,—; £p(m,) be such that m3(g,-),n € K are
unfiformly continuous on o(P). If, for each n € K |fi(t)| < |g(t)] mp-a.e. in T for all
k € KN then the conclusions of (i) hold.

Proof. (i) In the light of Definition 3.1, without loss of generality we shall assume that the functions
(fx){° are o(P)-measurable. Then by hypothesis and by Theorems 6.7 and 7.1, (fi)32, C Lp(my)
for each n € N Let v, x(-) = f(.) | fx|Pdm,, for K € NU{0}. Then by Theorem 5.6 and by hypothesis,

[Ynkll(-) = ((mR)3(fx, )P, k € NU{0} (8.17.2)

are uniformly continuous on o(P) for each n € Nand hence, in particular, by Proposition 2.5,
(Yn k)5 are uniformly o-additive on o(P) for each n € N Then, for each n € N by Proposition
2.6 there exists a control measure pip, : 0(P) — [0,00) for (Y, 1)72g. Let Kn = supgeq(p) in(E)-
Let

=1 ( pn(E)
_ n
p(E) = n§:1 on (1 n F.’n) for E € o(P).
Then p : 0(P) — [0,00) is o-additive, and p(N) = 0 implies

sup |y, ill(N) =0
neN ke NU{0}

so that, by (8.17.2), (my,);(fx, N) =0 (8.17.3) for all n € N and for all k € NU {0}.

Let F = J;2{ N(fx) N (T\M). Then F € o(P). By hypothesis, fixr\m — foxr\m pointwise
in T. Then by the Egoroff-Lusin theorem there exist N € o(P) N F with u(N) = 0 and a sequence
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- 1<p<x
(Fy)%° C P with F; /' F\N such that fi — fo uniformly in each Fj.

Let € > 0. Since F\N\F; \, 0, by hypothesis there exists £y such that
. €
sup  (my),(fx, F\N\F) < 3
ne K ke NU{0}
for £ > £y. By hypothesis, there exists a finite constant K such that sup, ||m,||(Fy,) < K. As
1
fx = fo uniformly in Fy,, there exists ko such that ||fx — foll Fy, -K? < £ for all k > ko. Then, by
Theorems 5.11 and 5.13 and by (8.17.3), we have
(my) 5 (f — fo,T)
= (mp)p(fk — fo, F) = (mn), (fi — fo, F\N)

< (mn)p(fi = fo, Feo) + (mn),(fk — fo, FAN\Fy,)
< |lfx = follr, - (Ilmal[(Fe))7 + (myp)p (fe, FAN\Fi,) + (mn), (fo, FAN\Fy,)
< €

for k£ > ko and for all n € N. Hence (8.17.1) holds. The last part of (i) is due to (8.17.1) and
inequality (5.3.1).

(ii) is immediate from (i).

9. RELATIONS BETWEEN THE SPACES L,(m)

In this section we obtain results analogous to those in Section 5, §12 of [Din] for the spaces
Lp(m). The following theorem palys a key role in this section.

Theorem 9.1 (Holder’s inequality). Let m — X be o-additive. Let 1 < p < oo and let
;7 + % =1. If f € L,(m) and g € L,(m), then fg € Li(m) and

mi(fg,T) < my(f,T) - my(g,T). (9.1.1)

Proof. By Proposition 2.6 there exist (s,)$°, (wn)$° C Zs such that s, — f and |s,| 7 |f| m-a.e. in
T and w, — g and |wy| 7 |g| m-a.e. in T. Then by LDCT (Theorem 7.4), lim, mj(f — s,,T) =0
and lim, mj(g—wy,T) = 0. Hence, given € > 0, there exists ng such that my(s, —s,,T)-mg(g,T) <
5 and my(wn, — wr, T) - my(f,T) < § for n,r > ng. Let E € o(P). Then by Theorems 5.3 and
5.13(iii) we have

|/ Spwndm — /srwrdm|

< sup / |s$n(wn — wy)|dv(z*m) + sup / |wr(8n — 8r)|dv(z*m)
lz*|<1 lz*|<1

< mi(sp(wn —wyp), T) + mi(wr(sp — sr), T

< my(sn, T) - my(w, — wy, T) + my(w,, T) - mp(sn — 3, T)

< m;)(f’T)m;(wn_wTaT)+m (g’T) ' p(S’n—S’raT)

A

€

for n,r > ng and this holds for all E € o(P). Since (spwp){° C I, and since sp,w, — fg m-a.e. in T
such that lim, [ spwpdm = zp(say) € X for E € o(P), by Definition 4.1 fg € £1(m). Inequality
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(9.1.1) holds by Theorems 5.10 and 5.13(iii).

Theorem 9.2. Let m: P — X be g-additive. Then:
(i) f1<r<p<s<oo,then L(m) () Ls(m) C Lp(m).
(ii) If f : T — Kis m-measurable, then the set Zy = {p: 1 <p < oo, f € Lp(m)} is either void
or an interval, where singletons are considered as intervals.
(iii) For f in (ii) with Z; # @, the function p — logmy(f,T) is convex on Zy and the function
p — my(f,T) is continuous on IntZy;.

Proof. The proof of Proposition 21, §12 of [Din] holds here in virtue of Theorems 3.5(vi), 4.2,
5.3 and 9.1. Details are left to the reader.

——

Theorem 9.3. Let m : P — X be g-additive and let A € o(P) such that x4 es m-integrable in
T. Then the set Zs(A) = {p: 1 < p < o0, fxa € Lp(m)} is either void or an interval containing 1
(Zs(A) = {1} is permitted) and the function p — my(fxa,T) - (||m||(A))_117 is incresing in Zs(A),
where mg,(fx4,T) = || fxalloo- :

Proof. In view of (vi) and (vii) (Domination principle) of Theorem 3.5, and Theorems 4.2, 5.3
and 9.1, the proof of Proposition 22, §12 of [Din] holds here verbatim and the details are left to the
reader.

Corollary 9.4. Let m: § — X be og-additive, where § is a o-ring of subsets of T'. Then:
(i) f1 <r < s < oo, then L4(m) C £,(m) and the topology of Ls(m) is finer than that of
Lr(m).
(ii) If f : T — Kis m-measurable, then the set Ty = {p: 1 < p < o0, f € L,(m)} is either void
or an interval containing 1 (Zy = {1} is permitted).
1
(iii) If Zy # @, then the function p = my(f,T) - (||m|[(N(f)) * is an increasing function on Z;.
Proof. By hypothesis on S and by the last part of Theorem 3.5(v), Loo(m) C L,(m) for 1 <
p<oo. Let s>randlet f€ L(m). HE={teT:|f(t))>1}and F={te€ N(f):|f(t) <1},

then E and F belong to o(P), |fxe|” < |fxel® < |f|° € £Li(m) and fxp|" < xF € £1(m). Hence
by Theorems 4.2 and 3.5(vii) (Domination principle), fxg and fxr belong to £,.(m) and hence
f € L;(m). Therfore, the first part of (i) holds. The second part of (i) holds by Theorem 9.3, as
|Im||(N(f)) < oo.

(ii) is due to Theorem 9.2(ii) and (i) of the present corollary.
(iii) is immediate if we take A = N(f) in Theorem 9.3.

Remark 9.5. Theorems 9.2 and 9.3 and Corollary 9.4 are generalized to an lcHs-valued m in
Theorem 15.13 of [P2].
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