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THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL
[TI. INTEGRATION WITH RESPECT TO LcHs-VALUED
MEASURES*

T.V. PANCHAPAGESAN

ABSTRACT

Let X be an IcHs and m : P — X be o-additive. For f : T — K the concept of m-measurability
is defined in such a way as to coincide with that in Definition 2.8 when X is a normed space. For
m-measurable functions on T, the concepts of (KL) m-integrability and (BDS) m-inegrability are
generalized and shown to coincide when X is quasicomplete. The results and Definitions in Part II
are generalized here when X is quasicomplte. Moreover, when X is sequentially complete and f is
o(P)-measurable, the above mentioned results are further generalized. A section is devoted to the
study of the separability of £p-spcaes for 1 < p < co when X is quasicomplete (resp. sequentially
complete).

1991 Mathematics Subject Classification. Primary: 28B05

In the sequel, Definitions, Propositions, Theorems, Remarks, etc., of Parts I ([P3]) and II ([P4])
such as Definition 2.8, Propositions 2.10, Theorem 6.3, etc., will be referred to without any ezxplcit
reference to Part I or II. Moreover, the enumeration of sections will be continued from Part II. We
adopt the same notation and terminology in Parts I and II.

10. ADDITIONAL NOTATION, TERMINOLOGY AND BASIC RESULTS

In this part (Part III), X denotes an IcHs with topology 7 and X denotes its completion with the
IcHs topology 7. I is the family of continuous seminorms on X so that I' generates the topology 7
on X. X* denotes the tolpological dual of X.

For g € T, let I, : X —» X, = X/q~!(0) be the canonical quotient map. If we define
|z + ¢71(0)|; = q(z), z € X, then |- |; ia a well defined norm on X, and the Banach space

completion of X, with respect to | - | is denoted by X,.

In the sequel, m : P — X, P a d-ring of subsets of T, is o-additive. For ¢ € I, let mg, : P —
X4 C X4 be defined by mg(A) = II;om(A), A € P. Then clearly mg is o-additive on P and ||m,|
as well as ||m||; denote the semivariation of my on o(P); v(my) is the variation of m, on o(P).
Note that for defining ||m||, and v(mg) it suffices that m is just additive on P.

e

Definition 10.1. Let g € T be fixed. o(P), is the generalized Lebesgue-completion of o(P) with
respect to ||ml||q so that o(P)y = {A = BJUN, : By € 0(P), Ny C M, € o(P) with ||m]|,(M,) = 0}.

e

Then o(P) C o(P)q and o(P), is a o-ring. We define ||m||q(A) = ||m||4(By) if A, By are as in the

above and clearly ||m||, is well defined, extends ||m||, to o(P)4 and is a o-subadditive submeasure

e

on o(P),. We shall use the symbol ||m||, to denote ||ml||, also. Sets N € o(P), with ||m||¢(N) =0

* Supported by the C.D.C.H.T. project C-01-1079-05-B of the Universidad de los Andes, Mérida, Venezuela.
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2
are called mg-null. (See Section 2).
By Proposition 2.2 we have the following

Proposition 10.2. Let ¢ € I'. Then ||m||, is a continuous submeasure on P. If P is a o-ring
S, then ||m||,(T) < oo.

Definition 10.3. Let a( ) {A=BUN:B¢€ogP),NCMec oP)with|m||,(M) =

Ofor allg € I'}. Then a(P) is called the generalized Lebesgue-completion of o(P) with respect to
m. A set N in T is said to be m-null if ||m||4(N) = 0 for all g € T.

— e

Clearly, o(P) C 0(P) C o(P)q for g € T' and a/(\/'P) is a o-ring.

Definition 10.4. Let ¢ € I'. A property P is said to be true m-a.e. (resp. mg-a.e.) in T if
there exists an m-null (resp. mg-null) set N € o(P) such that P holds for all ¢t € T\N.

Remark 10.5. All the definitions and results in the sequel hold good if I' is replaced by any
subfamily of seminorms which generates the toplogy 7 on X.

Definition 10.6. A function f : T — Kor [—00,00]| is said to be m-measurable if, for each

g € T, f is mgmeasurable (i.e., o(P),-measurable). In that case, there exists N, € o(P) with
||m|[4(Ng) = 0 such that fxp\n, is o(P)-measurable. (See Proposition 2.10.)

Definition 10.7. An m-measurable function f : T — Kor [—00, 0] is said to be m-essentially
bounded in T if there exists an m-null set N € o(P) such that f is bounded in T\N. Then we
define ess sup;cp|f(t)] = inf{a > 0 : |f(¢)| < afort € T\Ny, Ny € 0(P), Ny m-null}.

Since ||ml||4, ¢ € T, are o-subadditive on o(P), it follows that there exists an m-null set N € o(P)
such that

ess supeerl (0] = sup 17(0). (10.7.1)

Notation 10.8. IA-)/ denotes the family of all 0/(737 simple functions on T for ¢ € T'. However,
as in Notation 2.9, Z; is the family of all P-simple funtions.

The proof of Proposition 2.10 can be adapted to prove the following

Proposition 10.9. Let f : T — Kor [—00,00]. For g € I, f is m,-measurable if and only if there
exists a sequence (s (q))n e IT-)/ (resp. (s (q)) C Z,) such that O f and |s(q)| | f| point-

wise in T (resp. s, — f and |s,| 7 |f| pointwise in T\ N, where N, € o(P) with ||m||4(Ny) = 0-so
that fxr\n, is o(P)-measurable. ). f is o(P)-measurable if and only if there exists a sequence
(sn)$° C I, such that s, — f and |sp| 7 |f| pointwise in T'.

Notation 10.10. £ denotes the family of equicontinuous subsets of X* and for each FE € €&,
qe(z) = supgcp|z*(z), s € X. Te={qg : E € £}.

By Proposition 7, §4, Ch. 3 of [Ho|, we have the following



Proposition 10.11. I'c C I' and I'¢ generates the topology 7 on X.
Proposition 10.12. Let n: P — X be additive and let E € £. Then:

(i) For z* € E, g+ : Xq, — K given by ¥z (z+¢5'(0)) = z*(z), = € X, is well defined, linear

and continuous. Thus ¥« (Il (z)) = z*(z) for z* € E.

(ii) {¥;- : z* € E} is a norm determining subset of the closed unit ball of (X, )*.
(ii) |Tlgg 0 71(A) = Sup,- s v(a"n)(A), 4 € a(P).

(iv) If E = {z"}, z* € X", then [|Ilg, o n[|[(4) = v(z*n)(4) = |lz*n]|(4), A € o(P).

Proof. (i) Clearly, ¥+ is well defined and linear for z* € E. Moreover, |¥,+(z + g5'(0))] =
|z*(z)| < gr(z), ¢ € X and hence ¥y € (X,,)* with
Upe| < 1. (10.12.1)

( )(ii) |$+QEI(O)|¢IE = qg(z) = supgcg |2* ()| = supgecp |[Yer (a:+q;71(0))| and hence by (10.12.1),
1) holds.

(iii) Note that the proof of Proposition I.1.11 of [DU] holds for any additive set function 4 on
P with values in a normed space Y and for any norm determining subset of the closed unit ball
of Y*. Moreover, by replacing 7 on p.5 of [DU] by = = {(4:)] C P, Ain A4, =0, U] A; C A} for
A € o(P), continuing with the proof of I.1.11 and using (i) and (ii) we have

|ITgg 0 nl|(A) = sup v(¥e- (T, 0 7))(A) = sup v(z*n)(4), A €a(P).
T*EE *€EE

(iv) This is immediate from (iii) and the fact that ||u||(4) = v(u)(A4), A € o(P) for a scalar
valued additive set functiuon p on P.

Notation 10.13. For g € I, U, denotes the set {z € X : q(z) < 1} and U is the polar of Uj,.

Proposition 10.14. For q € I' the following hold:

(i) q(z) = SUPy+ 10 |z*(z)], z € X.
(ii) If n : P — X is additive, then the following hold:
(a) For z* € U?, Wg- : Xg — K given by Uy+(z + ¢71(0)) = z*(), z € X, is well defined,
linear and continuous. Thus (¥y- o II;)(z) = z*(z), z* € U}.
(b) {¥y+ : z* € U7} is a norm determining subset of the closed unit ball of (Xg)*.
(©) 1Ty 0 7lI(A) = Supy-cg o(*n)(A), A € 7(P).

Proof. (i) If g(z) = 0, then g(nz) = 0 for n € Nso that nz € U,;. Then, for z* € U7, we have
|z*(nz)| = n|z*(z)| < 1 so that |z*(z)| < I for all n. Hence SUP+ ep |z*(z)| = 0. Hence (i) holds.

If q(z) # 0, then ﬂ% € Uy and hence sup.¢p, |z*(z)| < q(x). We claim that SUPg+cure |z*(z)| =
q(z). Otherwise, a = SUPg- crre |z*(z)| < q(z). Then q(£) > 1 and hence £ ¢ U,. As U, is 7-closed,
it is weakly closed. Moreover, U, is absolutely convex. Hence by the bipolar theorem (see Theorem
1, §3, Ch. 3 of [Ho]), Uy, = Ug°. Consequently, there exists z* € Ug such that |z*($)| > 1 and
hence |z*(z)| > @, a contradiction. Hence (i) holds.

(ii) By Proposition 6, §4, Ch. 3 of [Ho], £ = Ug € & and hence, by (i), ¢ = gg. Then (ii) holds
by Proposition 10.12.
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Notation and Convention 10.15. The IcHs completion (X, 7) of the IcHs (X, 7) is unique upto

a toplogical isomorphism, X is 7 dense in X and 7|x = 7. Each ¢ € T has a unique continuous
extension § to X and § is thus a 7-continuous seminorm on X. Moreover, {§ : q € I'} generates the
topology 7 on X. By an abuse of notation, we dentoe by g itself to dentote its continuous extension
to X and by an abuse of language we also say that T' generates the topology of X. See Theorem 1,
§9, Ch. 2 of [Ho] and pp. 134-135 of [Ho].

Notation 10.16. Let I and T'¢ be directed by the partial order q; < ¢ if g1(z) < go(z) forz € X
and qg, < qg, if E; C E», for q1,q2 €' and Ey, Es € €. For q1 < qo, Ag,q, : Xg, — X, defined by
Aggr(z + g5 1(0)) = = + ¢ '(0) is a continuous onto linear mapping. Similarly, AqE ge, 18 defined
if E1 C E; (so that gr, < qg,). Then I, = Aqig.11,, (resp., Hgp, = Agp qp, 11 ) Let Y = X,
the completion of X. Let I' = {G: ¢ €T} asin 10.15. Forg e I', I : Y — ¥; and II3|x =1l so
that X, = ITz(X) C X,. As X is dense in Y, it follows that X, C TI;(Y) = Y; C X, and hence the

completion of II5(Y’) is equal to ?q = )?; for g € I'. If q1,q2 € T with q; < g9, then clearly, 1 < ¢
and hence by 5.4, Ch. II of [Schal, Y is topologically isomorphic to the projective limit lim Ay Ys,-

If % is the continuous extension of A4, 4, to }7;; (= X’; ) with values in qu, then again by 5.4,
Ch. II of [Scha], Y is topologically isomorphic to hmAqqu,Yq2 = hmAqqu2 Thus each y € Y

is written as y = l‘inmq with 27 = Il5(y) € Y;, ¢ € T and is also written as y = l(iinzg, ge’l

with z; € 5(; (without mentioning the partial order in I' and the transformations Ag, 4, and %).
Similar description holds in terms of (g : E € £). For details, see pp.53-54 of [Scha].

11. (KL) m-INTEGRABILITY (m LcHs-VALUED)

Let X be an IcHs and m : P — X be o-additive. The concept of m-measurable functions and
(KL) m-integrable functions given in Sections 2 and 3 are suitabley generalized here. Theorem 11.4
below plays a key role in the subsequent theory of (KL) m-integrability. While (i)-(iv) and (viii) of
Theorem 3.5 are generalized to an arbitrary lcHs-valued o-additive measure m on P, the remain-
ing parts of Theorem 3.5 and Theorem 3.7 and Corollaries 3.8 and 3.9 are generalized when X is
quasicomplete. Finally, the above mentioned results are generalized to o(P)-measurable functions
in Remark 11.15 when X is sequentially complete.

Let X be an IcHs and m : ¢(P) — X be g-additive. If z* € X*, then g, given by g,«(z) =
|z*(z)|, z € X belongs to I and by Proposition 10.12(iv), ||mg,.||(4) = v(z*m)(A) for A € o(P).
Using this observation, we give the following

Definition 11.1. Let X be an IcHs and m : P — X be c-additive. Let f : T — Kor
[-00,00] be m-measurble. Then, for each z* € X*, by Definition 10.3 there exists Ny« € o(P)
with v(z*m)(Nz+) = 0 such that fx7\n,. is 0(P)-measurable. We say that f is 2*m-integrable if
fXT\n~,. is z¥m-integrable and in that case, we define

/ fd(z*m) = / fxm\n,. d(z"m)
A A

/ fd(z*m) = / fd(z*m).
T N(f)\N,»

for A € o(P) and



(Note that N(f)\N;« = N(fxr\n,.) € o(P).)
It is easy to check that the above integrals are well defined.

The following definition generalizes the second part of Definition 3.1 to IcHs-valued o-additive
m on P.

Definition 11.2. Let X be an lcHs and m : P —+ X be o-additive. Let f : T — Kor [—00, 0]
be m-measurable. Then f is said to be (KL) m-integrable in T if it is z*m-integrable for each
z* € X* and if, for each A € o(P) U {T}, there exists a vector 4 € X such that

o) = [ fdla'm)
A
for each z* € X*. In that case, we define
(KL)/ fdm =1z4, A€ o(P)U{T}. (11.2.1)
A

By the Hahn-Banach theorem the integral in (11.2.1) is well defined for each A € o(P) U {T}.
Also note that the above definition includes the definiton of (KL) m-integrability given in [L] when
f is o(P)-measurable.

Proposition 11.3. If f : T — [—00, 0] is (KL) m-integrable in T, then f is finite m-a.e. in 7.

Proof. Let A = {t € T : |f(t)] = oo}. As f is m-measurable, for each ¢ € T, there exist
Bg,Ng, M, such that A = By U Ng, Ny C My, Bg,M,; € o(P) and ||m||,(My) = 0. Then by
Proposition 10.14(ii)(c)

|lmlg(A) = [|m]|¢(Bg) = sup v(z"m)(By). (11.3.1)
z elyg

On the other hand, for each z* € X*, by Definition 11.1 there exists Ny« € o(P) with
v(z*m)(Ng+) = 0 such that fxp\n_. is o(P)-measurable and z*m-integrable. Then fxp\n,_. and
hence f are (z*m)-a.e. finite in T. Consequently, by (11.3.1) we have ||m||;(A) =0 forallge I’
and hence A is m-null.

The second part of the following theorem and Remark 11.5 below play a key role in the sequel.

Theorem 11.4. Let f : T — Kor [—00,00] be m-measurable and let X be an IcHs. Let
m ; P —+ X be o-additive. Then:

(i) f is (KL) m-integrable in T', then f is (KL) mg-integrable in T' with values in X, (in the
sense that the integral of f assuems values in X, for each ¢ € T' (resp. (KL) my,-integrable
in T') with values in X, for each E € £).

(ii) If f is (KL) mg-integrable in T' with values in qu (i.e., the integrals of f assume values in
Xq) for each ¢ € I’ (resp. (KL) mg,-integrable in T' with values in X, for each E € &),

then f is (KL) m-integrable in T’ with values in X and (KL) J4fdm = £iLn(KL) / fdmy
A

(resp. = lin (KL) /AfquE) for A € o(P) U{T}.
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Proof. (i) Suppose f is (KL) m-integrable in T. Let A € a( U {T}. Then, for each z* € X*,

f is z*m-integrable and there exists z4 € X such that z*(z4) = [, fd(z m) Let g € T" and let
y* € (Xq)*. Then y*Il; € X* and hence f is y*II;m-integrable and (y*I1,) = [, fd(y*II;m) =
J4 fd(y*mg). Hence f is (KL) m,-integrable in T with values in X. Slnce qE elforE€é, fis
(KL) mg,-integrable in T with values in X,, for £ € £.

(i) Suppose
fis (KL) mg-integrable in T with values inX, for eachg € T. (11.4.1)
Let A € o(P)U{T} and let ¢ € . Then there exists yif) € XTI such that

%'?) /fdy m,) (11.4.2)

for y* € (X4)* so that
y'@ = (KL) / fdm,. (11.4.3)
A

By the proof of Theorem 5.4, Ch. II of [Scha], there exists z4 € X such that 74 = 1+i_r_ny£f). (See
Notations 10.16.)

Let z* € X* be arbitrary. Then g+ given by ¢;+(z) = |z*(z]|, z € X, belongs to I' and clearly,
g~ = |z*(z)| for z € X. (See Notation 10.15.) In the representation of the dual of X given in §22,

6.(6) of [KO], take ¥ - € (Xg=) = (5(;)* as given in Proposition 10.12(i) and the zero functional
in (X4)* for each g € I‘\{qz } Then, taking E = {z*} € £, by (11.4.2) and by Proposition 10.12(i)
we have z*(z4) = ¥+ (y ( = [, fd(Ypmy ) = [, fd(z*m). Hence f is (KL) m-integrable in

T with (KL) [, fdm =z, € X so that ( (KL)[, fdm = l(1_r_n(KL)/ fdm, for A € o(P) U{T}.
A

If condition (11.4.1) holds for {¢r : E € £}, then it holds all ¢ € I' by Proposition 10.14(i) and
by Notation 10.10 since ¢ = qug and U7 € £ by Proposition 6, §4, Ch. 3 of [Ho|. Hence f is (KL)

m-integrable in T" with values in X.

Remark 11.5. By Theorems 12.2 and 12.3 below, (ii) of the above theorem can be strengthened
as follows:

If X is a quasicomplete IcHs and if f is (KL) m-integrable (resp. (KL) mg,-
mtegrable) in T with values in X (resp. qE) for each q € T (resp. FE € &), then

f is (KL) m-integrable in T with values in X and (KL) [, fdm = l(1_r_n(KL)/ fdm, (resp.
A
= I(I—I_H(KL)/ fdmg,) belongs to X for A€ o(P)U{T}.
A

Notation 11.6. Let X be an IcHs and let m : P — X be o-additive. Then Z(m) denotes the class
of all m-measurable scalar functions on T’ which are (KL) m-integrable in T with (KL) [, fdm € X
for all A € o(P)U{T}.

The following lemma is needed to generalize Theorem 3.5(viii) to lcHs.

Lemma 11.7. Let X, Y be IcHs over the same scalar field Kand let L(X,Y’) be the vector space
of all continuous linear mappings from X intoY. If m : P — X is o-additive and u € L(X,Y), then
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um: P — Y is o-additive. If f : T — Kor [—00, 00| is m-measurable, then f is also um-measurable.

Proof. As u is linear and continuous, um is o-additive. Let F be the family of equicontinuous
subsets of Y*. Let F' € F. Then, given ¢ > 0, there exists a neighbourhood W of 0 in Y such that
sup,-cr |y*(y)| < € for y € W. As u is continuous and linear, there exists a neighbourhood U of
0 in X such that u(U) C W. Then sup,.cp |y*(uz)| < € for z € U. Let u* be the adjoint of u.
Then supy.cp |(u*y*)(z)| < € for z € U and hence u*F € £. As f is m-measurable, there exists
Ny+r € o(P) with |[m||g.. . (Ny~r) = 0 such that fxp\n,., is o(P)-measurable. Then by Proposi-
tion 10.12(iii) we have |lum|[q,(Ny-F) = supy.cpv(y*um)(Ny+F) = sup,.cp v(u*y* m)(Ny-F) =
SUPg+ o+ V(2*mM) (Ny+p) = ||m||g,. . (Ny-r) = 0 and hence f is (um),.-measurable. Then, in the
light of Remark 10.5, f is um-measurable.

We generalize below (i)-(iv) and (viii) of Theorem 3.5 to IcHs.

Theorem 11.8. Let X be an IcHs and m : P — X be o-additive. Then:

(i) A P-simple function s = Y] aixa; with (a;) C K (A))] C P and A;NA; = 0 for ¢ # j,
is (KL) m-integrable in T and (KL) [, sdm = Y ] a;m(4; N A) for A € o(P). We write
[, sdm instead of (KL) [, sdm. Consequently, ||m||(A) = sup{q(f, sdm) = | [, sdm], :
s P-simple,
[5(6)| < xA(t),t €T} for g € T

(ii) If f : T — Kor [—o00,00] is (KL) m-integrable in T, then () = (KL) f(.) fdm is o-additive
(in 7) on o(P).

(iii) If y is as in (ii), g € T" and E € &, then:

(@) l17llq(A) = sup,-cup [, | fldv(z"m), A € o(P).
(b) [17]lge (4) = Sup-c [, |fldv(z*m), A € o(P).
(c) 1imyjm)i,(4)—0 Y¢(4) = limym,4)-0 [[7]l¢(A) =0, A € o(P).

(iv) Z(m) is a vector space over Kwith respect to pointwise addition and scalar multiplication.
For A € o(P) fixed, the mapping f — (KL) f, fdm is linear on Z(m) with values in X.
Consequently, if s in (i) is with (A;) not necessarily mutually disjoint, then also [, sdm =
Y lam(AN4;), Aeo(P).

(v) Let Y, L(X,Y), u and f be as in Lemma 11.7. If f is m-measurable and (KL) m-integrable
in T, then f is um-measurable and (KL)um-integrable in T and u((KL) [, fdm) =
(KL) f, fdum, A € o(P) U{T}.

Proof. (i) and (iv) are obvious and (ii) is due to the Orlicz-Pettis theorem (for example, see
[McA]).

(iii)(a) (resp.(b)) By (ii) 4 is o-additive on o(P) and hence by Definition 11.1, and by Proposi-
tions 2.11 and 10.14(ii)(c) (resp. and 10.12(iii)) the result holds.

(iii)(c) If ||ml|¢(A) = 0, A € o(P), then by Proposition 10.14(ii)(c), v(z*m)(4) = 0 for z* € Uy
and hence by (a), ||7||q(4) = 0. As ||m]||q and ||v||, are o-subadditive on o(P) and as ||v||, is

further continuous on o(P) (treating v, =Ilgo0 v : 0(P) — X’; and by Proposition 2.3), the proof
of Theorem 3.5(iii)(b) holds here.

(v) By Lemma 11.7, um is o-additive on ¢(P) and f is um-measurable. Let A € o(P) U{T}
and let (KL) [, fdm = z4 € X. For y* € Y*, u*y* € X* and hence f is u*y*m-integrable and
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y*(uza) = u*y*(za) = [, fd(u*y*m) = [, fd(y*um). Hence the result holds.

The following theorem generalizes (v)-(vii) of Theorem 3.5 to quasicomplete lcHs-valued o-
additive vector measures.

Theorem 11.9. Let X be a quasicomplete IcHs and m : P — X be g-additive. Then:

1)(a : T — Kor [—o0,00| 18 m-measurable and m-essentially bounded in A € P, then f is

i ff:T—->K 1 ble and ially bounded in A € P, th i
(KL) m-integrable in A with values in X (in fact, with values in X by Remark 11.5) and,
for each g € T,

¢((KL) /B fdm) = |(KL) /B fdmglq < (ess supeeal f()) - [[mllo(B)

for Be ANP (=0o(P)NA).
(i)(b) If f is m-essentially bounded in T and if P is a o-ring S, then f is (KL) m-integrable in T
with values in X (in fact, in X by Remark 11.5) and, for each g € T,

Q((KL)/Afdm)ZI(KL)/Afqulq < (ess supger|f(2)]) - |lm]|(A)

< (ess super|f(2)]) - [[ml[(T)

for Ae SU{T}.
(if) If  is an m-essentially bounded scalar function on T and if f € Z(m), then pf € Z(m).
Consequently, for f € Z(m) and for A € ¢(P) U{T}, fxa € Z(m) and (KL)[, fdm =

(KL) [ fxadm.
(iii) (Domination principle). If f is an m-measurable scalar function on T and if ¢ € Z(m)
with |f| < |g| m-a.e. in T, then f € Z(m). Consequently, an m-measurable function
f: T — Kor [—00,00] is (KL) m-integrable in T' (with values in X) if and only if |f|
is so. Moreover, for an m-measurable scalar function f on T the following statements are
equivalent: (a) f € Z(m); (b) |f| € Z(m); (c) f € Z(m); (d) Re f € Z(m) and Im f € Z(m);
(e) (Ref)T, Imf)T, (Ref)” and (Im f)~ belong to Z(m). Moreover, if fi,fo : T — R

belong to Z(m), then max(fy, f2) and min(f;, f2) belong to Z(m).

Proof. (i)(a) Let A € P and let a = ess sup;c 4|f(t)|. Then by (10.7.1) there exists an m-
null set M € o(P) such that @ = supser\pr [f(#)]. Then fxa\p is an m-measurable bounded
function on T'. Let ¢ € I'. Then there exists Ng € o(P) with ||m||;(Ny) = 0 such that fxa\ann,

is o(P)-measurable so that by Proposition 10.9 there exists a sequence (sg"))g’:l C Z; such that

sslq) - fxamn, and [sﬁf)l /' [fxa\m\n,| pointwise in T. Let ¥4 = ANP. Then X4 is a o-

algebra of sets in A and fxa\am\n, I8 L a-measurable. As m, is o-additive on ¥4 with values in
Xq C X’;, by Proposition 2.2 ||ml||, is continuous on 4. Let F = |J;7, N(sﬁ{')) (see Notation
2.7). Then F C A\N, and F € ¥ 4. Then by the Egoroff-Lusin theorem (Proposition 2.12) there

exist N C F, N € ¥4 with ||m||,(N) = 0 and a sequence (F)$° C X4 with Fy » F\N such that

sﬁﬁ) — f uniformly in each Fj. Then by an argument similar to that in the proof of Theorem 3.5(v)

there exists a:g) € qu such that (KL) [ fdmg = a:(g) = limy, [ sslq)qu and
<allml(B)  (1L9.1)

‘(KL) / fdm, lim / 5@ dm,
B q n JB q

for B € ¥4 and this holds for each ¢ € I'. Consequently, by Theorem 11.4(ii), f is (KL) m-integrable
in A with values in X (and hence with values in X by Remark 11.5). Thus, if (KL) [ fdm = 25 € X
for B € £4, then Il (zp) = (KL) [ fdmy, for ¢ € T and for B € 4. Moreover, by (11.9.1) we
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have

g ((KL) /B fdm) ~ 4(z8) = |0y (28)l,

< (ess supse 4| f(2)]) - [[ml]¢(B)
q

- ](KL) [ sim,

for B € £ 4. Hence (i)(a) holds.

(i)(b) This is immediate from (i)(a) as ||m||, is continuous on the o-ring S = o(P) = P and as
fXxT\m\n, 18 0(P)-measurable. (A direct proof is indicated in Remark 11.10 below.)

(ii) Let v(-) = (KL) f(.) fdm on o(P). By Theorem 11.8(ii), v is o-additive on o(P) and by
Theorem 11.8(iii)(c), an m,-null set in o(P) is also v4-null. Hence, the m-measurable function ¢
is also v-measurable and v-essentially bounded. Therefore, by (i)(b), ¢ is (KL) v-integrable in T
with values in X. For A € o(P)UT, let (KL)[, ¢dv = z4 € X. Then, for each z* € X*, by Defi-
nition 11.1 there exists Ny € o(P) with v(z*v)(Ny+) = 0 such that px7\n,. is 0(P)-measurable
and z*(z4) = [, oxm\N,.d(z*V). As f is (KL) m-integrable in T, there exists M- € o(P) with
v(z*m)(Mz-). = 0 such that fxr\ar,. is o(P)-measurable. Then by Theorem 11.8(iii)(b) and
by Proposition 10.12(iv), 0 = v(z*v)(Nz+) = |[z*V||(Ng+) = [T v||(Nzr) = |[V]lg,. [|(Nz+) =
[y . |fldv(z*m) since E = {2*} € £. Hence either f = 0z*m-a.e. in Nz- or Ng+ is z*m-null. In
either case, OXT\N,.fXT\M,. 13 0(P)-measurable and is equal to ¢f z*m-a.e in T. Hence ¢f is
z*m-integrable and [, ¢fd(z*m) = [, ©XT\N,. fXT\pM,.d(z*m). Then arguing as in the proof of
Theorem 3.5(vi), we have z*(z4) = [, pd(z*v) = [, pfd(z*m) for z* € X*. Hence of € I(m).
The second part is proved by an argument similar to that in the proof of the second part of Theorem
3.5(vi).

(iii) Let h(t) = g—gg for t € N(g) and h(t) = 0 otherwise. Then h is clearly m-measurable,
|h(t)] £ 1 m-a.e. inT and f = gh m-a.e. in T. Then by (ii), f is (KL) m-integrable in T' with
values in X. If f : T — Kor [o, 0] is (KL) m-integrable in T, then by Theorem 11.3 there exists
an m-null set N € o(P) such that f is finite in T\N and hence g = fx7\n € Z(m) and |f| < |g]
m-a.e. in 7. Hence |f| is (KL) m-integrable in T. The other parts follow from the first and from

the facts that max(fy, f2) = 3(fi + f2 + |f1 — f2|) and min(f1, f2) = 2(f1 + f2 — |f1 — f2|) and that
Z(m) is a vector space.

Remark 11.10. A direct alternative proof of Theorem 11.9(i)(b) can be given without appealing
to the Egoroff-Lusin theorem by arguing as in the alternative proof of the last part of Theorem
3.5(v) and then combining with the projective limit argument. Details are left to the reader.

Theorem 11.11 (Generalization of Theorem 3.7-(LDCT a.e. version)). Let X be a

quasicomplete IcHs and m : P —+ X be o-additive. For each ¢ € T, let f,(ﬂ), n € N be m,-
measurable on T with values in Kor in [—00,00] and let g : T — Kor [—00,00] be m-measurable

and (KL) mg-integrable in T for each g € I'. Suppose |f,(,q)(t)| < |g(t)| mg-a.e. in T for each n € N

and for each ¢ € T"'and let f : T — Kor [-o0,00]. If f,(,q) — f mg-ae. in T, then f is m,

measurable, f, ,(f), n € N are (KL) mg-integrable in T' and consequently, f is (KL) m-integrable

in T with values in X. Moreover, for each q € I,

(KL)/Afqu—(KL)/Af,(l‘I)qu =0 forA€o(P)U{T} (11.11.1)

q

lim
n
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the limit being uniform with respect to A € o(P) (for ¢ fixed) and

lim sup / |flo) fldv(¥z+myg) = 0.
T

"ozrelg

where ¥« is as in Proposition 10.14(ii)(a).

Proof. By hypothesis, by Theorem 11.4(ii) and by Remark 11.5, g is (KL) m-integrable in T
with values in X. Let g € " be given. By hypothesis there exists an mg-null set N @) € ¢(P) such

that f,(f’) — f pointwise in T\N@. As g is (KL) m-integrable in T, by Proposition 11.3 there
exists an m-null set M € o(P) such that M D {t € T : |g(t)| = oo} so that g is finite in T\ M.

Let M@ = M UN®@, Then M@ € o(P) and is mg-null. As f,(ﬂ), n € N are m,-measurable, for
each n there exists M{? € o(P) with ||m||q(M,(Lq)) = 0 such that f"XT\M(") is o(P)-measurable.

Let M, = M@ JUZ, M{?. Then M, € o(P) and ||m||,(M,) = 0 as ||m||, is o-subadditive on
o(P). As f,(Lq) xT\M, = fXxr\m, pointwise in T and as f,(Lq) XT\M,> ™ € K are o(P)-measurable, it
follows that fx7\as, is o(P)-measurable so that f is mg-measurable for each ¢ € T' and hence, f
is m-measurable. Consideing m, : P — 3(;, the hypothesis of domination and Theorem 3.5(vii)

imply that f, ,(lq), n € N are (KL) mg-integrable in T'. Then by Theorem 11.4(ii) and by Remark
11.5, f is (KL) m-integrable in T' with values in X.

Let g e T. If v(-) = (KL) f(.) gdm, then by Theorem 11.8(ii), ¥ and consequently, II, o v = v,
are o-additive on o(P) (v, assums values in the Banach space X’;) Hence by Proposition 2.6
there exists a control measure pg : o(P) — [0,00) for v, so that, given € > 0, there exists
§ > 0 such that ||v||4(A) < § whenever A € o(P) with pg(A) < 8. Let F, = U2, N(£?) n
(T\M,). Clearly, Fy € o(P). Let A € o(P) U {T}. Then, arguing as in the proof of Theorem
3.7 with Fy, F,Eq), My, Ny, [|[¥|lqs 12qs A, f,(Lq) and ||m||, replacing F, Fy, M, N, ||[v||, s, E f, and
[|m||, respectively, and taking ¥« as in Proposition 10.14(ii)(a) and ng such that || ;o fll g -

k
q)) °

0

||m||q(F,£ < § for n > ng, we have for z* € U7 and n > ny,

2¢
I£{? ~ fldv(¥zemy) < 2||V||q(Fq\Nq\F;§ff)) + 2[|v|lq(Ng) +2||v]|4(Myg) <

/Am(T\F,Eg)) 3

since [ |fi9 — fldv(¥z-my) < 2 [, |gldv(¥zemy) = 2 [, |gldv(z*m) < 2||v||4(B) for B € o(P) by
Proposition 10.14(ii) and Theorem 11.8(iii)(a) and

/ 1£9 = fldv(Tgomy) <
ANFD 3

since v(\I/x~mq)(F,£g)) = v(m*m)(Fég)) < ||m||q(F,§Z)) by Proposition 11.14(ii)(c). Consequently, by
the above inequalities and by the fact that f is (KL) m-integrable in T with values in X we have



1,((KL) [, fdm) = (KL) [, fqu‘a:nd

'(KL) /A f9dm, — (KL) /A fdm,
q

}(KL) / (/9 = f)dm,

q

sup /|f — fldv(¥ermy) < e (11.11.2)
z*elUg

for n > ng and for all A € o(P) U {T}. Then (11.11.2) implies (11.11.1) and that the limit in
(11.11.1) is uniform with respect to A € o(P) (for q fixed in T').

Corollary 11.12. (Generalization of Corollary 3.8-(LBCT a-e-version)). Let X be a
quasicomplete IcHs and m : § — X be og-additive, where S is a o-ring. Suppose f, f,(ﬂ) :T — Kor
[—00,00] for n € Nand let 0 < K9 < oo for ¢ € T. If f,(ﬂ), n € N are m,-measurable, f,(lq) - f

my-a.e. in T and if lf,(ﬂ)[ < K@ mg-a.e. for all n, then f, f,(lq), n € K are (KL) mg-integrable in
T and consequently, f is (KL) m-integrable in T with values in X. Then, for each ¢ € T,

=0

lim
n
q

L) [ fam,~ (KL) [ f0dm,

for A € SU {T}, the limit being uniform with respect to A € S (for ¢ fixed).

Proof. The corollary is immediate from the above theorem and the second part of Theorem
3.5(v) since S is a o-ring.

The following theorem plays a key role in Section 12.

Theorem 11.13 (Generalization of Corollary 3.9). Let X be a quasicomplete IcHs and
m : P — X be o-additive. If f is an m-measurable (KL) m,-integrable scalar function on T' with

values in 5(; for each ¢ € T', then f is (KL) m-integrable in 7" with values in X. Moreover, for each
g € T, there exist a set N, € o(P) with ||m||4,(N,) = 0 and a sequence (sslq))n 1 C Z such that
59 f and Isn)| /| f| pointwise in T\N,. Then for any such sequence (s q)) by (10.15)

limg ( /A s{9dm — (KL) /A fdm)
/ 59dm, — (KL) / fdm,
A A

for A € o(P) U {T'}, the limit being uniform with respect to A € o(P) (for ¢ fixed). (By Remark
12.5 below, (KL) [, fdm € X for A € o(P) U {T}.)
Consequently, for A € o(P) and ¢ € T,

=0
q

= lim
n

||ml|q(A4) = sup{!(KL)/Ahqu|q :h € I(my), |h| < xamg-ae. inT}.

Proof. Let ¢ € I'. By hypothesis, f is (KL) mg-integrable in T with values in 5\(/ Then
by Corollary 3.9 there exists (sslq)) C I, such that s@ 5 f and |sn)| /' |flmg-a.e. in T and
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consequently,by Corollary 3.9 we have
(KL) / fdm, — / 59 dm,
A A
the limit being uniform with respect to A € o(P). Thus
= lim for A € o(P) U{T}. (11.13.2)
n

(KL)/fqu /sﬁf)qu
A q A q

Since f is (KL) m — g-integrable in T for each ¢ € I, by Theorem 11.4(ii) f is (KL) m-integrable
in T with values in X and by (11.13.1) we have

lim g((K'L) /A fdm — /A s9dm) =0

=0, A€ o(P)U{T}.5¢m(11.13.1)

lim
n
q

where we use Notation 10.15.

Consequently, by Theorem 11.8(i), by (11.13.2) and by Proposition 10.14(ii} we have

sup{ / sdmy

A

= sup / sdmy
A

||ml|q(A)

ZSGIS, |S| SXA}

q

0 s €L, |s| < xamyg-a.e. inT}

q

< sup{ / hdmg| : h € I(my), |h| < x4 mga.e. inT}
A q
= sup{ sup /hd(\lfm~mq) : h € I(my), |h| < x4 mg-a.e. inT}
z*elg |JA
< sup v(Ugemg)(4) = sup v(a*m)(A)
z*elg z*€lg

for A€ o(P) and for g € T.

Corollary 11.14 (Simple function approximation). Let X be a quasicomplete IcHs and
m: P = X be o-additive. If f : T — Kis m-measurable and (KL) mg-integrable in T' with values
in X, for each ¢ € T, then f is (KL) m-integrable in T' with values in X (by Remark 12.5 with
values in X). Moreover, there exists (s,(zq))z‘;l C T, such that s — f mg-a.e. in T and such that
limp, supg.epe Ir |f_s$lq)|dv(‘llz*mq) = lim, SUPg+ e Jrlf = s%q)idv(m*m) =0.

Proof. This follows from Propositions 10.9 and 10.14(ii), Theorem 11.13 and Proposition 10.14(ii)
and from the fact that for a (KL) mg-integrable function g on T, |(KL) [, gdmglq < ||v][¢(4) <
SUP,-cpje J4lgldv(¥e-my) = SUP+ cUe J4lgldv(z*m) for A € o(P) where 7 : 6(P) = X, is given
by 4(-) = f(.) gdm, is o-additive by Theorem 3.5(ii).

Remark 11.15 ((KL)-integrability with respect to a sequentially complete lcHs-valued
m). Let X be an IcHs, m : P — X be o-additive and Z(o(P), m) be the collection of all (KL)
m-integrable o (P)-measurable scalar functions (with values in X). If Theorem 11.9’ is the same as
Theorem 11.9 with X sequentially complete and all the functions considerd to be o(P)-measurable
or to belong to Z(o(P),m), then the proof of Theorem 3.5(v) holds here verbatim to prove (i)(a)
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and (i)(b) of Theorem 11.9’ if we replace | - | by ¢ and |lm|| by ||m||s,¢ € T and if we use the

sequential completeness of X. Consequently, by arguments similar to those in the proofs of (vi)
and (vii) of Theorem 3.5 we can show that (ii) and (iii) of Theorem 11.9’ are also valid. Let
Theorem 11.11’ be the same as Theorem 11.11 not only with the above changes but also taking
g € I(o(P), m), replacing (f,(ﬂ)) by (fn) for all ¢ € T with fp, n € N o(P)-measurable, |f,| < |g|
m-a.e. in T for all n and f, » f m-a.e. in T with f o(P)-measurable. Then by Theorem 11.9°(iii),
fn, n € K, and f are (KL) m-integrable in T'. Then arguing as in the proof of Theorem 11.11, one
can show that

q((KL) ] fam— kL) /A fndm) - }(KL) [ (7= f)dm,

q

< sup /|f—fn|dv(\Ilz~mq)
zrelUgJ A

— sup [ 17 = faldo(am) <
z"GUg A

for n > ng and for all A € o(P)U{T}. Then the corresponding version of LBCT (Corollary 11.127)
too holds. (Note that Theorem 11.11° is essentially the version of LDCT given in Theorem 3.3
of [L].) If f is o(P)-measurable, then by Proposition 10.9 there exists a sequence (s,) C Z; such
that s, — f and |s,|  |f| pointwise in T. Thus, if Theorem 11.13’ and Corollary 11.14’ are
the analogues of Theorem 11.13 and Corollary 11.14, respectively, with X sequentially complete, f

o(P)-measurable and (ng))ff:l replaced by (s,)$° for all ¢ € T, they hold by Theorem 11.11".

Remark 11.16. LDCT for (KL) m-integrals with respect to a o-additive vector measure defined
on a d-ring 7 with values in a sequentially complete IcHs is given in [L] under the hypothesis that
the dominated sequence converges pointwise, but, as observed in Remark 3.12 of [P3], its proof is
incorrect and is corrected in the said Remark. For the case of o-additive vector measures defined
on o-algebras with values in a sequentially complete IcHs, Theorems 11.8, 11.9’ and 11.11’ are
obtained in [KK] (for real IcHs) and [OR] (for complex lcHs). Theorem 3.5 of [L], whose incorrect
proof is corrected in Remark 3.12 of [P3], is easily deducible from Corollary 11.14’.

12. (BDS) m-INTEGRABILITY (m LcHs-VALUED)

Let X be a quasicomplete IcHs and m : P — X be og-additive. For an m-measurable func-
tion f we define (BDS) m-integrability or simply, m-integrability of f with values in X and show
that f is m-integrable in T if and only if it is (KL) m-integrable in T' and that (BDS) [, fdm =

(KL) [, fdm € X, A € o(P) U {T} (Theorems 12.2 and 12.3). Also we generalize Theorems 4.4,
4.5 and 4.8 and Corollary 4.11. We define (BDS) m-integrability for o(P)-measurable functions
im Remeark 12.11 when m assumes values in a sequentially complete IcHs and Theorem 12.2 in
Remark 12.11 gives an analogue of Theorem 12.2 for these spaces.

Definition 12.1. Let X be a quasicomplete IcHs and m : P - X be o-additive. An m-
measurable function f : T — Kor [—00,00] is said to be m-integrable in T in the sense of Bartle-
Dunford-Schwartz or (BDS) m-integrable in T or simply, m-integrable in T', if f is mg-integrable

in T' (consideringmg: P — X C Z]) for each ¢ € T (see Definition 4.1). In that case, we define

(BDS)/Afdm=lir_n/Afqu, A€a(P)
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and ‘
BDS / dm = lim/ dm, = lim/ fdm
(BDS) | 1 o Jp e = NONNG

with values in X, where N, € o(P) with [jm/|,(N,) = 0 such that fx7\n, is 0(P)-measurable. (Tn
the light of Theorem 12.3 below, these integrals indeed assume values in X as X is quasicomplete.)

Theorem 12.2. Let X be a quasicomplete IcHs and m : P — X be og-additive. Let f : T - K
or [—00, 00] be m-measurable. Then:
(1) If f is (KL) m-integrable in T', then f is m-integrable in T and
(BDS) [, fdm = (KL) [, fdm € X for A € o(P) U {T}.
(ii) If f is m-integrable in T, then f is (KL) m-integrable in T' and
(KL) [, fdm = (BDS) [, fdm € X for A € o(P) U{T}.
(Moreover, as X is quasicomplete, by Theorem 12.3 below (BDS) [, fdm € X for A € o(P) U{T}
whenever f is m-integrable in T.) hereafter we shall denote either of the integrals of f
over A€ o(P)U{T} by [, fdm.

Proof. (i) As f is (KL) m-integrable in T, then, for 4 € o(P) U{T'}, there exists z4 € X such
that z*(z4) = [, fd(z*m) for z* € X* so that (KL)[, fdm = z4. Then by Theorem 11.4(i), for
each ¢ € I', we have

My(a4) = ,((KL) | fdm)

(KL) /A fd(llom) (by Theorem 11.8(v))

= (KL)/ fdmg = (BDS)/ fdm,
A A
by Theorem 4.2. Then by Definition 12.1 and Theorem 11.4(i), f is m-integrable in T' and

(BDS) /A fdm = lim (BDS) /A fdmy = Tim(KL) /A fdm, = (KL) /A fdm
belongs to X for A € a(P) U {T}.

Conversely, let f be m-integrable in T. Then, for each ¢ € I', by Definitions 12.1 and 4.1 there
exist (sﬁﬂ’);?:l C Z; and an mg-null set N, € o(P) such that PO f pointwise in T\ N, and such
that limy, [, s%"”qu = a:ﬁf) (say) exists in 5(:; for each A € o(P) U{T}. Then by Theorem 4.2, f
is (KL) mg-integrable in T and (KL) [, fdmg = a:if) € )’(vq for A € o(P) U {T}. Consequently, by
Theorem 11.4(ii) and by Definition 12.1

— im 9 — v
(KL)/Afdm =limz)’ = (BDS)/Afdm €eX
for A € o(P) U{T}.

Theorem 12.3. Let X be a quasicomplete IcHs and m : 0(P) — X be o-additive. If f: T - K
or [—00, 00] is m-measurable and m-integrable in T, then [, fdm € X for A € o(P) U {T}.

Proof. Let A€ o(P)U{T}. Let ® = {s € I, : |s| < |f[inT} and let G4 = {f, sdm : s € ®}.
Let z* € X*. Then by Theorem 12.2(ii), f is (KL) m-integrable in T" and hence f is z*m-integrabe
in T and therefore,

sup| | sd(z*m)| < / |f|dv(z*m) = My (say) < oo.
s€E® JA A
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Thus G 4 is weakly bounded. Then by Theorem 3.18 of [Ru], G 4 is 7-bounded in X.

Taking w,(f) = S%Q)XT\NQ in Proposition 10.9, we have (w,(f))OO C s, ‘wflq)| <|flinT forn € K

n=1
WP - f and |w,(,q)| /" | f| pointwise in T\ N;. Then by Theorems 11.13 and 12.2(ii) and by Notation
and Convention 10.15 we have

lim g ( /A w@dm — (KL) /A fdm) = limg ( /A w@dm — /A fdm) =0.

Hence, given € > 0, for each ¢ € I' there exists s, € ® such that ¢(f, sqdm — [, fdm) < ¢
and therefore, [, fdm belongs to the 7-closure of G4 (in X). Consequently, there exists a net
(za) C G4 such that z, = [, fdm in 7. Then (z4) is 7-Cauchy.

On the other hand, as G4 C X is 7-bounded and as X is quasicomplete, the T-closure of G 4 is
T-complete. Since 7|x = 7, it follows that (z,) is also 7-Cauchy and hence there exists zg in the
T-closure of G4 (so that 2y € X) such that £, — z¢ in 7 and hence in 7. Since 7 is Hausdorff, we
conclude that [, fdm = zy € X. ‘

Remark 12.4. The proof of Theorem 1.35 of [T] based on the bipolar theorem is incorrect as
[ fdu is an element of the completion of the IcHs E (in the notation of [T]). In [P5] we provide a
correct proof of the said theorem.

Remark 12.5. Let X be a quasicomplete IcHs and m : P — X be o-additive. Then, in the
light of Theorems 12.2 and 12.3, Z(m) in Notation 11.6 is the same as the class of all
m-measurable scalar functions on 7' which are m-integrable in T and Theorems 11.4,
11.8, 11.9, 11.11 and 11.13 and Corollaries 11.12 and 11.14 and Remarks 11.5 and
11.10 hold for functons m-integrable in T. Moreover, the integrals of f in Theorem
11.13 and Corollary 11.14 also assume values in X itself. (Compare Remark 4.3.)

We now generalize Theorems 4.4, 4.5 and 4.8 to IcHs in Theorems 12.6, 12.7 and 12.8, repectively.

Theorem 12.6. Let X be a quasicomplete IcHs and m : P - X be o-additive. Let f : T > K
or [—o0,00] be m-measurable. For each ¢ € T, let (3514))3":1 C Z; be such that 3514) — fmgae. in
T and let v o(P) > 5(71 be given by 'yslq)(-) = f(,) %Q)qu, n € N Then:

(a) The following statements are equivalent:
(i) lim, 75{1)(A) = 4@ (A) exists in X; for each A € o(P).
(ii) 75{1), n € N (q fixed), are uniformly o-additive on o(P).
(iii) lim, 'yslq)(A) exists in 5(71 uniformly with respect to A € o(P) (for g fixed).
(b) If anyone of (i), (ii) or (iii) in (a) holds for each ¢ € T', then f is my, integrable in T with
values in X; and [, fdmg = 49 (A) for A € o(P) U {T} and for g € T. In that case, f is
m-integrable in T with values in X and

/ fdm = lim~(?(4)
A «—

for each A € o(P) U{T}.

Proof. (a) and the first part of (b) hold by Theorem 4.4 applied to my, g € I'. The last part of (b)
holds by Definition 12.1 and by Theorem 12.3.
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Theorem 12.7. Let X, m and f be as in Theorem 12.6 and let P be a g-ring S. Then f

is m-integrable in T if and only if, for each ¢ € T, there exists a sequence ( £Q)),3°:1 of bounded
my-measurable functions on T such that f,g'I) — fmgae. in T and such that lim, [ A f,S‘”qu
exists in )?; for each A € o(P). In that case, f is mgintegrable in T for each ¢ € T and
[y fdmy = lim, [, f,(lq)qu, A € o(P) and the limit is uniform with respect to A € o(P) (for
q fixed). Moreover,

/ fdm = lim / fdmg,, € X (12.7.1)
A — JA
for A € o(P). Moreover,
/ fdm = lim / fdmge X (12.7.2)
T T IN(H\Ng

where N, is as in Definition 12.1.

Proof. The condition is necessary by Definitions 4.1 and 12.1. Let ¢ € I'. As S is a o-ring,
by Theorem 4.2 and by the last part of Theorem 3.5(v) bounded mg-measurable functions on T

are mg-integrable in T. Let lim, [, f,(lq)qu = mff) € X, and let 74 = {ianEf) for A € o(P) and
let limy, fN(f)\Nq f,(lq)qu = mg?) and let zr = l(iLna:g?), where N, € o(P) with |jm||,(Ng) = 0 such
that fxp\n, is o(P)-measurable. Let A € o(P) U {T}. Then z4 € X. By Theorem 4.5, f is
mg-integrable in T and [, fdm, = mff), and [, fdmg = lim, |, f,(lq)qu, A € o(P) and the limit
is uniform with respct to A € o(P). Consequently, z4 = l(in fdmg and hence by Definition
. A

12.1, f is m-integrable in T and [, fdm = z4 € X for A € o(P) U{T}. But by Theorem 12.3,
f4fdm € X for A € o(P) U{T} and hence (12.7.1) and (12.7.2) hold.

Then by Theorems 12.2, 12.3 and 11.4(ii), f is m-integrable in T', (12.7.1) and (12.7.2) hold and
zp € X for A€ o(P)U{T}.

Theorem 12.8 (Closure theorem). Let X, m, and f be as in Theorem 12.6. For each ¢ € T,
let (f,(lq)),?f’:1 C Z(m,) (Note that m, : P — X C X,). If 9 fmgy-ae. in T for each ¢ € T, then
f is m-measurable. Let 'y%q)(A) =/, f,(lq)qu for A € o(P). Then, for each ¢ € T, the following
statements are equivalent:

(1) limy, 75{1) (A) = y(A) exists in )?,; for each A € o(P).
(i) 75{1), n € K (q fixed), are uniformly o-additive on o(P).

(iii) lim, 'y%q)(A) =~v(A) € )7,1 exists uniformly with respect to A € o(P) (g fixed).

If anyone of (i), (ii) or (iil) holds for each ¢ € T, then f is my-integrable in T with values in )A(; for
each g € I' and

/ fdmg = Iim/ f@dm, for A € o(P) (12.8.1)
A nJA

the limit being uniform with respect to A € o(P) (for ¢q fixed). Moreover, f is m-integrable in T
with values in X and

/ fdm = lim / fdmgfor A € o(P) U {T}. (12.8.2)
A — JA



Proof. Clearly, f is mg-measurable for each ¢ € I' and hence f is m-measurable. By hypothesis
and by Theorem 4.8, (i)<(ii)«<(iii) for ¢ € " and if anyone of (i),(ii) or (iii) holds for each ¢ € T,
then by the last part of the said theorem, f is mg-integrable in T" with values in )A(; and (12.8.1)
(with the limit being unform with respect to A € o(P)) holds for g € I".

Consequently, by Definition 12.1 and by Theorem 12.3, f is m-integrable in 7" with values in X
and (12.8.2) holds.

Remark 12.9. If we replace the simple functions in Definition 4.1 by functions mg-integrable
in T, then Theorem 12.8 above says that the process described in Definition 12.1 yields functions
which are already in Z(m) and no new functions are rendered m-integrable in T. Hence Theorem
12.8 is called the closure theorem (compare Theorem 9 of [DP1]).

The following result generalizes Corollary 4.11 to quasicomplete IcHs-valued vector measures.

Corollary 12.10. Let X be a quasicomplete IcHs, P be a o-ring § and m : § - X be o-
additive. If X, f,(ﬂ), n € N g and f are as in Theorem 12.8 and if f,(lq) — f mgae. inT for each
q € I" and if, for each g € T,

lim / f,(lq)qu =0,4A€S
[lm]lg(A)—0 J 4

uniformly for n € KN then f is mg-integrable in T with values in )?:1 and

/fqu = lim/ fPdm,, Aes (12.10.1)
A nJA

the limit being uniform with respect to A € S (for ¢ fixed). Consequently, f is m-integrable in T
with values in X and

/fdm:lim/fqu, AeSu{T}. (12.10.2)
A — Ja

Proof. Let *75{1)(-) = f(_) f,(lq)qu, n € N Then by hypothesis and by Corollary 4.11, f is mg-

integrable in T' and (12.10.1) holds (with the limit being uniform with respect to A € §). Then
by Definition 12.1 and by Theorem 12.3, f is m-integrable in 7" with values in X and (12.10.2) holds.

Remark 12.11 (m-integrability of o(P)-measurable functions with respect to a sequen-
tially complete IcHs-valued m).

Definition 12.1°. Let X be an IcHs and m : P — X be o-additive. A o(P)-measurable function
f:T — Kor [—00,00] is said to be m-integrable in T' (in the sense of Bartle-Dunford-Schwartz) if
there exists a sequence (s,) C Z, such that s,(t) — f(t) pointwise in T' and such that lim, {, s,dm
exists in X for each A € o(P). In that case, we define (BDS) [, fdm = lim,, [, s,dm, A € o(P)
and (BDS) [ fdm = limy, [y ;) sndm.

Theorem 12.2’. If X is a sequentially complete IcHs and m : P — X is o-additive, then a
o(P)-measurable function f : T — Kor [—00, 00] is m-integrable in T' (with values in X) if and only
if it is (KL) m-integrable in T' and in that case, (BDS) [, fdm = (KL) [, fdm for A € o(P)U{T}.

Proof. If f is m-integrable in T, then by hypothesis and by Proposition 2.13, it follows that
f is (KL) m-integrable in T and that (BDS) [, fdm = (KL) [, fdm for A € o(P) U {T}. Con-
versely, if f is (KL) m-integrable in T', take (s,) C Z; as in the last part of Proposition 10.9. Then
given € > 0 and ¢ € T, by Theorem 11.11°, ¢(f, sndm — [, s,dm) < ¢(f, spdm — (KL) [, fdm) +
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KL ) [4 fdm — [, s,dm) < € for n,r sufficiently large. Thus ([, sndm){° is Cauchy in X and as

X is sequentially complete, there exists £4 € X such that z4 = lim,, [ 4 Sndm so that f is (BDS) m-
integrable in T and (BDS) [, fdm = z 4. Then by LDCT for scalar measures, *(z4) = [ 4 fd(z*m)
for z* € X* so that (KL)f, fdm = z4 = (BDS) [, fdm. Hence Theorem 12.2’ holds. Con-
sequently, when X is a sequentially complete IcHs, Z(o(P),m) in Remark 11.15 is the same as
the family of all o(P)-measurable m-integrable scalar functions on T and, for f € Z(o(P),m),
(KL)[, fdm = (BDS) [, fdm for A € 6(P) U{T}. Hence, hereafter, when X is sequentially
complete, we shall denote either of the integrals by [, fdm for f € Z(¢(P),m) and for
A € o(P)U{T}. Then in that case, Remark 12.5’ is the same as Remark 12.5 in which Z(m)
is replaced by Z(o(P), m) and X is sequentially complete, reference to Theorems 11.9, 11.11 and
11.13 is changed to Theorems 11.9’, 11.11’ and 11.13’, respectively (in which no reference is made
to Theorem 11.4 and reference to Theorem 11.8 remains unchanged) and reference to Corollaries
11.12 and 11.14 is changed to Corollaries 11.12° and 11.14’ respectively.

Remark 12.12. If m : P — X is o-additive and X is quasicomplete, by Theorem 11.4(ii), an
m-measurable function which is (KL) mg-integrable in T for each ¢ € T', is (KL) m-integrable in
T with values in X, but in the light of Theorems 12.2 and 12.3, f is also m-integrable in T and
(KL)[, fdm = [, fdm € X for A € o(P) U {T}. Hence the concept of m-integrability of
m-measurable functions is indispensable in the study of integration in quasicomplete
lcHs. However, if f is o(P)-measurable and X is sequentially complete, the concept
of m-integrability is not needed. But in this case too we use the m-integrability in
order to treat simultaneously integration of an m-measurable (resp. o(P)-measurable)
function with respect to a quasicomplete (resp. sequentially complete) lcHs-valued m.

Remark 12.13. If X is quasicomplete and m : P — X is o-additive, then the definitions of
m-integrability and the m-integral for a o(P)-measurable function f as given in Definitions 12.1
and 12.1° coincide due to the last part of Remark 10.16.

13. THE LOCALLY CONVEX SPACES L,M(m), L,M(c(P),m), L,Z(m) AND
EPI(U(P)vm)7 1 < p< X

We generalize the results in Section 5 to an lcHs-valued o-additive vector measure on P and this
section plays a key role in the study of the £,-spaces when X is quasicomplete (resp. sequentially
complete).

Let X be an IcHs and m : P — X be og-additive. Then my = II;om : P — X, C :X'vq is
o-additive for g € T'.

Definition 13.1. Let X be an IcHs and m : P — X be c-additive. Let g : T — Kor [—00, o]
be m-measurable, 1 < p < oo and A € o(P). For q € T', we define

(my); (g, A) = sup{‘/A sdm, ’

q

s €Ty, |s| < |g|P my-a.e. inA}

and

(mg);(9,T) = Azgg))(mq);(fl)-
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By Definition 5.4, for A € o(P), with A = BjUNy, Bq € 0(P), Ny C M, € o(P) with ||m]|o(M,) =
0 we define

(myg); (9, A) = (myg);(g, By)
and it is well defined as shown in the paragraph preceding Remark 5.5.

Theorem 13.2. Let g,p and ¢ be as in Deﬁnition 13.1. For A € o(P),

(m)2(9. 4) = sup ( [ lopasta m)
T €U°

= sup (\I}z'mq)p(gaA)
zelyg
1

sup{\ (<t [ sam,

sup{‘ (KL)/Afqu ’

q

: f €Z(o(P),my),|f| < |g/P mg-ae. inA}

: f€Z(my), |f] <|g|P mg4-ae. inA}

where Z(my) is as in Notation 3.2, Z(o(P), mg) is as in Remark 11.15 for m,; and ¥,- is as in
Proposition 10.14.

Consequently, for A € o(P)

< (mg); (£, 4)

1
p
1) [ 17pdm,
A q
if f is an mg-measurable scalar function with |f|P € I(m,). Moreover, for A € o(P)

(K1) [ famy| < (@mo)i(7.4) (13.2.1)
q

if f € Z(my).

Proof. By Proposition 10.14(ii)(b), {¥;+ : z* € U/} is a norm determining subset of the closed
unit ball of (X,)* and for z* € UZ, z*(Il; o m) = ¥;»m, = z*m by (ii)(a) of the said proposition.
Then by Lemma 5.2(ii) for m, we have

(Vpem,); (/ lgPdu (¥ ~mq)% - (/A |g|pdv(m*m))% (13.2.2)

for z* € U7. Arguing as in the proof of Theorem 5.3 using Lemma 5.2(i) for m,, and by Proposition
10.14(ii)(b) and by (13.2.2) we have

(mg),(g,4) = sup sup / sd(¥z+myg) “l:se Zs, |s] < |9/’ mg-a.e.in A
III'GU:; A q
= sup (Vg-my);(g,4) = sup (/ lglPdv(z m)
*€Ug z*elyg

for A € o(P).

Let ¢ € I". Note that Z; C Z(o(P),m,) C Z(m). Given f € I(my), by Proposition 2.10 there

exists a sequence (sﬁf)) C Z, such that s%q) — f mg-a.e. in T and |s(q)| /| f| mg-a.e. in T and
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hence by Corollary 3.9 applied to m, : P — X, we have | (KL) [, fdmg|, = lim, | [, s;‘”qu|q.
This proves the other equalities in the first part. The second part is evident from the first.

Remark 13.3. The above proof is more general and elementary than that of Lemma I1.2.2 of
[KK]. Also compare Remark 5.5.

The following generalizes Theorem 5.6 to IcHs-valued o-additive vector measures on P.
Theorem 13.4. Let X be an IcHs, m : P — X be o-additive and 1 <p < oo. Let f: T - K
or [—00, 00| be m-measurable and let |f|P be (KL) m-integrable in T'. Let (-) = (KL) f(.) |f|Pdm.

Then v : o(P) — X is o-additive. For g € T, (my)3(f,4) = (/[7]l4(4))? for 4 € o(P). Conse-
quently, (mg);(f,T) = (||‘y||q(T))117 < oo and (myg);(f,-) is continuous on o(P) for each g € T'.

Proof. By (ii) of Theorem 11.8, ~ is 5-additive on o(P) and hence, v, = Iljoy : 0(P) = X, C ZI

is o-additive. Then by Theorems 11.8(iii)(a) and 13.2, (my);(f,A) = ( q(A))zl’, A €0(P). By
Propositions 2.2 and 2.3 other results hold.

Theorem 13.5. Let X be an IcHs, m : P = X be o-additive, ]l <p <ooand f: T — Kor
[—OO’ OO]
(i) If X is quasicomplete, f is m-measurable and ¢y ¢ )A{ for each ¢ € T', then |f|P is m-
integrable in T' with values in X if and only if (mg);(f, T) < oo for each g € T.
(ii) If f is o(P)-measurable and ¢y ¢ X, then |f|P is m-integrable in T (and hence (KL) m-
integrable in T') if and only if (m,), (f T) < oo for each g € T".

Proof. (i) Since X is quasicomplete by hypothesis, the condition is necessary by Theorems 13 4
and 12.2 (note that this part holds for any quasicomplete lcHs). Conversely, let (mg);(f,T) <
for each ¢ € T'. For z* € X*, let ¢z« (z) = |z*(z)|, z € X. Then by Theorem 13.2 and by hypothes1s,

/ |fIPdv(z*m) < (mg: )7 (f,T) < o0 (13.5.1)
for each A € o(P).

Let g € . Then by Proposition 10.9 there exists a sequence (s (Q)) C T such that 0 < s${’) AAfIP

mg-a.e. inT. If u(Q) =59 (qll for n > 1, where sg‘” = 0, then as in the proof of Theorem 5.8 we

have Y 7° fA |un |dv(y*myg) = [, |f|Pdv(y*TIgm) < oo by (13.5.1) for y* € (Xg)*, since y*II; € X*.
Ascy & X by hypothes1s, arguing as in the proof of Theorem 5.8 we observe that there exists
a vector T4 € X such that £4 = lim, f 4 sn)qu and this holds for each A € o(P). Then by

Definition 4.1, |f }1’ is mg-integrable in T'. Since q is arbitrary in I' and since X is quasicomplete by
hypothesis, by Definition 12.1 and by Theorem 12.3, |f|? is m-integrable in T with values in X.

(ii) The condition is necessary by Theorem 13.4 (this part holds for any IcHs X). Conversely,
let f be o(P)-measurable and ¢g ¢ X with (mg);(f,T) < oo for each ¢ € I'. Then by the last
part of Proposition 10.9 there exists (s,){° C Z, such that 0 < s,  |f|P pointwise in T. Then
arguing as in the proof of Theorem 5.8 and using (13.5.1), we have 3 {° [z*([, undm)| < oo for
A € o(P) and for each z* € X*, where u, = s, — sp—1 for n > 1 and sp = 0. Then by Theorem 4
of [Tu] there exists a vector 4 € X such that z4 = 3.7° [, undm = lim,, {, spdm for A € o(P)
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and hence by Definition 12.1’ in Remark 12.11, |f|P is m-integrable in T. Moreover, by LDCT for

scalar measures we have
z*(z4) = liTIln/ spd(z*m) = / |fPd(z*m), A € o(P)
A A

for each z* € X* and hence |f|P is (KL) m-integrable in 7.

Definition 13.6. Let X be an IcHs, m : P — X be o-additive and 1 < p < o0o. We define
LyM(m) = {f : T —» K fm-measurable with (m,);(f,T) < oofor each ¢ € T'}; Z,(m) = {f :
T — K f m-measurable and |f|? (KL)
m-integrable in T} and £,Z(m) = L,M(m) (N Z,(m). Let M(o(P)) = {f : T — K f o(P)-measurable}.
Then we define:
LM(0(P), m) = L,M(m) \M(0(P)); Ty(a(P), m) = T,(m) | M(o(P)) and L,Z(0(P),m) =
LpyZ(m) Y M(a(P)). (Note that in the case of Banach spaces, (KL) m-integrablity and m-
integrability coincide and hence Z,(m) and £,Z(m) are the same as those given in 5.9 when X is
a Banach space.)

Theorem 5.10 is generalized to lcHs-valued m as follows.

Theorem 13.7. Let X be an IcHs, m : P — X be o-additive and 1 < p < oo. Then:
(i) L,Z(m) =TZy(m) C LM(m) and L,Z(c(P),m) = I,(c(P),m) C LM (c(P), m).
If X is quasicomplete, then Z;(m) = Z(m) (see Notation 11.6).

i)

(iii) If X is sequentially complete, then Z;(d(P), m) = Z(s(P), m). (See Remark 11.15.)
)
)

(iv) If X is quasicomplete and co ¢ X, for each ¢ € T', then £,Z(m) = Z,(m) = L, M(m).

(ii
1
1
(v) If ¢g ¢ X, then L,Z(0(P),m) = I,(6(P),m) = LM (c(P), m).

Proof. (i) holds by Theorem 13.4. (ii) (resp. (iii)) is due to Theorem 11.9(iii) (resp. Theorem
11.9’(iii) in Remark 11.15). (iv) and (v) are due to (i) and (ii) of Theorem 13.5.

If X is an IcHs and m : P — X is g-additive, then by Definition 13.1 and by Theorem 13.2, it
is clear that Theorems 5.11-5.13 hold for m-measurable functions on T and hence for
o(P)-measurable functions on T with values in K or in [—o0o,] and for ¢ € T, if we
replace my(g,-) by (my);(g,-), [|m|| by |[mls, mj(ag,-) by (mg);(ag,-) and my(f +g,-) by
(mg);(f + g,-). Hence, when these results are used we simply refer like by Theorem
5.11 for my, etc.

(i)-(iv) of the following theorem generalize Theorem 5.14 to an lcHs-valued m on P with Nota-
tion 5.15 being suitably interpreted here.

Theorem 13.8. Let X be an IcHs, m : P = X be ¢g-additive, 1 < p < oo and {%p) = {(myg), :
g € T'}. Then:
(i) LpM(m) (resp. LM(o(P), m)) is a vector space over K
(ii) {ﬁp )is a family of seminorms on L, M(m). If T,(,’,’) is the locally convex topology gener-
ated by the family §(p ) on L,M(m), then by £, M(m) we mean the locally convex space
(LpM(m), 7).
(iii) If X is quasicomplete, then £,Z(m) is a linear subspace of £, M(m). In that case, by

LpZ(m) we mean the locally convex space (L,Z(m),

7-!(111))|L',,,I(m))'
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(iv) If X is sequentially complete, then £,Z(o(P), m) is a linear subspace of L,M(c(P), m). In
that case, by £,Z(c(P), m) we mean the locally convex space (Lp,Z(o(P), m), ) |2, 2(0(P),m))-
(v) For f,g € L,M(m), we write f ~ g if f = g m-a.e. in T (see Definition 10.4). Then
' ~' is an equivalence relation and we denote £L,M(m)/ ~ by L,M(m); when X is quasi-
complete, £,Z(m)/ ~ by L,Z(m) and when X is sequentially complete, £,Z(c(P), m)/ ~
by L,Z(c(P),m). Then f ~ g if and only if (mg),(f —g,T) = 0 for all ¢ € T. If
F = LyM(m)(resp. LypM(o(P),m), L,Z(m), LyZ(o(P),m)) and Ny = {f € F: f ~ 0},
then Nr is a closed linear subspace of F. Hence L,M(m), L,Z(m), L,M(c(P), m) and
L,Z(o(P),m) are IcHs.

Proof. By Theorems 5.11(ii) and 5.13(ii) for my, ¢ € T and by Definition 13.6, (i) and (ii) hold.
Arguing as in the proof of Theorem 5.14 and using Theorems 11.8(iv) and 11.9(iii) (resp. and
11.9’(iii) in Remark 11.15) for my, ¢ € I in place of (iv) and (vii) of Theorem 3.5 and by Theorem
13.7(i), (iii) (resp. (iv)) holds.

(v) Clearly, ' ~' is an equivalence relation. By Definition 10.4, f ~ g if and only if there exists
M € o(P) with |m||4(M) = 0 for all ¢ € T such that f(¢) — g(¢) =0 fot t € T\M. Let f ~ g and
let ¢ € I'. Then by Theorem 13.2

(mg)3(f — 9, T))" = sup / f — glPdv(c*m) = sup / f — glPdv(z*m) = 0

z*elg z*eUg

since by Theorem 10.14(ii)(c), v(z*m)(M) < ||jm||,(M) = 0 for z* € U;. Hence (mgy);(f—9,T) =0
for all ¢ € T'. Conversely, if (mg);(f —g,T) =0forallg e T, let A= {t € T: f(t) —g(t) # 0}. For
q €T, Ais of the form A = B, U N,, where By € o(P), Ng C M, € o(P) with |m||4(M,) = 0 if
f, g are m-measurable and A = Bq € o(P) if f,g are o(P)-measurable. Then by hypothesis and by
Theorem 13.2, ((mg),(f —g,B¢))P = I S qu |f — g/Pdv(z*m) = 0 and hence v(z*m)(By) =0
for z* € Ug. Then by Proposition 10.14(ii)(c) we have ||m||,(A) = ||m||;(B;) = 0 (in both the
cases). Since g € I is arbitrary, it follows that A is m-null. Using this characterization, it is easy
to check Nr is a closed linear subspace of F and hence the last part of (v) holds.

Definition 13.9. Definition 5.16 is suitably modified for m-measurable (resp. o(P)-measurable)
scalar functions on T' to define (i) convergence in measure (resp. Cauchy in measure) in T or in
A € o(P) with respect to m, for ¢ € T'; (ii) almost uniform convergence (resp. Cauchy for almost
uniform convergence) in T or in A € o(P) with respect to m, for g € I'; and (iii) convergence to f
in (mean®) with respect to m, for ¢ € I and for 1 < p < oo.

Then for functions in £, M(m) (resp. for m-measurable scalar functions on T) (iv)-(viii) of
Theorem 5.18 (resp. Theorem 5.19) hold with m being replaced by my, ¢ € I'. Hence when these
results are used, we simply refer like by (vii) of Theorem 5.18 for m,, etc.

Remark 13.10. If the topology 7 of X is generated by another family I'; of seminorms on X,
then it is easy to show that the topology T,(,’,’) is the same as the locally convex topology generated
by €I(“Ii) (see Definition 13.8(ii)) on the space L,M(m) for 1 < p < oo.
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14. COMPLETENESS OF £,M(m), £,Z(m), £,M(c(P),m) AND L,Z(c(P),m), X A

FRECHET SPACE

If X is a Frechét space and m : P — X is o-additive, then we show that £,M(m) and
Lp(0(P),m) are complete pseudo-metrizable locally convex spaces so that L,M(m) and
Lp(o(P), m) are Frechét spaces for 1 < p < oo. Similar to the case of Banach space-valued measures
in [P4], we introduce two new locally convex spaces L,(m) (resp. Lp(o(P),m)) for 1 < p < oo,
when X is quasicomplete (resp. sequentially complete) and show that (i) £,(m) = £,7(m) (resp.
(") Lp(o(P),m) = L,T(0(P),m)) and (ii) L,(m) is closed in LyM(m) (resp. (ii’) L,(o(P), m)
is closed in £L,M(o(P),m)). Consequently, L,(m) (resp. Lp(o(P),m)) is a Frechét space for
1 < p < oo whenever X is a Frechét space. See Remarks 14.9 and 14.10 for further information.

The following theorem is obtained by adapting the proof of Theorem 6.1 with the use of Theorem
13.2 in place of Theorem 5.3.

Theorem 14.1. Let X be an IcHs, m: P — X be o-additive and 1 < p < oo. Let f, fp,n € K
be m-measurable on T' with values in Kor in [—o0,00] and let ¢ € I". Then: ‘

———

(i) (The Fatou property of (mg);(-, 4)). If [fz| /*|f| mg-a.e. in A € o(P),, then
(mg),(f, 4) = sup(my);(fn, A) = lim(mg); (fn, 4).

(ii) (Generalizad Fatou’s lemma). For A € ;(\/P)q,

(mq);(liln_ljogf |fnl, A) < liggglf(mq);(fn, A).

Theorem 14.2. Let X be a Frechét space with its topology generated by the seminorms (g,){°,
m: P — X be o-additive and 1 < p < co. Then:

(i) LpM(m) (resp. LyM(0(P),m)) is a complete pseudo-metrizable locally convex space so
that LyM(m) (resp. LyM(o(P), m)) is a Frechét space.

(ii) If ¢p ¢ X’; for each ¢ € T (resp. if ¢ ¢ X), then £,7(m) (resp. LpZ(c(P),m)) is a
complete pseudo-metrizable locally convex space so that L,Z(m) (resp. L,Z(o(P),m)) is

a Frechét space.

Proof. (i) By Theorem 13.8 and Remark 13.10, L, M(m) (resp. Lp,M(o(P), m)) is pseudo-
metrizable with respect to 78 which is generated by ((my,)5(+, T))s%;- Suppose (f){° C L, M(m)

(resp. (f)° C LyM(o(P), m)) is Cauchy in . Proceeding as in the proof of Theorem 6.3(i),
we can choose a subsequence (f1,)22; of (f;)° such that (mg,)*(fik+1 — f16,T) < §1g, k € N Let

k
gk =D |fir1— fir

r=1

and
[ o]
g1 =Y _|fir1 = firl-
r=1

Then g; 4,k € Nand g; are m-measurable (resp. o(P)-measurable) and g, ' g1. Moreover,
by Theorem 5.13(ii) for mg,, (mg,)5(914,7) < 1 for all k € N so that by Theorem 14.1(i),
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(mg,);(91,T) = supg(mg,);(91,T) < 1. Then by Theorem 5.12(ii) for my,, g; is finite mg,-

a.e. in T and hence there exists Ny € o(P) with ||m||s, (N1) = 0 such that g; is finite in T\N;.
Arguing similarly with (f1,)22; and mg,, there exist a subsequence (fo,)2; of (f1,-)2, and a set
N3 € o(P) with ||m||q, (N2) = 0 such that

o
g2 = Z lf?,r—{-l - f2,r[
r=1
is m-measurable (resp. o(P)-measurable), (mg,);(g2,7) < 1 and g9 is finite in T\ N2. Proceeding
successively, in the (k + 1)™-step we shall have a subsequence (fx+1,,)%%; of (fkr)%2, and a set
N1 € o(P) with |[m]|g,,,(Ngs1) = 0 such that

oo
ger1 =D |frsrrt1 = frrisl

r=1
is m-measurable (resp. o(P)-measurable), (mg, . )p(gk+1,7) < 1 and g4y is finite in T\Ngy;.
Then the diagonal sequence (fx )72, is a subsequence of each subsequence (f;,)2, starting with

the term f x; and if
o0

9= |fetrhs1 — frk
k=1
then g is m-measurable (resp. o(P)-measurable). Moreover, (mg,);(g,T) < oo for all n since
(myg,)5(gn, T) <1 and (mg,);(fii, T) <ocofori=12,..,n

7

Let N =[{° Np. Then N € o(P) and |[m||q, (N) = 0 for all n. Given t € T\ N, there exists ng
such that ¢t € T\ N,, so that gn,(¢) is finite. As each f, is finite valued in 7" and as all but a finite
number of terms of (fxx)° belong to (fnyr)e2,, it follows that g(¢) is finite. Hence g is finite in
T\N. By Remark 10.5 and by the hypothesis that (g,)° generate the topology of X, it follows
that N is m-null and hence g is finite m-a.e. in 7.

Then the series
[0 @]
Z(fk+1,k+1 — fr k)
k=1

is absolutely convergent in T\N. As (fx,){° is a subsequence of (f,)$°, let fn, = fr k. Let by = fn,
for £ > 1 and hy = 0. Define

fit) = { izo(hes1(t) = ha(®) =lime (1), for £ € T\N

Then f is Kvalued in 7', is m-measurable (resp. o(P)-measurable) and is m-a.e. pointwise limit of
(hk)$°. Let € > 0 and let ng be given. By hypothesis, there exists ro such that (mg, )5 (fr—fe, T) <€
for r,4 > ro so that (mg, )p(hx — he,T) < € for ng,ng > ro. Let F = [J7° N(hg)\N. Then

e

F € a(P),,. (tesp. F € o(P)) and N(f) C F. Then, arguing as in the proof of Theorem 6.3(i) and
using Theorem 14.1(ii) in place of Theorem 6.1(ii), we have (mg, );(f — hx,T) < € for ng > ro.
Then by the triangular inequality, (myg, );(f,T) < co. As ng is arbitrary in N we conclude that
f € LyM(m) (resp. f € LyM(o(P),m)). Moreover, limg(mg, );(f — h,T) = 0. Consequently,

(anO);)(f - fr,T) < (anO);)(fT — fae T) + (m(InO);)(f —hg, T) = 0
as ng,r — oo and hence lim;(my, );(fr — f,T) = 0. As ng is arbitrary in K it follows that f, — f

in %), Hence LyM(m) (resp. L,M(c(P),m)) is complete. Consequently, by the last part of
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Theorem 13.8(v) and by Theorem 5.7 of Ch. 2 and Lemma 11.3 of Ch. 3 of [KN]|, L,M(m) (resp.

LyM(0o(P),m)) is a Frechét space.

(ii) is immediate from (i) and from (iv) (resp. (v)) of Theorem 13.7.

The following corollary is immediate from the proof of the last part of Theorem 14.2(i) and it
holds even if X is not a Frechét space.

Corollary 14.3. Let X be an IcHs, m : P — X be o-additive and 1 < p < co. If
(fa)3° C LypM(m) (resp. L,M(o(P),m)) is Cauchy in (my);(-,T) for each ¢ € T, and if there
exist a scalar function f on T', a subsequence (f,,) of (f,) and an m-null set N € o(P) such that
fn, = fin T\N (resp. and such that f(t) = 0 for t € N), then f is m-measurable (resp. o(P)-

measurable), f € L, M(m) (resp. f € L;M(0(P), m)) and lim,,(my);(fn—f,T) = 0 foreachq € I,
Similar to the second part of Definition 6.5 we give the following

Definition 14.4. Let X be an IcHs, m : P — X be o-additive and 1 < p < oo. Let
Ly(m) = {f € LM(m) : (mg);(f,-)is continuous on o (P) for each
g € '} (resp. Lp(0(P),m) = Ly(m) [\ M(c(P) (see Definition 13.6)) provided with the relative

topology induced by P I~ s as given in Theorem 13.8(v), then £,(m)/ ~ is denoted by

Ly(m) and Ly(c(P),m)/ ~ by Ly(c(P),m). (Note that in the light of Theorem 4.2, the above
definition of £,(m) is the same as that in Definition 6.5 when X is a Banach space.)

Since (my);(f,-) is subadditive and positively homogeneous, £,(m) (resp. Ly(0(P),m)) is a
linear subspace of L, M(m) (resp. of LyM(o(P), m)) so that £,(m) (resp. Ly(c(P),m)) is a
locally convex space and L,(m) (resp. Ly(c(P), m)) is an lcHs.

The following result generalizes Theorem 6.7 to quasicomplete lcHs-valued m.

Theorem 14.5. Let X be a quasicomplete IcHs, m : P — X be o-additive and 1 < p < 0o. Let
f be an m-measurable scalar function on T such that (mg);(f,-) is continuous on o(P) for each
g €T'. Then f € LM(m), and hence f € L,(m). Moreover, L,Z(m) = L,(m).

Proof. Let (my);(f, ) be continuous on ¢(P) for each g € I'. Then by Theorem 6.7, (mg);(f,T) <

oo and |f|P is my-integrable in T for each g € I', where m, has values in X;. Then, in particular,
f € L,M(m) and moreover, by Theorems 4.2, 11.4(ii), 12.2 and 12.3, |f|P is m-integrable in T
with values in X so that |f|P € I(m). Consequently, by Theorem 13.7(i), f € £,Z(m). This also
proves that £,(m) C £,Z(m).

Conversely, let f € £,Z(m) (= Z,(m) by Theorem 13.7(i)). Then, by Remark 12.5, |f|P is m-
integrable in T' with values in X and hence by Theorem 13.4, f € £, M(m) and (mg);(f,-) is
continuous on o(P) for each ¢ € I'. Hence f € L,(m). Therefore, £,7(m) = L,(m).

The following theorem is an analogue of Theorem 4.8 for sequentially complete 1cHs and plays
a key role in the study of £,-spaces of a sequentially complete lcHs-valued m (see Theorem 14.7
below).
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Theorem 14.6. Let X be a sequentially complete IcHs and m : P — X be o-additive. Let

(fn)$* C Z(o(P), m) (see Remarks 11.15 and 12.11) and f be a o(P)-measurable scalar function on
T.1f fp > f m-ae. in T and if v4,(-) = (KL) f(.) fndm, n € N then the following are equivalent:

(i) lim, I1; 0 v, (A) exists in 3(; for each A € o(P) and for each ¢ € T'.
(ii) g 0 4,, n € K are uniformly o-additive on o(P) for each ¢ fixed in T'.
If anyone of (i) or (ii) holds, then lim,~y,(4) = v(A) (say) exists in X, lim, II; o v,(4) =
I 0v(A) € Xq, v:0(P) = X is o-additive, f is m-integrable in T and

~(A) = /Afdm = (KL) /A fdm = li;n (KL) /A fodm, A € o(P).

Proof. By Theorem 11.8(ii), ,, n € K are o-additive on o(P) and hence II; 0 vy,, n € N are
o-additive on o(P) for each ¢ € I'. Then, as lim, II; 0 v, (A) € )A(;, by VHSN (Theorem 2.5), (i)
implies (ii).

Conversely, let (ii) hold. Then by Theorem 4.8, lim,, II; 0 v, (4) = 44 € qu exists uniformly
with respect to A € o(P) (for ¢ € T fixed). Thus, given € > 0, there exists ng(g) € Nsuch that
g 0v,(A) — g 0v,.(A)]g = ¢(v,(A) —v.(A4)) < € for n,r > no(q). Since g is arbitrary in T,
it follows that. (y,,(A4))52, is 7-Cauchy in X. Consequently, as X is sequentially complete, there

n=1

exists 4 € X such that 7,(A) = z4 in 7. Then
[TAq = g(za)lg < |74 —Tg oy (A)lg + [Tg(za — Yn(4))lg = 0

as n — oo and hence 4, = Iy(z4) € X4 Thus lim, I1; 0 4, (A) = Iy(z4) € X, for each ¢ € T.
Hence, particularly, (i) holds.

Let (i) or (ii) hold. Then (ii) holds and as shown above lim,~,(A) = z4 € X exists in 7 for
each A € o(P).

Now, for z* € X*,
z*y(A) = limz*y,(A) = limx*(/ fndm)
n T A
= lim/ frnd(z*m) (by Theorem 11.8(v))
nJA
= lim/ fd(z*m) (by Proposition 2.13)
nJA

and hence f is (KL) m-integrable in T" so that f is m-integrable in T" by Theorem 12.2’ (see Re-
mark 12.11) and v(A4) = (KL) [, fdm = [, fdm € X for A € o(P). Then by Theorem 11.8(ii),
~ :0(P) = X is o-additive.

For a sequentially complete lcHs-valued m, (i) (resp. (ii)) in the following theorem is an ana-
logue of Theorem 14.5 (resp. of Theorem 11.4 combined with Remark 11.5). The following theorem
plays a key role in Section 15 for generalizing the results in Sections 7, 8 and 9 to o-additive vector
measures with values in such spaces.

Theorem 14.7. Let X be a sequentially complete IcHs, m : P — X be g-additive and 1 < p <
0o. Let f be a o(P)-measurable scalar function on 7. Then:
(i) If (mg);(f,-) is continuous on o(P) for each g € T', then f € L;(0(P), m) as well as |f|? is
m-integrable in T with values in X. Moreover,
CPI(U(P), m) = ‘Cp (O(P)’ m)
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€ L,(0(P),m) if and only if |f|P is mg-integrable in T for each qgel. Consequently,

f
E,,(a(’lg),m) = Nyer Lp(o(P), my) where Lp(o(P), my) = M(a(P))[ Lp(my).

Proof. (i) Let (my);(f,-) be continuous on o(P) for each ¢ € I'. Then one can prove that
f € L,M(0o(P), m) by appealing to Theorem 6.7 for m,, ¢ € I, as in the proof of Theorem 14.5.
As |f|P is o(P)-measurable, by the last part of Proposition 10.9 there exists a sequence (s,)° C I,
such that 0 < s, 7 |f|P pointwise in T'. Let ¢ € I'. Then by hypothesis and by Theorem 7.5 for
my, |f|P is my-integrable in T and hence, by Theorem 4.2, |f|? is (KL) mg-integrable in T'. There-
fore, by Theorem 3.7 for my, (v,(A))$° is Cauchy in X, where v,,(4) = [, spdm for A € o(P).
Since ¢ is arbitrary in I', then by Theorem 14.6, |f|P is (KL)m-integrable in T' with values in X.
Therefore, f € Z,(c(P),m). Then by Theorem 13.7(i), f € L,Z(o(P),m). This also proves that
ﬁP(U(P)a m) - EPI(U(P)a m)

Converesely, if f € L,7(0(P),m) (= I,(6(P),m) by Theorem 13.7(i)), then |f|P is (KL) m-
integrable in T and hence f € L,(c(P),m) by Theorem 13.4 and Definition 14.4. Therefore,
LpZ(0(P), m) = Ly(o(P), m).

(i) If f € L,(0(P), m), then |f|P is (KL) m-integrable in T so that by Theorem 11.8(v), |f|?
is (KL) mg-integrable in T for each ¢ € T" as my; = II; o m. Then the condition is necessary
by Theorem 4.2. Conversely, if |f|P is mg-integrable in T for each ¢ € I', then by Theorem 7.5,
(myg),(f,-) is continuous on o(P) for each ¢ € I and hence by (i), f € £,(c(P), m). The last part
holds by the above part and by Theorem 4.2.

Theorem 14.8. Let X be an IcHs, m : P — X be o-additive and 1 < p < cc. Then:

(i) If X is quasicomplete, then £,(m) (=£,Z(m) by Theorem 14.5) is closed in £, M (m).

(ii) If X is a Frechét space, then £,(m) (= £,Z(m) by Theorem 14.5) is a complete pseudo-
metrizable locally convex space. Consequently, L,(m) (= L,Z(m)) is a Frechét space.

(iii) If X is sequentially complete, then £,(o(P), m) (=L,Z(o(P), m) by Theorem 14.7) is closed
in LM(o(P), m).

(iv) If X is a Frechét space, then £,(c(P),m) (=£,Z(o(P), m) by Theorem 14.7) is a complete
pseudo-metrizable locally convex space. Consequently, Ly(o(P), m) (= LyZ(c(P),m)) is a
Frechét space.

Proof. (i) (resp. (iii)) Let f be an element in the closure of £,(m) in £,M(m) ( resp. in the
closure of L,(c(P),m) in L,M(o(P),m)). Let ¢ € I'. For each n € N, there exists f,(lq) € L,(m)
(resp. f,(lq) € L,(0(P), m)) such that (mg)y(f — f(q) T) < 1. Given € > 0, choose ng such that
l < €. Then (mg)y(f — f,(lq), T) < £ for n > ng. Let (Ek) C o(P) such that E; \, 0. Since

(q) € L,(m) (resp. € L,(a(P), )), there exists ko such that (mg)3( ,(lg),Ek) § for k > ko.
Then

(mg)p(f, ) < (mg)y(f — £, Ex)
+ (mg)p(f39, Br) < (mg)p(f — £19,T) + (my)p(f10, Bx) < e

f,-) is continuous on o(P). As ¢ € T" is arbitrary, we conclude that
(P),m)) and hence (i) (resp. (iii)) holds.

for k > ko. Hence (m,)5(
f € Ly(m) (resp. f € Lp(o

(i) (resp. (iv)) The first part is immediate from (i) (resp. (iii)) and from the first part of
Theorem 14.2(i). Then L,(m) (resp. L,(o(P),m)) is a Frechét space by Theorem 5.7, Ch. 2 and
Lemma 11.3, Ch. 3 of [KN] and by the fact that L,(m) (rsp. Ly(o(P), m)) is an LcHs by Theorem
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13.8(v).

Remark 14.9. One can prove directly that L£,(m) (resp. Lp(c(P),m)) is a complete pseudo-
metrizable space for 1 < p < co whenever X is a Frechét space. In fact, let (f,)3° C L£,(m) be
Cauchy in (my,);(+, T) for each n € N where gn, n € Ngenerate the topology of X. Arguning as
in the proof of Theorem 14.2(i), we obtain a subsequence (fn, )72, of (f+){° and an m-measurable
scalar function f on T such that f,, — f m-a.e. in T and such that limg(mg, )5 (fn, — f,T) =0,
for each n € N Then, given n € Nand € > 0, there exists ko such that (mg,);(fn, — f,T) < § for
k > ko. Let E; \, 0 in o(P). Then there exists an £y such that (mg,);(fn, , Ee) < § for £ > 4,
since fn, € Lp(m). Then (mg,);(f, Er) < (mgn)y(f — fry» T) + (Mg, )5 (fny, Ee) < € for £ > £
and hence (my, )7(f,-) is continuous on o(P). Since n is arbitrary in N f € Ly(m) by Theorem
14.5. Moreover, by an argument similar to that in the last part of the proof of Theorem 14.2(i),
lim,(mg, )5 (fr — f,T) = 0. Hence £,(m) is complete and consequenctly, L,(m) is a Frechét space.
Similarly, the completeness of £,(c(P), m) is proved, where we have to use Theorem 14.8 in place
of Theorem 14.5.

Remark 14.10. When p = 1 and when the domain of m is a o-algebra, the second part of
Theorem 14.8(iv) is obtained in Theorem 4.1, Ch. IV of [KK] for a real Frechét space X, using
the concept of closed vector measures. Later, when X is a complex Frechét space admitting a
continuous norm, a simple direct proof (without using closed measures) is given for the said result
in [Ri3]. Recently, for an arbitrary complex Frechét space X, a direct proof of the above result is
given in [FNR] and the proof in [FNR] uses the complex version of Theorem 4.1, Ch. II of [KK] and
the diagonal sequence argument. As the reader can observe, our proof is also direct and moreover,
is much more stronger than the proofs in the literature, since not only the domain of the vector
measure m is assumed to be just a é-ring but also p is arbitrary in [1,00). As for the problem
of completeness of Ly-spaces for vector measures defined on d4-rings, the reader may note that the
concept of closed vector measures is inutil.

15. CHARACTERIZATIONS OF L,-SPACES, CONVERGENCE THEOREMS AND
RELATIONS BETWEEN Lp-SPACES

In this section, using Theorem 14.5 (resp. Theorem 14.7) we generalize the results in Sections 7,
8 and 9 to a quasicomplete (resp. sequentially complete) lcHs-valued o-additive vector measure m
on P. Similar to that in Definition 6.5, we introduce the space L,Z,(m) (resp. LpZ;(c(P), m)) and
show that £,(m) = L,Z(m) = LZ,(m) (resp. Lp(c(P),m) = L,Z(c(P),m) = LZ;(c(P),m))
for 1 <p < o0.

Theorem 15.1 (Generalizations of Theorem 7.1). Let X be a quasicomplete (resp. se-
quentially complete) IcHs, m : P — X be o-additive and 1 < p < oco. Let f : T — K (resp.
o(P)-measurable) and (f,(zq))fo C L,(my) (resp. C Ly(o(P), my)) for each g € I'. Suppose f,(ﬂ) - f
mg-a.e. in T for each ¢ € I". Then (mq);(f,(ﬂ) — f,T) = 0 as n — oo for each ¢ € " if and only if

(mq);,(f,(ﬂ), -), n € K are uniformly continuous on o(P) for each g € I'. In that case, f € L,(my)
(resp. f € Lp(o(P),my)) for each g € I and f € L,(m) (resp. f € Ly(c(P), m)). Moreover, when

p=1,
/f;;z)qu /fqu—/f,(ﬂ)qu =0 (15.1.1)
A A A

q

al /A fdm) ~ lim

< lim
n

q
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for A € o(P) U {T} and for each q€ I’ so that the limit in (15.1.1) is uniform with respect to

A € o(P) (for g €T fixed).

Proof. By hypothesis, f is mg-measurable for each ¢ € I' and hence f is m-measurable (resp.
by hypothesis, f is o(P)-measurable). As my = II,om : P — X, is og-additive, the first part is
immediate from Theorem 7.1. Moreover, in that case, f € L,(my) (resp. f € L,(0(P),my)) for
each ¢ and hence, by Theorem 7.5, |f|? is mg-integrable in T for each ¢ € I'. Then by Definition
12.1 and by Theorem 12.3 | f|P is m-integrable in T' with values in X and hence f € Z,(m) = £,(im)
by Theorems 12.2, 13.7(i) and 14.5 (resp. by Theorem 14.7(ii), f € L,(c(P), m)).

Now let p = 1. Given ¢ € I' and € > 0, there exists ng such that (mg)J(f — f,(lq),T) < € for all
n > ng. Then by Theorem 12.2 (resp. by Theorem 12.2°) and by (13.2.1) we have

o fam) - ‘ [ #0dm, q

‘ / fdmg — / f9dm,
A A q

(f = fD)dmy| < (m)}(f - fl9,T)<e (15.1.2)
A q

for n > ng and for all A € o(P)U{T}. Then (15.1.2) implies (15.1.1) and that the limit in (15.1.1)
is uniform with respect to A € o(P).

IA

Theorem 15.2 (Generalizations of Theorem 7.2). Let X be a quasicomplete (resp. sequen-
tially complete) IcHs, m : P — X be o-additive and 1 < p < 0. Let f: T — Kbe m-measurable

(resp. o(P)-measurable). A sequence ( f,(,q))‘fo C Lp(my) (resp. C Lp(c(P), my)) converges to f
n (mean?) with respect to my for each ¢ € I if and only if ( f,(lq)) converges in measure in T' with

respect to m, for each ¢ € I' and (my),( f,(,q), -}, n € N, are uniformly continuous on o(P) for each
g € I'. In that case, f € L,(m) (resp. f € Ly(c(P),m)). When p = 1, results similar to those in
the last part of Theorem 15.1 hold.

Proof. The first part is immediate from Theorem 7.2. Then by the said theorem, f € £,(m,)
(resp. f € Ly(0(P),my)) for each ¢ € I'. Then as shown in the proof of Theorem 15.1, we conclude
that f € £,(m) (resp. f € L,(0(P), m))and the results asserted for p = 1 hold.

The a.e. convergence version in the following theorem generalizes Theorem 11.11 and Corollary
11.12 (resp. Theorem 11.11° and Corollary 11.12’ in Remark 11.15) for general p € [1, 00).

Theorem 15.3. Let X be an IcHs, m: P - X be o-additive and 1 < p < oo. Then:

(i) (LDCT and LBCT for £,(m), X quasicomplete). Let X be quasicomplete and
f,(,q), n € N be mg-measurable scalar functions on T for each ¢ € I'. Let g € L,(my)
for each ¢ € T and let |f,(,q)| < |g| mg-a.e. in T for each q € I (resp. let P be a o-ring
S and let K9 be a finite constant such that |f | < K@ mg-ae. in T for each g € T)
and for all n. If f,(,q) — f mga.e. in T where f is a scalar function on T or if f is an

m-measurable scalar function on T" and if f,(,q) — f in measure in T with respect to m, for
each g € ', then f, f,(,q), n € N belong to £,(mg) and limn(mq)z',(f,(,q) — f,T) = 0 for each
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g € T. Consequently, f € £L,(m). When p =1,

q( /A fdm)—lirrln} /A f,(ﬂ)quq /A fdm, — /A F9Ddm,

for A € o(P) U{T} (resp. for A € SU{T}) for each g € T so that the limit in (15.3.1) is
uniform with respect to A € o(P) (resp. A € S).
(ii) (LDCT and LBCT for £,(c(P), m), X sequentially complete). Let X be sequentially

complete and let ( f,(ﬂ))‘lx’, g, f be o(P)-measurable scalar functions and K9 constants
satisfying the the other hypothesis in (i). Then f, f,(,q), n € N belong to £,(0(P), my) and
limy, (mg)5( AL f,T) =0 for each ¢ € ' and f € £,(o(P),m). Then, for p = 1, the
remaining assertions in (i) hold here verbatim.

=0 (15.3.1)
q

< lim
n

Proof. By hypothesis, (i) is immediate from Theorems 15.1 and 15.2, in the light of Theorems
5.11(iv) (for my), 11.9(i)(b), 11.9(iii), 14.5 and 12.2 and Remark 12.5. By hypothesis, (ii) follows
from Theorems 15.1 and 15.2 in view of Theorems 5.11(iv) (for m,), 11.9’(b), 11.9°(iii) (in Remark
11.15), 14.7(i) and 12.2’ (in Remark 12.11). '

The following is motivated by the first part of Definition 6.5.

Definition 15.4. Let X be a quasicomplete (resp. sequentially complete) lcHs and let m :
P — X be o-additive. For 1 < p < o0, let £,Z,(m)= closure of Z; in the locally convex space

(EpM(m),T,(,’:)) (resp. LpTs(0(P),m)= closure of Z; in the locally convex space
(L,M(a(P),m), %)). Let LpTy(m) = L,I,(m)/ ~ and L,Zy(c(P),m) = L,T,(0(P),m)/ ~.
By £pZ;(m) we mean the locally convex space (EpIs(m),T,(,f)| £pTs(m)) and LpTs(m) is the IcHs
with the corresponding quotient topology. Similarly for £,Z,(0(P),m) and L,Z;(c(P), m).

The following result generalizes Theorem 7.5 to a quasicomplete (resp. a sequentially complete)
lcHs-valued vector measure.

Theorem 15.5.(Characterizations of £,Z7(m))(resp. £,Z(c(P), m)). Let X be a quasicom-
plete (resp. sequentially complete) IcHs, m : P — X be g-additiveand 1 <p <oo. Let f : T - K
be m-measurable (resp. o(P)-measurable). Then the following statements are equivalent:

(i) f € Zp(m) (resp. (') f € Ip(o(P), m)).
(i) (mg)y(f,-) is continuous on o(P) for each g € I'.
(iii) (Simple function approximation). For each ¢ € I', there exists a sequence (35{1))‘1’" cI,
such that s{¥ — fmga.e. in T and such that limn(mq);,(sglq) — f,T) =0 (resp. (iii’) there
exists a sequence (s,){° C Z; such that s, — f pointwise in T and such that lim, (m,)3(sn—

£,T)=0).
Consequently,
LpyZ(m) = I,(m) = L,T,(m) = Lp(m). (15.5.1)
(resp.
LpZ(0(P),m) =I,(0(P),m) = LyL;(0(P),m) = Lp(c(P), m). (15.5.1"))

Ifeg g Xq for each ¢ € T', then
LpM(m) = L,I(m) = Tp(m) = LpZ,(m) = L,(m). (15.5.2)
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(resp. if ¢¢ ¢ X, then L,M(0(P),m) = L,I(c(P),m) = I,(6(P),m) = L,Z,(c(P),m) =
Lp(a(P), m). (15.5.2")) '

Proof. (i)<(ii) by Theorems 13.7(i) and 14.5 (resp. (i’)<>(ii) by Theorems 13.7(i) and 14.7(i)).

(ii)=(iii) by Proposition 10.9 and by Theorems 14.5 and 15.3(i) (resp. (ii)=(iii’) by the last
part of Proposition 10.9 and by Theorems 14.7 and 15.3(ii)).

(iii)=(ii) (resp. (iii’)=>(ii)) Let ¢ > 0 and ¢ € I". Let A \, 0 in o(P). Arguing as in the proof
of (iii)=>(ii) of Theorem 7.5 with my in place of m, we can show that there exists ky(g) such that
( )p(f, Ay) < e for k > ko(q) and hence (ii) holds.

Thus (1)< (ii)<(iii) (resp. (") (ii)e(iii’)).

Since Z; C I,(m) = £,Z(m) by Theorem 13.7(i), £,Zs(m) C closure of
LpZ(m) in L, M(m)= closure of L,(m) in L, M(m) =L,(m) by Theorems 14.5 and 14.8(i). On the
other hand, Z;(m) is dense in £,(m) by (iii) and by Theorem 14.5 and hence £,(m) C, £,Z,(m).
Therefore, £,Z;(m) = Ly(m). Consequently, (15.5.1) holds by Theorems 13.7(i) and 14.5. A sim-
ilar argument invoking (iii’) and Theorems 13.7(i), 14.7(i) and 14.8(iii) proves (15.5.1’). (15.5.2)
(resp. (15.5.2")) holds by (15.5.1) and by Theorem 13.7(iv) (resp. by (15.5.1’) and by Theorem
13.7(v)).

The following result which generalizes Theorem 7.7 is immediate from Theorem 15.5.

Theorem 15.6. Let X be a quasicomplete (resp. sequentially complete) IcHs, m : P — X
be o-additive and 1 < p < co. Then T is dense in Ly(m) (resp. Z; is dense in £L,(c(P), m) and

moreover, given f € L,(0(P),m) there exists a sequence (s,)7° C I, such that sy — f in T,(,’,’)).

Similar to Definition 6.10 we can introduce Loo(m) and L (o(P),m) for an IcHs-valued o-
additive vector measure m on P.

Definition 15.7. Let X be a quasicomplete IcHs and m : P — X be o-additive. Then we define
Loo(m) = {f : T - K f m-essentially bounded
m-measurable function} and || f||co = ess sup;cp|f(t)| for f € Loo(m). Then Loo(m) = Log(m)/ ~.
In the above, if X is sequentially complete, then we define Loo(co(P),m) = {f € M(a(P) :
fm-essentially bounded}, ||f||oc = ess supt € T'|f(t)| for f € Loo(c(P),m). Then Lo(c(P),m) =
Loo(c(P),m)/ ~. As in convention 7.10, the members of Lo,(m) and Ly (c(P), m) are treated as
functions in which two functions which are equal m-a.e. in T are identified.

In the light of (10.7.1) and the o-subadditivity of |jm||4 on o(P) for g € I, the proof of Theorem
6.11 holds here to obtain

Theorem 15.8. Let X be a quasicomplete (resp. sequentially complete) IcHs and m : P - X
be o-additive. Then Loo(m, || ||co) (resp. Loo(o(P),m),|| - ||oo)) is & complete seminormed space
so that Loo(m) (resp. Loo(o(P),m)) is a Banach space.

Notation 15.9. In the light of Theorem 15.5 we shall hereafter use the symbol £,(m) (resp.
Ly(0(P),m)) to denote not only the space given in Definition 14.4 but also anyone of the
spaces L,7,(m), £L,7(m) or I,(m) (resp. L,Z;(0(P),m), L,Z(c(P),m) or I,(c(P), m). The
quotient £,(m)/ ~ is denoted by L,(m) (resp. L,(c(P),m)/ ~ is denoted by L,(c(P), m))



32 T.V. PANCHAPAGESAN
and as in Convention 7.10, the members of the latter are treatd as functions in which

two functions which are equal m-a.e. in T are identified.

The following result generalizes Theorem 7.12 and is proved by an argument similar to that in
the proof of the said theorem, in which we use (iv) and (vi) of Theorem 5.18 and Theorem 5.19
with respect to mg,, Remark 12.5, Theorems 11.4, 15.5 and 14.8(i), Corollary 14.3 and inequality
(13.2.1). Details are left to the reader.

Theorem 15.10. Let X be a quasicomplete IcHs, m : P — X be ¢-additive and 1 < p < .
An m-measurable scalar function f on T belongs to £,(m) if and only if, for each ¢ € T, there

exists a sequence (s0)®° C Z, (resp. (fi9)° C L,(m)) such that s 5 f (resp. £2 = f) in

measure in T' with respect to m, and (SS:” ) (resp. ( 9 )) is Cauchy in (meanP) with respcect to
m, Whenp=1, f € £L;(m) and

=0)
q

lim

=0 (resp. lim
n n

q

/ (f — 50)dm,
A

/ (f — f©)dm,
A

for A € o(P)U{T} and for ¢ € T, the limit being uniform with respect to A € o(P) (for q fixed).

The following result generalizes Theorem 7.11 to Frechét space-valued o-additive vector measures
on P.

Theorem 15.11. Let X be a Frechét space with its topology generated by the seminorms (gn)$°
and let m: P — X be o-additive. For 1 < p < oo, let L(m) = {f € £,(m) : f real valued} (resp.
mg, ) (f,T
£i(o(P),m) = {f € Lp(c(P),m) : f real valued}). Let |f|®) = ¥ L li(,;qi);f; T for f € Ly(m)
(resp. f € Lp(c(P), m))(15.11.1). Then:

(i) | -|Sf,) is a complete quasinorm on Ly(m) (resp. on Ly(c(P), m)) in the sense of Definition 2,
Section 2, Ch. I of [Y] and generates the quotient topology induced by ¥ on Ly(m) so that
(Lp(m), |-|B) (resp. (Ly(o(P),m),|-|\%))) is the Frechét space Ly(m) (resp. Ly(o(P), m)).
(ii) (Lp(m),] - |£§?) (resp. (Lp(o(P),m),] - |Sf,))) is a Frechét lattice ( i.e., an F-lattice in the
sense of Definition in Section 3, Ch. XII and Definition 1 in Section 9, Ch. I of [Y]) under
the partial order f < g if and only if f(t) < g(t) m-a.e. in T for f,g € L;(m) (resp. for
f,9 € Ly(o(P), m)).
(iii) Loo(m) (resp. Loo(0(P),m)) is a Banach lattice.

Proof. We shall prove the results for L,(m) and Lj(m) only. In the light of Theorem 14.8(iv) and
Theorem 11.9(iii), the proof of the other case is similar.

(i) Ly(m) is a Frechét space by Theorem 14.8(ii) and consequently, L7,(m) is a Frechét space over
R Arguing as in the proof of the first part of Proposition 2, §6, Ch. 2 of [Ho] and using the fact
that (mg,)>(-,T), n € K are seminorms, one can show that |- |Sf,)
on Ly(m). Let the sequence f, — f in Ly(m). Given € > 0, choose ko such that

given in (15.11.1) is a quasinorm

1
st < 5- By
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hypothesis, there exists ro such that (mg,);(fr — f,T) < 5 for r > o and for n = 1,2,...,kg. Then

a0 =1 (mg )y (fr - £, T)
e =Sl = ,;2"1+(mq,.);,(f,-—f,T)
o 1 (mg)y(fr— £,T) e
S T (m, )y - £T) 2
ko 1 € €
< Lyt
< €

for r > ry. Conversely, let |f, — I(p ) 0. Let n € Nbe given and let & 5 > € > 0. Then there exists

ro such that [, — 118 < e for v 2 ro. Then (mg, (s — £.7) < $(1+ (mg, (s — £,7)) 50
that (mg, )5 (fr — f,T) < e for r > ro. Hence (my,)p(fr — f,T) > 0asr — 0. Smce n is arbitrary,

it follows that f, — f in the topology of L,(m) (see Remark 13.10). Hence the topology of L,(m)

is generated by | - |§£) .

If (fr){° is Cauchy in | - |£f,), then replacing f, — f by f, — fx in the above argument (in the
converse part), it follows that (f.) is Cauchy in (mg,);(-,T) for each n and hence by Theorem

14.8(ii), there exists f € L,(m) such that f, — f in L,(m) and hence in | - |Sﬂ). This completes
the proof of (i). (The compatiblity of the topology generated by | - |£f,) with that of L,(m) follows
from Remarks 1.38(c) of [Ru], but not the completeness of | - |£ﬂ).)

(ii) If |f|] < |g| in Lj(m), then by Theorem 13.2 (my,);(f,T) < (my,);(g,T) for each n and

consequently, |f |$f,) < |g|£f,). As L7(m) is a vector space and as L7(m) is a lattice by Theorem
11.9(iii), it follows that Lj(m) is a lattice. Clearly, f < g implies f +h < g+ h and of < ag
for f,g,h € Ly(m) and o > 0. Hence Ly(m) is a vector lattice. Consequently, by (i), L;(m) is a

Frechét lattice with respect to | - |£f,)
(iii) In the light of Theorem 15.8, the result is obvious.

The following theorem generalizes Theorems 8.5, 8.6, 8.7 and 8.10 and Corollary 8.11 to a qua-
sicomplete (resp. sequentially complete ) lcHs-valued vector measure.

Theorem 15.12. Let X be an IcHs, m : P — X be o-additive and 1 < p < oc. Let X be
quasicomplete (resp. sequentially complete). Then:

(i) (Generalizations of Theorem 8.5). Let ( (q))n 1 C Ly(my) (resp. C L,(0(P),my)) for
each ¢ € ' and f : T — Kbe m-measurable (resp. a(’P)-measurable). Then f € £,(m)
(resp. f € L,(0(P),m)) and limn(mq);,(f,(ﬂ) — f,T) = 0 for each q € T" if and only if the
following conditions hold:

(a) fT(Lq) — f in measure in each E € P with respect to m, for each g € T".

(b) (mq);,(f,(ﬂ), -), n € K are uniformly mg-continuous on o(P) for each ¢ € T".

(c) For each € > 0 and g € T, there exists A € P such that (mq);,(f,(Lq),T\AEq)) < e for
all n € N (See Notation 8.1.)
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In such case, for p =1, [, fdmg = lim, [, fnﬁ)qu, A € o(P) and the limit is uniform with
respect to A € g(P) for g € T fixed.

(ii) (Generalizations of Theorem 8.6). Let (f,(lq));’l":1 C Lp(my) (resp.C Ly(o(P), my)) for
each ¢ € I and let f : T — K(resp. be o(P)-measurable). Suppose f,(lq) — fmgae inT
for each ¢ € T'. Then f € L,(m) (resp. f € L;(c(P), m)) and lim, (myg),( o £T)=0
for each ¢ € T if and only if the following conditions are satisfied:

(a) (mg)y( ,(1‘1), -}, n € KN are uniformly mg-continuous on o(P) for each q el

(b) For each € > 0 and ¢q € T, there exists AY € P such that (mq)p( T\A ) < ¢ for
all n.

In such case, for p =1, [, fdmg = lim,, [, f,(lq dmg for A € o(P) and the limit is uniform

with respect to A € o(P) for g € T fixed.

(iii) LDCT and LBCT as given in (i) and (ii) of Theorem 15.3 are deducible from (i) and (ii)
above.

(iv) (Generalizations of Theorem 8.10). For each g € T, let (f{?),

a € (D'9,>,), be a net of m,;-measurable (resp. o(P)-measurable) scalar functions on T
and let f : T — Kbe m-masurable (resp. o(P)-measurable). Let ¢'9 € £,(m,) (resp.
€ Ly(6(P), my)) and let lféq)l < |9'9| mg-a.e. in T for each a € (D@, >,) and for each
g € T. Then fc(,q) — f in measure in T with resepect to each my, ¢ € T', if and only if
f € Lp(m) (resp. f € Lp(d(P),m)) and lim,¢(p) > )(mg)p(fa @ —f,T)=0{foreachq€eT.

In such case, for p =1, [, fdmg = lim, [, fc(,q)qu for A € o(P) where the limit is uniform
with respect to A € o(P) for g € T fixed.

(v) (Generalizations of Corollary 8.11). Let P be a o-ring S and let 0 < K, < oo for
each g € . If ( c(,q)) is a net as in (iv), if |fc(,q)| < K, mg-a.e. in T for each a € (D9, >,)
and for each ¢ € T" and if f : T — K is m-measurable (resp. o(P)-measurable), then
féq) — f in measure in T' with respect to m, for each ¢ € I if and only if f € L;(m)
(resp. f € Lp(o(P), m)) and limg(mg)y( 9 f,T) = 0 for each g € I". In such case, for
p=1, [, fdmg = lim, [, fc(,q)qu for A € o(P) where the limit is uniform with respect to
A € o(P) for g € T fixed.

Proof. In the light of Remark 12.5 (resp. Remark 12.5’ in Remark 12.11) and Notation 15.9, the
above results hold by Theorems 11.4 and 12.3 (resp. by Theorem 14.7), by Lemmas 8.2 and 8.4
and by the respective results in Section 8 which they generalize.

The following theorem generalizes the results in Section 9 to a quasicomplete (resp. sequentially
complete) lcHs-valued vector measure.

Theorem 15.13. Let X be a quasicomplete (resp. sequentially complete) IcHs, m : P — X be
o-additive and 1 < p < 0o. Then the following statements hold:

(i) Lp(m) = Nyer £p(my) (resp. (i') £p(<7(7’),m) = Nger £p((P), m q))

(i) If1 <r <p<s<oo,then L,(m)[Ls(m) C Lp(m). (resp. (ii’) Lr(o(P),m)[}Ls(c(P), m) C
£,(o(P), m)).

(ili) If f : T — Kis m-measurable (resp. (iii’) is o(P)-measurable), then Zy = {p: 1 < p <
o0, f € Lp(m)} (resp. Zf(o(P)) ={f :1 < p < oo, f € Ly(a(P), m)}) is either void or an
interval, w/_hgl;e singletons are considered as intervals.

(iv) Let A € o(P) (see Definition 11.3) (resp. (iv’) A € o(P))such that x4 is m-integrable
in T. Then the set Z;(A) = {p: 1 < p < o0, fxa € Lp(m)} (resp. Tp(a(P),A) = {p:
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1 <p< oo, fxa € Ly(o(P),m)}) is either void or an interval containing 1 (Z;(A)(resp.

Ir(o(P), A))={1} is permitted).
(v) Let P be a o-ring S. Then:

(a) If 1 <7 < s < o0, then L5(m) C L.(m) (resp. (') Ls(o(P),m) C L;(c(P),m)) and
the topology of L;(m) (resp. of L;(o(P), m)) is finer than that of £,(m) (resp. of
£,(o(P), m)).

(b) If f : T — Kis m-measurable (resp. (b’) o(P)-measurable), then the set Z; = {p :
1 <p<oo,f€Lym)} (resp. Is(o(P)) is either void or an interval containing 1 (Z
(resp. Zs(o(P))={1} is permitted).

Proof. (i) holds by Remark 12.5 and by (i) and (ii) of Theorem 11.4 (resp. (i’) holds by Theorem
14.7(ii)). (ii) and (iii) hold by (i) and by Theorem 9.2. (ii’) and (iii’) hold by (i’), by Theorem 9.2
and by the fact that £,(0(P), m) = L,(m) [ M(P). (iv) is due to (i) and Theorem 9.3. (iv’) is due
to (i), Theorem 9.3 and the definition of £L,(c(P), m). (v)(a) (resp. (v)(a’)) is due to Corollary 9.4
and the fact that (mg)2(f,T) < (mg)3(f,T) - (||m]||o(N(f))*~+ for each q € T and for f € L;(m)
(resp. f € Lp(o(P),m)) by Theorem 9.3. (v)(b) (resp. (v)(b’)) follows from (v)(a) and (iii)(resp.
(v)(a’) and (ii1’)). '

16. SEPARABILITY OF £,(m) AND £,(¢(P),m),1 < p < 0o, m LcH-VALUED

In this section we give some sufficient conditions for the separability of L,(m) (resp. of
Ly(o(P),m)) for 1 < p < oo, when m : P = X is o-additive and X is quasicomplete (resp.
sequentially) complete. For such p, we also include a generalization of Propositions 2 and 3(ii) of
[Ri2] to Ly(m) and to Ly(o(P),m) when P is a o-ring.

Definition 16.1. Let X be a quasicomplete (resp. sequentially complete) IcHs, m: P - X be
o-additive and 1 < p < oco. We identify P with the subset F = {x4 : A € P} of L,(m) (resp. of

Ly(0(P), m)) and endow P with the relative topology 'r,(,’:)|p. Then we write (P, 'r,(,’:)).

For A, B € P, we define p(m),(lp)(A, B) = (mg)y(xa — x8,T) for ¢ € . By Theorem 13.2 and
Proposition 10.14(ii)(c) we have

p(m)P(A,B) = sup ( / Xaapdv(z*m))? = sup (v(z*m)(AAB))? = (||m||s(AAB))»
z*eUg JT z*elyg

for A, B € P. Moreover, by Theorems 5.11(iv) and 5.13(i) for my, p(m),(lp) is a pseudo-metric on

P. Thus, the topology 'r,(,’,’)lp is generated by the pseudo-metrics {p(m)gp ), qgeT}.

Theorem 16.2. Let X be a quasicomplete (resp. sequentially complete) IcHs, m : P - X be
o-additive and 1 < p < co. Then:

(i) If (’P,’r,(,’:)) is separable, then £,(m) and Ly(m) (resp. L,(0(P), m) and Ly(c(P), m)) are

separable. Moreover, for 1 <r < o0, 'r,(,:)|p = 'r,(,’:)|p and conseuently, (’P,'r,(;)) is separable

whenever (P, 'r,(,’:)) is separable and in that case, £.(m) and L.(m) (resp. £,(o(P), m) and

L,(o(P),m)) are separable for each r € [1, 00).
(i) If X is further metrizable, then £,(m) (resp. Ly(o(P),m)) is separable if and only if

(P, Tr(g)) is separable.
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Proof. (i) By hypothesis there exists a countable subset D of P such that D is 7ob)-dense in P. Let

W = {3}_ ajxr, : @j = aj + ib;, a;, b; real rational, (F;)}

C D,r € N. Then W is countable. Let s = ZLI Bixa; € Ls, Bj # 0 for all j. Then ¢ =
le |Bil > 0. Let U be a T,(,I,’)-neighborhood of 0 in L,(m) (resp. in Lp(c(P),m)). Then

there exist an € € (0,1) and qi1,q2,...,qn in T such that {f € Ly(m)(resp.f € Ly(c(P),m)) :

(mg)3(f,T) < € = 1,2,..,n} C U. Let M = 1+ supj<icn1<j<k(llmllg(4;))7. Since D is

7P-dense in P, there exist (F;)¥ C D such that

. 1 €
(mg)p(xF; = x4;,T) = (llmllg; (4;8F;))> < o~ (16.2.1)
for i = 1,2,...,n and j = 1,2,...k. Choose a; = a; + ib;,a;, b; real rational for j = 1,2, ...,k such
that Z;?:l 1Bj — aj| < 535 Let w = Z§:1 a;jxr;- Then w € W. Now by Theorem 5.13(i) for m,
and by (16.2.1) we have

(g (F)> < (IImllg (F\A7)7 + (lmllg, (F; N A;))
< (|jmllg(FjA4;))7 + (|[ml|q(45))7
< g +(mllg(4))7 (1622

forj=1,2,..,kandi=1,2,...,n

Again by Theorem 5.13(i) for m, and by (16.2.1) and (16.2.2) we have

k
(mg);(s —w,T) < D (mg)5(Bxa, — ajxr;,T)

<.
Il
—

M-

|,Bj - aji(mq’l, XFJa + Z |:BJ mlh - XFj7T)

o
It
—_

t

185 — | (||ml|g; (£ 5+Z|5J

Jj=1
k 1€
< Z(WJ aJl_ +Z|:BJ_aJI (Ilmyg,[[(4;))? + 3
Jj=1
ec
< gtaggMtgee

fori=1,2,...,nsince M >1and 0 < ¢ < 1 and hence w € s + U. This shows that W is T,(,’,’)—dense

in Z,. Since Z; is r{P)-dense in Lp(m) (resp. in L,(0(P), m)) by Theorem 15.6, it follows that W is
dense in Lp(m) (resp. in Ly(o(P), m)) and hence L,(m) (resp. L,(c(P), m)) is separable. Then
L,(m) (resp. L,(c(P), m) is separable by Problem H, Ch. 4 of [Ke].

Let 1 < r < oo and let ¢ € T'. Since p(m),({)(A,B) = (Hqu(AAB))%, it follows that

p(m)((]r)(A,Ba) — 0 if and only if p(m),(lp)(A,Ba) —~ 0 for A € P and for a net (B,) C P.
Hence the second part of (i) holds.

(i) If X is metrizable, £,(m) (resp. Lp(o(P),m)) is pseudo-metrizable and hence if £,(m)
(resp. Lp(c(P),m)) is separable then by Theorem 11, Ch. 4 of [Ke], (P, T,(,’,’)) is separable. The
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converse holds by (i).

The following theorem gives a sufficient condition for the separability of (P, T,(,’,’)).

Theorem 16.3. Let X be a quasicomplete (resp. sequentially complete) lcHs and let S be a
o-ring of subset of T. Suppose m : P — X (resp. n : § — X) is o-additive. If there exists a
countable family R such that (i) P is the é-ring (resp. (ii) S is the o-ring) generated by R, then

(P, 7®)) (resp. (S, 7)) is separable for 1 < p < oo.

Proof. In the light of Theorem 5C of [H], without loss of generality we shall assume that R is a
countable subring of P (resp. of §). Let 1 < p < oo, p fixed.

(i) Let A € P and let U be a T,(,’,’)|p-neighborhood of A in P. Then there exist an € > 0
and q1,42,...,qx in I" such that {B € P : p(m),(fj’)(A,B) < €67 =12..,k} CU. By hypothesis
and by Corollary to Proposition 10, §1 of [Din], there exists F € R such that A C F. Then
F NP is a g-algebra of subsets of F' and hence by Theorem 2.6 there exist control- measures

(J) :FNP — [0,00) formg, : FNP — qu, j =1,2,....,k. Hence there exists § > 0 such that

y%)(B) < ¢ implies ||m]|y;(B) < € for j = 1,2,...,k. Since F NP is the o-ring generated by the
ring FN'R (C R) (to prove this use Theorem 5E 0f [H]), by ex.13.8 of [H| there exists B€ FNR

such that E 1;LF)(AAB) < 4 and ﬂ%)(AAB) < 4 so that ;L%)(AAB) <dforj =12 .,k

Consequently, p(m){(4, B) = (my,)3(x4 — x5,T) = (|lml|q, (AAB))» < ¢ for j = 1,2,...,k and

hence B € U. This shows that the countable subring R is T,(,’,’)-dense in P and hence (’P,T,(,’,’)) is

separable for p € [1, 00).

(ii) Let A € S and let U be a T,(,p)-neighborhood of A in 8. Then there exist an ¢ > 0 and
q1,492, -, gk in I" such that {B € § : p(n)((fj.’)(A, B) < €,7 =1,2,..,k} C U. Then by Theorem

2.6 there exist control measures p; : & — [0,00) for n; : § = Xy, j = 1,2,...,k. Now using the
hypothesis that S is the o-ring generated by the countable subring R and arguing as in the proof

of (i) we conclude that (S, P )) is separable.

Definition 16.4. Let T be a locally compact Hausdorff space. Let i/,C andCy be respectively
the families of all open sets, all compact sets and all compact Ggs in T. Then B(T) (resp. B.(T),
By(T)) denotes o(Uf) (resp. o(C), 0(Cp)). The members of B(T') (resp. B.(T), Bo(T)) are called
Borel (resp. o-Borel, Baire) sets in T.

Theorem 16.5. Let T be a locally compact Hausdorff space with a countable base of open sets
and let X be a quasicomplete (resp. sequentially complete) IcHs. Let m : § — X be o-additive,
where S = B(T)or B.(T) or Bo(T). Then L,(m) and Ly(m) (resp. L£,(S,m) and L,(S,m)) are
separable for 1 < p < oco. (Note that ¢(S) = §S.)

Proof. By hypothesis, B(T) is a countably generated o-ring; by hypothesis and by Corollary to
Proposition 2 (resp. and by Corollary to Proposition 16) of §14 of [Din], B.(T) (resp. Bo(T)) is a
countably generated o-ring. Hence the results hold by Theorems 16.3(ii) and 16.2(i).

To obtain some useful sufficient conditions for the separability of £,(m) and Lp(m) (resp.
Ly(o(P),m) and Ly(c(P),m)) for P = §(C) or 6(Co) (i.e. the J-rings generated by C and Cp,
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respectively) in a locally compact Hausdorff space T we give the following

Theorem 16.6. Let X be a Frechét space, m: P — X be g-additive and 1 < p < 00. Suppose
that m admits a o-additive X-valued extension 1 on o(P) and that o(P) is countably generated.
Then £,(m), L,(0(P),m), Ly,(m) and L,(c(P), m) are separable.

Proof. By hypothesis and by Theorems 16.3 and 16.2(i), £,(m) and L,(mm) are separable. If
f € Lp(m), then f is m-measurable and hence is m-measurable. As m|p = m, [, sdm = [, sdm
for A € o(P) and for s € Z;. Then by Definition 12.1 and by the fact |f|? is m-integrable in
T (see Notation 15.9), |f|P is m-integrable in T' with values in X so that f € Ly(mm). More-

L el
over, (hg)p(f,T) = SUpaeq(p)orevs([4 [fIPdv(z*M))? = sUPacy(p)arevs(fa |fIPdv(z*m))? =

(mg);(f,T) for ¢ € I'. Hence Ly(m) is a subspace of £,(m) with Tf{l’)iﬁp(m) =P, As X is

metrizable, L,(r) is pseudo-metrizable and consequently, by Theorem 11, Ch. 4, of [Ke], £,(m)
and Lp(0(P), m) are separable and then by Problem H, Ch. 4 of [Ke], L,(m) and L,(c(P), m) are
spearable.

Let us recall the following definition from [P2].

Definition 16.7. Let X be a quasicomplete IcHs and let T' be a locally compact Hausdorff
space. Suppose R is a ring of sets in T such that R D §(C) or 6(Cp). An X-valued o-additive vector
measure m on R is said to be R-regular if, given € > 0 and A € R, there exist an open set U € R
and a compact K € R such that K C A C U and such that ||m||,(B) < € for each B € R with
B C U\K and for each ¢ € I". (In the light of Proposition 2.2, this is equivalent to the R-regularity
given in Definition 5 of [P2].)

Theorem 16.8. Let T be a locally compact Hausdorff space and let X be a Frechét space.
Let m : §(Cyp) — X be o-additive. If the range of m is relatively weakly compact, then m has a
unique o-additive X-valued By(T)-regular (resp. B.(T)-regular) extension mg on By(T) (resp. m,
on B,(T)). Let m; = mc|sc). If T has a countable base of open sets, then Ly(m), £,(c(Co), m),
L,(m) and Ly(0(Co), m) (resp. Ly(m), L,(0(C), m}), Ly(m}) and L,(c(C), m))) are separable for
1<p<oc.

Proof. By the hypothesis on the range of m and by Theorem on Extension of [K] or by Corollary
2 of [P1] (where a self-contained short proof of the said theorem of [K] is given), m admits an
X-valued o-additive extension my on By(T'), which is unique by the Hahn-Banach theorem. Then
by Theorem 10 of [P2] or by Theorem 1 of [DP2] (where a simple proof of the said theorem of [P2]
is given), myg is By(7T)-regular and has a unique X-valued B.(T')-regular o-additive extension m,
on B.(T). Then the conclusions follow from Theorem 16.6 since B.(T) (resp. By(T)) is countably
generated by the hypothesis on T and by Corollary to Proposition 2 (resp. and by Corollary to
Proposition 16) of §14 of [Din)].

Following [Ri2] we give the following
Definition 16.9. Let X be a quasicomplete (resp. sequentially complete) IcHs and m: P — X

be o-additive. Let m(P) = {m(A) : A € P}. For A, B € P, we write A ~ B if x4 = xp m-a.e. in
T. Then we write P(m) = m(P)/ ~. (Note that ’ ~' is an equivalence relation.)
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Remak 16.10. If A,B € P and A ~ B, then ||m||;(AAB) = 0 for each ¢ € I' and hence
p(m),(lp)(A, B) =0 for 1 <p < oco. Consequently, P(m) C L,y(m) for all p € [1, 00) and by Theorem

16.2(i), T,(,f)|p(m) = ,(,T,)|p(m) for all p,r € [1,00). (Here by an abuse of notation we denote by P

also the quotient topology induced on L,(m).)

Notation 16.11. In the light of Remark 16.10, when we write P(m), we consider it as a subset
of some L,(m), 1 <r < oo, with the relative topology from L,(m).

Theorem 16.12. Let X and m be as in Definition 16.9. Then:

(i) If for some p € [1,00), (P(m), T,(,’,’)) is separable, then L,(m) (resp. L,(o(P), m)) is separa-
ble for all » € [1,00). In that case, in the light of Notation 16.11 we simply say that P(m)
is separable.

(ii) If X is further metrizable, then (P(m), T,(;)) is separable for all r € [1,00) whenever L,(m)
(resp. Ly(0(P),m)) is separable for some p € [1, 00).

Proof. (i) By hypthesis there exists a countable T,(,’,’)—dense set D in P(m). Then by Remark 16.10,

D is also 7.)-dense in P(m) for any r € [1,00). Now taking W as in the proof of Theorem 16.2(i)
and using the fact that Z,;/ ~ is dense in L,(m) (resp. L,{c(P), m)) by Theorem 15.6, we conclude
that W is dense in L,(m) (resp. L.(c(P), m) and hence (i) holds.

(ii) If X is further metrizable, then L,(m) (resp. L,(o(P),m)) is metrizable. If L,(m) (resp.
Ly(c(P),m)) is separable, then by Theorem 11, Ch. 4 of [Ke], P(m) is separable for the relative
topology from L,(m) (resp. from Ly(o(P), m)). Then by (i), L,(m) (resp. L.(c(P), m)) is sepa-
rable for all r € [1, 00).

To give a characterization of the separability of S(n) similar to Propositions 2 and 3(ii) of [Ri2]
when S is a o-ring of sets and n : § — X is o-additive, we give the following concept. See also
([KK], pp-32-33).

Definition 16.13. Let X be a quasicomplete (resp. sequentially complete) lcHs and let S be a
o-ring of subsets of T. Let m : P — X (resp. n: § — X) be o-additive. If there exists a countably
generated §-ring Py C P (resp. o-ring Sg C S) such that Py(m) = P(m) (resp. Sp(n) = S(n))(see
Definition 16.9), then P (resp. §) is said to be m-essentially countably generated.

Theorem 16.14. Let X ba a quasicomplete (resp. sequentially complete) IcHs and S be o-ring
of subsets of 7. Let m : P — X (resp. n: S — X) be o-additive. Then:

(i) If P is m-essentially (resp. S is n-essentially) countably generated, then P(m) (resp.
S(n)) is separable (see Notation 16.11) and hence, for 1 < p < 0o, L,(m) and L,(m) (resp.
Ly(0(P),m) and Ly(c(P), m)) are separable; (resp. L,(n) and Ly(n) (resp. £,(S,n) and
L,S,n)) ar separable. (Note that o(S) = S.)

(i1) If S(n) is separable and if the range n(S) is metrizable for the relative topology from X,
then S is n-essentially countably generated. (Consequently, by (i), £,(n) and L,(n) (resp.
Ly(S,n) and L,(S,n)) are separable for all p € [1,00)).

Proof. (i) We shall prove for the case of P(m). The proof for S(n) is similar. Let Py be a count-
ably generated d-ring such that Pp(m) = P(m). Then by Theorem 16.3, for all p € [1,00), Py
is separable for the topology T,(,’,’). Let 1 < p < oo, p fixed. Then in the light of Theorem 5C

of [H], there exists a T,(,’,’)-dense countable subring Ry of Py. Let Zg, be the set of all Ry-simple

functions and let W = {377 a;xF; : @j = aj + ib;, a;,b; real rational, F; € Ro,j = 1,2,...,r,7 € K}.
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Then W is countable and by an argument similar to that in the proof of Theorem 16.2(i), W
is 7)-dense in Tr,- Let f € L,(m) (resp. f € Lp(c(P),m)) and let V' be a neighborhood of
f in L,(m) (resp. in Lp(o(P),m)). Then there exist an ¢ > 0 and q1,¢2,...,g, in I' such that
V D {g € L,(T,P,m) (respg € Ly(o(P),m)) : (my,);(f —9,T) <e¢,i=1,2,..,n} By Theorem
15.6, there exists s € Z, such that (mg,);(f ~s,T) < § for i = 1,2,...,n and as Py(m) = P(m),
there exists s’ € Ir, such that s = s’ m-a.e. in T. Moreover, as W is dense in 1IRr,, there ex-
ists w € W such that (my,);(s' —w,T) < § for 4 = 1,2,...,n. Then it follows that w € V and
hence L£,(m) (resp. Lp(c(P),m)) is separable. Then by Problem H, Ch. 4 of [Ke], L,(m) (resp.

L,y(o(P), m)) is separable. Hence (i) holds.

(ii) Let © = n(S). By hypothesis, 2 and hence 2 —  is metrizable for the relative topology
from X. Hence there exists a sequence (V;)° of 7-closed absolutely convex 7-neighborhoods of 0
in X such that

(1) Vo1 + Vpyr C V, for n > 1; and
(ii) Va (2 — N),n € K form a neighborhood base of 0 in (2 — £, 7|(22 — 22)).

Let 71 be the locally convex topology on X for which (V},)$° is a neighborhood base of 0 in X. Then,
arguing as in_the proof of Theorem 2.1 of [S], we observe that 71|q = T|q. If ¢, is the Minkowski
functional of V,,, then ¢, is a 7(-continuous seminorm on X and hence (¢,)° C I

Claim 1. Tr(lp)ln(,g) is generated by (p(n)gi))‘;‘?__l for p € [1, 00).

In fact, let 1 < p < oo be fixed and let 79 be the topology induced by (p(n)gi))z';l on n(S).

Clearly, 7 < P In(s)- Conversely, given q € T, there exists gn such that U;[\n(S) C Uy, M n(S)
as 7ilo = 7lg. Then for z* € U) we have |z*(z)] < 1 whenver z € U,[\n(S) and hence by

Theorem 13.2, (my,)5(xa — x8,T) < (mg)p(xa ~ xB,T) for A,B € S. Therefore, T,(f’)ln(s) <7
and hence the claim holds.

By hypothesis, §(n) = n(S)/ ~ is separable in P )|S(n) and hence in 75 by Claim 1 (by an
abuse of notation (see Remark 16.10)). Hence there exists a countable 7p-dense family F C S(n).
Let Sy = o(F). Then, obviously, Sy(n) C S(n). Now let A € S(m). As 7y is psudo-metrizable,
there exists a sequence (F){® C F such that lim,(mg,);(xa — xF,,T) = 0 for each k € N Then
by Theorems 5.18(vi) and 5.19 for my,, there exists a subsequence (Fy ;)5 of (Fy){° such that
XF.1 = XA Mmg-a.e. in T. As (mg,)3(x4a — XF,;,T) — 0, by the said theorems there exists a
subsequence (Fy,2)52 of (Fp,1)52 such that xr, , = x4 mg,-a.e. in T. Continuing this process in-
definitely, we note that the diagonal sequence (xr, ,)n%; is some subsequence (xr, )z of (xF,)°

and xr,, — x4 m-a.e. inT as Tr(lp)ln(s) = 719. Let N € § with ||m||4(N) = 0 for all ¢ € " such that
XF,, (t) = xa(t) fort € T\N. Then, for each t € A\N, xrn,(t) — 1 and hence liminfy F;,, D A\N.
Similarly, for each t € T\A\N, xr,, () = 0 so that liminfg(T\Fy,) D T\A\N or equivalently,
limsupy, F,, C AUN. Thus it follows that x4 = limsup, F,, m-a.e. in T. As limsup; F,,, € So,
A € Sy(m) so that S(m) = Sy(m). Hence S is m-essentially countably generated.

Remark 16.15. The above theorem for p = 1 subsumes Propositions 2 and 3(ii) of [Ri2] given for
a g-additive vector measure m defined on a o-algebra ¥ of subsets of T' with values in a sequentially
complete IcHs. There the proof is based on the facts that m is a closed measure as shown in [Ril]
and that the o-algebra generated by an algebra of sets is the same as its sequential closure. But
our proof is different, more general and covers all p € [1, 00).
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