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THE BARTLE-DUNFORD-SCHWARTYZ INTEGRAL
VI. COMPLEMENTS TO THE THOMAS THEORY OF
RADON INTEGRATION

T.V. PANCHAPAGESAN

The enumeration of sections will be continued from [P19]. We use the same notation and

terminology given in [P15-P19].

Abstract

This chapter consists of Sections 25-30. In Section 25 we briefly indicate how the results in
§1 of [T] can be extended to complex functions in K(7'). Section 26 is devoted to integration
with respect to a bounded weakly compact Radon operator, improving the complex versions
of Theorems 2.2, 2.7, 2.12 and 2.7 bis and Proposition 2.5 of [T]. In Section 27, integration
with respect to a prolongable Radon operator is studied, improving the complex versions of
Theorems 3.3, 3.4, 3.11 and 3.20 of [T]. Section 28 is devoted to the complex Baire versions
of Proposition 4.8 and Theorem 4.9 of [T]. The results of [P4] are generalized to vector mea-
sures in Section 29, while in Section 30, it is shown that £,(u) is the same as £,(m,,) for
1 < p < oo when u is a bounded weakly compact Radon operator on K(T') and £;(u) is the
same as £q(m,) when u is a prolongable Radon operator on K(T').
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25. INTEGRATION OF COMPLEX FUNCTIONS WITH
RESPECT TO A RADON OPERATOR

Thomas developed in §1 of [T] a theory of vectorial Radon integration of real functions with
respect to a Radon operator u on KC(T,H) (see Notation 19.1 and Definition 19.3 of [P18]). In
this section we indicate briefly how the results in §1 of [T] can be extended to complex functions

in K(T).

In this section we extend Definition 1.1 of Thomas [T]| to Radon operators on K(7') with

values in a normed space X over .

Definition 25.1. Let u : K£(T) — X be a Radon operator in the sense of Definition 19.3 of
P18|, where X is a normed space over €. We define

u*(f)= sup  |u(p)|
lol < frpe(T)

for f € T, where T is the set of all non negative lower semicontinuous functions on 7'. When
f:T — [0,00] has compact support we define
u*(f)= inf u®

(f) =  inf  v(9)
and when f: T — [0, c0] is arbitrary, we define

u®(f) =supu®(h)

h<f

where h : T'— [0, 0o] has compact support. This Definition is similar to that in §1 in Chapter V
of [B].

u®(f) is called the semivariation of f with respect to u. For A C T, we define u®(A) = u®(xa)-
If u*(A) = 0, we say that A is u-null and use the expression u-almost everywhere (briefly, u-a.e.)

correspondingly.

It is easy to verify that the definition is consistent.

Thomas [T] uses the terminology of Radon measure u instead of our terminology of Radon

operator.
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Unless otherwise stated, X will denote a normed space over €' and u : I(T) — X will denote

a Radon operator.

Proposition 25.2. For f € T,

u(f) = sup  u(p).
0<p<f,peK(T)

Proof. By Definition 25.1 we have

ut(f) = sup  |u(yp)]
|| <frpel(T)
= sup sup [u(p)]
VER(T),|U|<f o] <|¥],pek(T)
= s (W)= swp ul(p).
VeK(T),|¥|<f 0<p< f,pek(T)

Hence the proposition holds.

We recall the following definition from [B].

Definition 25.3. Each element u € K(T')* is called a complex Radon measure and is some-
times identified with the complex measure f,, induced by u in the sense of Definition 4.3 of [P3].
|u| is the positive linear functional in K(T')* given by (12) on p.55 of |B| and |u|*(f) for f € TT
is given by Definition 1 on p.107 of Ch. IV of [B].

Proposition 25.4. If u € K(T)* and f € Z%, then
u (f) = sup  Jul() = [ul*(f) = [ul"(f)-
0<U<fWeK(T)

Consequently,

ut(f) = [ul*(f)
for f: T — [0, 00].

Proof. For f € ZT, by Definition 25.1 we have

u(f) = sup  fu(yp)]
[pl < frpel(T)

= sup sup  [u(p)|
0<U<f,WeK(T) || <Wpek(T)

= sup |u| (D) (25.4.1)
0<W<f,Wek(T)
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by (12) on p. 55 of Ch. III of |B].

Therefore, by (25.4.1)

lul*(f) = sup ||ul(o)]
lo| < frpe(T)

sup ul (W) = [ul*(f)
0< U< f,TeK(T)

and hence again by (25.4.1) we have

[ul*(f)= sup  |u|(¥) =u(f).
0<U<f, UK (T)
Moreover, by the definition on p.107 of Ch. IV of |B]
ul*(f)= " sup  |u[(¥) = |ul*(f).

0< U< f,UeK(T)

Now the last part is evident from Definition 25.1.

Definition 25.5. F'(u) = {f : T — Ku*(|f|) < oo} and we define u®(f) = u®(|f]) if
f:T—K

Clearly, u® is a seminorm on FY(u) and hence F°(u) is a seminormed space with respect to

u®(+).

The complex versions of Proposition 1.3 and of Lemmas 1.4 and 1.5 of [T] hold and conse-

quently, we have the following definition.

Definition 25.6. The space L£1(u) of u-integrable functions is the closure of K(7T) in the
space F(u). Thus, a complex function f belongs to L (u), if given € > 0, there exists ¢ € K(T')
such that u®(J¢ — f]) <e.

Remark 25.7. A complex function f on T belongs to £;(u) if and only if, given € > 0, there
exists g € L£1(u) such that u®(|f — g|) < e. Also note that if the complex function f = g u-a.e. in
T and if g € £1(u), then f € Lq(u).
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Convention 25.8. Let f : T — [0,00]. Then f is said to be u-integrable if there exists a
complex function g € £1(u) such that f = g u-a.e. in T.

The complex analogues of Proposition 1.7, Theorem 1.8 and Remark following it in [T| hold.

Definition 25.9. As K(7) is dense in £1(u), the continuous linear extension of u to £;(u)

with values in X, the completion of X, is denoted by [ du. Thus, if f € £4(u), then [ fdu € X.

Then the complex analogues of 1.10, Theorem 1.11 and 1.12 of [T] hold.

The following result is the complex analogue of Proposition on p. 70 of [T].

Proposition 25.10. Let X be a normed space and v : K(T') — X be a Radon operator. Let

H be a norm determining set in X* so that || = sup,«cpy | < ,2* > | for x € X. Then
u*(|f]) = sup [ug=[*(|f]) (25.10.1)
z*eH

for f € L1(u) or for f € I, where uy« = z* o u.

Proof. By Lemma 18.13 of [P18], H C {z* € X* : |z*| < 1}. In view of the complex version
of Lemma 1.4 of [T}, the proof of 1.13 of [T] as given in |T] holds for complex functions too and
hence the proposition holds.

Lemma 25.11. For p € K(T)*,
wUf) = (/) = sup | / ofdy)
1) JT

|l <1,0€K

for f € £1(p) where |u| is given by (12) on p. 55 of Ch. III of [B].

Proof. Let vf(p) = [;ofdu for f € L1(n) and ¢ € K(T'). Then

v ()] < llgllr /T Fldll
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so that vy € K(T');. Hence by Theorem 3.3 of [P4| we have

wvil(T) = v(pw;|Bery, B(T))

gl = sup  |vp(o)
lel<1,peK(T)

= sup |/ ofdpl. (25.11.1)
T

| <1,0€K(T)

As noted in the beginning of the proof of Theorem 23.6 of [P19],

vf|(T) = /T Fldlul.

Then by (25.11.1) and by Proposition 25.4 we have

ofl(T / il = s | / o fdul = ul(If1) = u*(1£)

|<1,peK(T
for f € L1(p).
Theorem 25.12. For f € L1(u),

()= swp | / o dul.

lp|<1pel(T

Proof. Let H be a norm determining set in X*. For 2* € H, by Lemma 25.11 we have

(/)= s | / of dug-|

PeK(T),lp|<1

for f € L£1(u). Therefore, by Proposition 25.10 and by Proposition 24.4 of [P19] we have

W7D = sup (7D = sw s | / o fdue|
z*eH lp|<1

z*eH oek(T

= sup  sup | [ @fdug:|
oEK(T),|p|<1a*eH JT

— s | / o fdu.

pEK(T) Jpl<1

Definition 25.13. Let u : K(T') — X be a Radon operator where X is a normed space. If

Y is a topological space and f : T — Y, then f is said to be u-measurable if, for every compact

K C T and € > 0, there exists a compact K; C K such that u®*(K\K;) < e and f|x, is continuous.

Replacing ||m|| by u® and arguing as in the proof of Theorem 21.4 of [P19], we obtain the

following theorem.
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Theorem 25.14. Let u, X, f and Y be as in Definition 25.13. Then f is u-measurable if and
only if, given K € C, there exist a u-null set N C K and a countable disjoint family (K;)3° C C
such that K\N = (J{° K; and f|g, is continuous for each i € N

The set of u-measurable complex functions is evidently stable under the usual algebraic op-
erations and under composition with a continuous function. Every continuous function on 7' is

u-measurable.

The proof given in Appendix III of [T| holds good for complex normed spaces too and hence
Lemma 1.19 of [T] holds for complex spaces too. The proofs of Propositions 1.20 and 1.21, Remark
on p.74, Theorem 1.22, Lemmas 1.23, 1.24, 1.25 and 1.25 bis of | T] hold for complex functions too.

Proposition 25.15. Let X be a normed space and let H be a norm determining set in X*
so that x| = sup«cy| < x,2* > | for z € X. Then for every u-measurable bounded positive
function f,

u(f) = sup |ug+|*(f)-

z*eH

Proof. By the complex version of Lemma 1.23 of [T|, fxx € Li(u) for K € C. Then by

Proposition 25.10 we have

ut(f) = f{uréw(fo) = s Sul;flux*!'(fo)
€ eCzxre
= sup sup |ug

*(fxx) = sup |uq-[*(f).
z*€H KeC z*eH

Corollary 25.16. Under the hypothesis of Proposition 25.15, for a u-measurable set A

u*(A) = sup |ug+|*(A).
z*eH

Corollary 25.17. If f is locally u-integrable (i.e., if ¢ f is u-integrable for each ¢ € K(T)),
then
u*(f) = sup |ua+|*(f)
z*eH

where H is a norm determining set in X*.
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Proof. By Urysohn’s lemma, for each K € C, there exists ¢ € (T such that yx < pg < 1.
Then
u*(f) = sup u®(fxr) < supu®(for) < sup  w*(fp) <u®(f) (25.17.1)
KeC KeC 0<p<1,pek(T)
and hence by Proposition 25.15, by Definition 25.5 and by (25.17.1) we have
ut(f) = sup  u*(fy)
0<p<1,peK(T)

= sup sup |uz~|* (0 f)
o*€H 0<p<1,peK(T)

= sup |uz+|*(f).
z*eH

Thus the corollary holds.

Definition 25.18. Let u ba a Radon operator with values in an lcHs X over €. Let ¢ ba a
continuous seminorm on X. We denote ¢(z) by |z|,. The semivariation of u with respect to ¢ for

f €It is defined by

ug(f) = sup fu(yp)lq
ol <frpek(T)
and one completes the definition for f : T — [0, 00| as in Definition 25.1 given in the case of a

normed space.

For g € T, let X, = X/q1(0) and let )?q be the Banach space completion of X, with respect
to || Let II; : X — )A(; be the canonical quotient map. (See the beginning of §10 of [P17].)

Let ug = Iy o u. Then [ug(¢)| = [u(p)]q so that ug is the semivariation of wu,.

Definition 25.19. For the Radon operator u on IC(7") with values in the lcHs X and for

q € I, the family of continuous seminorms on X,

Folu)={f:K(T) = K ug(|f]) < oo for each ¢ € T'}.

Then by the complex version of Lemma 1.5 of [T], K(T) € F°(u) and this permits the fol-

lowing definition.
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Definition 25.20. Let F° = (u) be provided with the seminorms ug(-) for ¢ € T'. The
space L£1(u) of u-integrable functions is the closure of K(T) in the space F°. Hence a function

[+ K(T) — Kis u-integrable if, for each ¢ € T, there exists ¢, € K(T') such that ug(|p, — f]) < e

Thus £;(u) is the intersection of the spaces L1 (uq) provided with the smallest topology per-

mitting the injections £1(u) C L1 (uq) continuous for each ¢ € T.

Definition 25.21. We say that a function f : T — Y is u-measurable where Y is a topolog-

ical space if f is us,-measurable for each ¢ € I' and is w-null if it is ug-null for each ¢ € I'.

With these definitions the complex versions of Propositions 1.7, 1.20 and 1.21 and Theorem
1.22 of |T] hold without any modifications for complex lcHs valued Radon operators u. Thus
a function f is w-integrable if and only if it is u-measurable and is dominated in modulus by
a u-integrable function. The Hausdorff space L;(u) associated with £;(u) consists of classes of

functions in which two functions equal u-a.e in T" are identified.

Definition 25.22. For a function f € £1(u), we denote by u(f) or by [ fdu the value in f
of the continuous linear extension of u to £1(u). Thus this is an element in the completion X of

X. Then the mapping f — [ fdu is a continuous linear mapping of £;(u) in X.

Hereafter, by IcHs we mean a complex IcHs. i.e., an lcHs over &@ Then Propositions 1.28 and

1.30 and results 1.31, 1.32, 1.33 and 1.34 of [T] hold for complex lcHs-valued u on IC(T').

If X is a projective limit of Banach spaces X;, then [ fdu is identified with the element
([ fdu)i(i.e., with the projective limit of ( [ fdu;);).

Lemma 25.23. Suppose X is a quasicomplete IcHs. If A C X is bounded and if zg belongs
to the closure of A in )?, then zg € X.

Proof. Let 7 be the lcHs topology of X. By hypothesis there exists a net (x,) C A such that
Tq — o in 7, the topology of the completion X. Thus (z4) is Cauchy in 7. As A is 7-bounded

and as X is quasicomplete, the 7-closure of A is 7-complete. Since 7|4 = 7, it follows that (x,)
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is 7-Cauchy. Hence there exists x1 in the 7-closure of A (so that x; € X) such that x, — x1 in

7 and hence in 7. Since 7 is Hausdorff, xg = 1 € X.

Theorem 25.24. Let u be a Radon operator on K(T') with values in a quasicomplete lcHs
X. Then for each f € L1(u), [ fdu belongs to X. In other words, if X is an IcHs, then [ fdu
belongs to the quasicompletion of X for each f € £;(u).

Proof. By Lemma 25.23 above, it suffices to show that | fdu belongs to the closure in X of
a 7-bounded set A C X whenever f € Lq(u).

For the sake of completeness, we give the proof of this result and we follow the proof of
Theorem 1.35 of [T].

Case 1. Suppose f is bounded with compact support. Let w be a relatively compact open set
such that f is null in T\w and let |f| < 1.

If | < [pdu,z* > | <1for p € K(T) with |p| < X, then

1> sup | < /sodu,x* >| = sup |z ()]
|| <Xw 0 EK(T) el <Xw p€K(T)
= Uy (Xw) = [ttar|(w)

by Proposition 25.4. As |f| < xw, f is u-integrable and
< [ fdue > =1 [ fdue| < [ 1fdl ] < el @) <1

and hence [ fdu € A% where A = { [ odu : ¢ € K(T),|¢| < xo} € X C X.

Since A is absolutely convex, by the bipolar Theorem 8.1.5 of [E] A% is the (X, X*)- closure
of A, and hence by Theorem 3.12 of [Ru2] is also the 7-closure of A. As A is weakly bounded, it
is 7-bounded by Theorem by Theorem 3.18 of [Ru2|. Hence by Lemma 25.23, [ fdu € X.

Case 2. Let f be null outside a compact set.

First let us consider the case f > 0. Let f,, = min(f,n). Then by Case 1, [ f,du € X for all
n and by the lcHs analogue of Lemma 1.25 bis of [T|, [ fdu = lim,, [ fodu. Thus [ fdu belongs

to the closure of ([ fpdu)2; in X and as (] fn)22, is convergent, it is bounded in X. Hence
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by Lemma 25.23, [ fdu € X. Consequently, by the complex analogue of Proposition 1.7 of [T],
f fdu belongs to X in this case too.

Case 3. f is an arbitrary element in £;(u).

By the above cases, [ fodu € X for each ¢ € K(T'). The set B = {[ fodu}igi<1,pex(r) 18
weakly bounded since

sup |</fcpdu,x*>\§/]f\d]ux*\<oo
)

l|<1,peX(T
for each 2* € X*. Then by Theorem 3.18 of [Ru2|, B is 7-bounded. If | < [ fodu,z* > | <1 for
¢ € K(T) with |¢| < 1, then by Theorem 25.12, u3.(|f]) < 1 and hence | < [ fdu,z* > | < 1.
Therefore, [ fdu € B%. Then arguing as in Case 1 and appealing to Lemma 25.23, we conclude
that [ fdu € X. This completes the proof of the theorem.

The proof of Proposition on p. 84 of [T] holds here for metrizable IcHs and hence we have:

Theorem 25.25. If X id a metrizable lcHs and if v : (T') — X is a Radon operator, then

the space £(u) is seudo-metrizable and complete.

26. INTEGRATION WITH RESPECT TO A BOUNDED WEAKLY COMPACT
RADON OPERATOR

The aim of this section is to improve the results in Section 2 of Thomas [T|. Remark 2 on
p.161 of [G] and Theorem 6 of [G] when T is compact, play a key role in [T]| to develop the
theory of vectorial Radon integration with respect to a bounded weakly compact (respectively,
a prolongable) Radon operator. Grothendieck comments in the said remark that his techniques
developed in earlier sections of |G| are textually valid for Cy(T"), where T is a locally compact
Hausdorff space. But, as shown in [P10], his techniques can be used to prove the said remark if
and only if T is further o-compact. However, by different methods, we established in [P9]| and
[P11] the validity of Theorem 6 of [G| for Co(T") where T is an arbitrary locally compact Haus-
dorff space, thereby restoring the validity of the Thomas theory in |[T]. The proposition given
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in Complements of Section 2 of [T| improves Theorem 2.7 and Theorem 2.7 bis of [T]. But, we

obtain here results which further improve the said proposition of [T.

Definition 26.1. Let X be a quasicomplete lcHs and let u : K(T') — X be a Radon operator
(see Definition 19.3 of [P17]). Then w is said to be bounded if u : (C.(T), ||-||7) — X is continuous.

Notation 26.2. Whenever X ia a quasicomplete IcHs, I" denotes the family of continuous

seminorms on X.

Proposition 26.3. Let X be a quasicomplete IcHs. The Radon operator u : K(T) — X is
bounded if and only if ug(7T") < oo for each ¢ € T.

Proof. Let u be bounded. Then, for each ¢ € I', by Definition 25.18 there exists a constant
M, such that [ug(p)| = lu(e)l, = a(u(e)) < M,llgllr for each ¢ € K(T). Then

ug(T) =ug(xr) =  sup  qu(p)) < M; < oo
| <1,pel(T)

and hence ug(T') < oo for each g € T.

Conversely, if ug(T') = M, < oo for each ¢ € T, then for ¢ € K(T), we have |¢| < [|o||rxT

and hence

q(u(®)) = lug(p)lg < ll@llTug(xr) = Mqllellr

for g € I'. Hence u is bounded.

Convention 26.4. Let X be a quaicomplete IcHs and let u : I(T') — X be a bounded Radon
operator. Then u has a continuous linear extension to the whole of Cy(T") with values in X and
hence we shall always assume that u : (Co(T"), || - ||7) — X is continuous whenever u : (T') — X

is a bounded Radon operator.

Proposition 26.5. Let X be a quasicomplete lcHs. If v : (7)) — X is a bounded Radon
operator, then Cy(T) C L1(u). Moreover,for f € Co(T), uf = [ fdu.
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Proof. Let f € Cy(T") and let ¢ € T'. Then there exists (¢,)7° C K(T') such that ||, — f||r —
0. By hypothesis and by Proposition 26.3, ug(T") < oo and hence

ug(len = fI) < ug(lf = enllrxr) < If = enllrug(T) — 0
as n — oo. Hence f € Li(ug). As ¢ is arbitrary in T, it follows that f € Li(u). Thus
C()(T) C El(u)
Moreover, uf = lim,, up,, and [ fdu = lim, up,. Hence uf = [ fdu.

For a bounded Radon operator u, it is possible that £1(u) = Cy(T') as shown below.

Example 26.6. Let u : K(T') — Co(T') be the identity operator. Then wu : (C.(T),]| -
ll7) — (Co(T),|| - ||7) is continuous and has a unique continuous extension to Co(7"). Then

£1(u) = Co(T).

If f€Z7", then

w'(f)=sup  Ju(p)l= sup |lgllr =|fllr (26.6.1)
lel<fpek(T) l|<1,peX(T)

since f = SuPg<,<f.pek(T) ¢-

If f:T — [0, 00] has compact support, then by (26.6.1) and by Definition 25.1 we have

£l < ;onf gl = u*(f).

Let K be the support of f. By Urysohn’s lemma there exists ¥ € C.(7") with 0 < ¥ < 1 and
Ul =1. Then 0 < f <||f||]r¥ € ZT and

w (I Fllr®) = [[fllzu* (0) = |[fllz[|¥]lr = [[fllr

by (26.6.1) as ¥ € Zt. Hence u®*(f) = ||f]|r-

When f: T — [0, 00] is arbitrary, then

u*(f) = sup u®(fxx) = sup |[fxxllr = |||l (26.6.2)
Kec Kec
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If f € £1(u), then given € > 0, there exists ¢ € IC(T") such that u*(|f —¢|) < e. Then by (26.6.2),
l|f — ¢|lr < € and hence f € Co(T). Therefore, L1(u) = Co(T).

Definition 26.7. Let X be a quasicomplete lcHs and let u : (7)) — X be a bounded Radon
operator. (See convention 26.4.) Then u is called a bounded weakly compact Radon operator if

{up : ¢ € Co(T), ||| < 1} is relatively weakly compact in X.

Remark 26.8. Bounded Radon operators and bounded weakly compact Radon operators
are respectively called bounded Radon measures and weakly compact bounded Radon measures

in [T].

Lemma 26.9. Let X be a Banach space and let u : I(T)) — X be a continuous linear map.

Then for each open set w in T,

u®(w) = sup |z*u|(w) (26.9.1)
|lz*[<1
where |z7u|(w) = pjzy)(w) and pzey) is the (complex) Radon measure induced by |z*u| in the

sense of Definition 4.3 of [P3].

Proof. By Definition 25.1 we have

ut(w) = sup fu(p)]
ol <xw pEK(T)

= sup sup |z u(yp)|
lol <xw,peK(T) 2*|<1

= sup  sup [z"u(y)|
0% |1 o] <X pEK(T)

— sup (0u)*(w)
|z*|<1

— s J2"ul*(w)
| <1

by Proposition 25.4. Since w is |x*u|*-measurable, we have

u®(w) = sup |z*u|(w)
¥ |<1

and hence (26.9.1) holds.




THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL-VI 15

Using the above lemma and [P9], we give in the following theorem an improved version of

Theorem 2.2 of [T] for complex functions.

Theorem 26.10. Let X be a Banach space and let u : K(T') — X be a bounded Radon

operator. Then the following statements are equivalent:

(i) Every bounded Borel (complex) function belongs to £1(u).
(ii) Every bounded o-Borel (complex) function belongs to £1(u).
(iii) Every bounded (complex) Baire function belongs to £ (u).

(iv) For every open set w in T', the weak integral fw du belongs to X i.e., there exists a vector

x, in X such that
/ d(z*u) = z*(zy)
w
for each x* € X* and we say that the weak integral fw du = x,,.
(v) For every o-Borel open set w in T, the weak integral fw belongs to X.
(vi) For every open Baire set w in T, the weak integral [ du belongs to X.

(vii) uis a bounded weakly compact Radon operator (so that by Convention 26.4, u : Co(T) — X

is weakly compact).

Proof. Clearly, (i)=-(ii)=-(iii).

(iii)=-(vi) By (iii), for each open Baire set w in T', there exists x,, € X such that [ du =z,

and hence

() :/wd(ac*u)

for x* € X*. Hence (vi) holds.

(vi)=(vii) By (vi), for each open Baire set w in T" there exists z,, € X such that

/ d(z*u) = z*(zy) (26.10.1)
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for 2* € X*. As z*u € Co(T)* = M(T), the complex Radon measure fi;+, induced by x*u in the
sense of Definition 4.3 of [P3] is a B(T')-regular complex measure on B(T'). Let K be a compact
Gs in T. Then by Theorem 55.A of [H| there exists (¢,)$° C Co(T') such that 0 < ¢, \, Xk
Then by LDCT and by 18.10 of [P18] we have

pau (K) = 1im/ Onditgry, = lim(xz*u)(p,) = lim/ opd(z* om) = (z* om)(K)

where m is the representing measure of u. Then by the Baire regularity of p+y|g, () and of

(" om) Bo(T') we have fizy

Bo(r) = (" om)|g, (1) and consequently, by Theorem 2.4 of [P4] and
by the Borel regularity of ji;+, and of * o m on B(T'), we conclude that

Py = 2" omonB(T). (26.10.2)
Then by (26.10.1) and (26.10.2) we have
et () = / d(z"u) = poeu(w) = (27 om)(w) = (2" 0 u™)(xw)

for z* € X*. Since u™*(x) € X™*, we conclude that m(w) = v**(x) = 7, € X. Consequently,
by Theorem 3(vii) of [P9], u is a weakly compact operator on Cy(7") and hence (vii) holds.

(vil)=(iv) (resp. (vii)=(v), (vii)=(vi)) By (vii) and by Theorem 2(ii) of [P9], u**(xa) € X
for each A € B(T) and hence u**(x,) € X for each open set (resp. o-Borel open set, open Baire
set) w in T. Let ©v**(xw) = ¥, € X. Then by (26.10.2) we have

2 (20) = 70 () = (2% 0 m)(w) = fipeu(w) = / d(z*u)

and hence (iv) (resp. (v), (vi)) holds.

(vii)=-(i) Since u : Co(T) — X is weakly compact, u* is also weakly compact and hence
{ppra 2 2] < 1} = {pgeq ¢ |2*| < 1} is relatively weakly compact in M (T'). Then by Theorem 1
of [P8], given a Borel set A in T and e > 0, there exist a compact set K and an open set U in 7" such
that K C A C U and supj,«|<; |ftz+u[(U\K) < €. Then by Lemma 26.9 we have u®(U\K) < e.
Now choose ¢ € IC(T') such that xx < ¢ < xy so that u®(xy—¢) < u®*(xv—xa) = u*(U\K) < e.
Then

u®(Ixa —¢l) <u*(xv — xa) < u*(xv — xx) = u*(U\K) <e

Therefore, by Definition 25.6, x4 € L1(u).
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Consequently, every Borel simple function s € £q(u). If f is a bounded Borel (complex)
function, then there exists a sequence (s,) of Borel simple functions such that ||s, — f||7 — 0.

Then
u*(|f = snl) < |If = snllru®(T) — 0

as n — oo, since u®(7T) is finite by Proposition 26.3. Hence f € £;(u) and thus (i) holds.

Hence the statements (i)-(vii) are equivalent.

The following theorem is an improved complex version of Proposition 2.5 of Thomas |T.

Theorem 26.11. Let X be a Banach space and let v : K(T') — X be a bounded Radon

operator. Then the following statements are equivalent:

(i) w is weakly compact (see Convention 26.4).
(ii) Given € > 0, for each open set w in T', there exists a compact K C w such that u®*(w\K) < €.

(iii) Given € > 0, for each A € B(T'), there exist a compact K and an open set w in 7" such that
K CACwandu*(w\K) <e.

(iv) Given € > 0, for each compact K in T there exists an open set U in T such that K C U
with u*(U\K) < € and there exists a compact C' in T such that u*(T\C) < e.

(v) Given € > 0, for each o-Borel open set w C T there exists a compact K C w such that

u®(w\K) < € and there exists a compact C in T" such that u®(T\C) < e.

(vi) Given € > 0, for each A € B.(T) there exist a compact K and a o-Borel open set w in T
such that K C A C w and u*(w\K) < e.

(vii) Given € > 0, for each compact K in T there exists a o-Borel open sets U in T such that

K C U with u*(U\K) < € and there exists a compact Gy such that u®*(T\C) < e.

(viii) Given € > 0, for each open Baire set w in T there exists a compact G5 K C w such that

u®(w\K) < € and there exists a compact C such that u*(T\C) < e.

(ix) Given € > 0, for each Baire set A € T there exist a compact Gs K and an open Baire set
w in T such that K C A C w and u®(w\K) < e.
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(x) Given € > 0, for each compact Gs K in T there exists an open Baire set U in T such that
K C U with u*(U\K) < € and there exists a compact G5 C such that u*(T\C) < e.

Proof. Since u is a bounded operator on Cy(T") by Convention 26.4, the set F' = {fiz=y, : |2¥| <
1} = {pura> ¢ |27 < 1} is bounded in M(T). Let |F| = {j13+y : [2*| < 1}. Then by Theorem
1 of [P8], F is relatively weakly compact in M (T) if and only if |F| is so (resp. if and only if
u is weakly compact (as u is weakly compact if and only if u* is weakly compact)). Moreover,
by Theorem 4.11 of [P3] and by Theorem 3.3 of [P4], f1j5+y(A) = v(ptzru, B(T))(A) = |ptarul(A)
for A € B(T). Then by Lemma 26.9 and by (vi) (resp. (vi)’, (vi)”) of Proposition 1 of [P9], (ix)
(resp. (iii), (vi)) holds if and only if u is weakly compact. Hence (1)< (iii)<(vi) < (ix).

(iii)=-(ii) obviously.

(ii)=(i) Let w be an open set in 7" and let € > 0. Then by hypothesis, there exists a compact K
such that K C w and u*(w\K) < e. By Lemma 26.9, this means means supjg«|<; H|z+y|(W\K) < €.
Then by Theorem 4.11 of [P3] and by Theorem 3.3 of [P4], supj,«<; v(paru, B(T))(W\K) < € and
hence by Theorem 1 of [P8], u is weakly compact. Thus (i) holds.

(i)<(iv) By Theorem 4.11 of [P3], |F| = {|pg=u| : |*| < 1} and hence by Theorem 4.22.1 of
[E], |F| is relatively weakly compact in M (T) if and only if , given € > 0, for each compact K
in T there exists an open set U in 1" such that K C U and supj,«| < [tau|(U\K) < € and there
(T\C) < e. Consequently, by Lemma 26.9, | F|
is relatively weakly compact in M (7T') if and only if (iv) holds and hence if and only if u is weakly

exists a compact C in T' such that sup|g«|<; |fz+u

compact.

Similarly, using Theorem 4.22.1 of |E|, Theorem 4.11 of [P3], Theorem 50.D of [H] and Lemma
26.9 one can show that (i)<(vii) and (1)< (x).

By Proposition 1(iii) of [P9], by Theorem 4.11 of [P3] and by Lemma 26.9, (i)<(v) and
(1)< (viii).

Hence the statements (i)-(x) are equivalent.
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Definition and Notation 26.12. Let X be a Banach space and let u : £(T) — X be a
Radon operator. Let H be a subset of X* separating the points of X. A function f : T — Kis said
to be u-integrable with respect to the topology o(X, H) if f is z*u-integrable for each z* € H.
Then the integral of f with respect to o(X, H) is an element in the completion of (X, (X, H))
which is identified with < H >®9 the set of all linear functionals on the liner span < H > of
H and the integral is denoted by [ fda. This is identified with the function 2* — [ fd(z*u) for
x* € H. Thus

<x*,/fdﬂ >:/fdux* for x* € H.

The Orlicz property of a set H in X* (see Definition 18.9 of [P18]) plays a key role in the sequel.
The following result improves the complex version of Theorem 2.7 of Thomas [T].

Theorem 26.13. Let X be a Banach space and let H be a norm determining subset of X™.
Suppose H possesses the Orlicz property. Let u : K(T') — X be a bounded Radon operator.
Then u : Co(T) — (X,0(X, H)) is continuous (here we use Convention 26.4) and u is weakly
compact on Cy(T) if and only if fw du € X for each open Baire set w in T', where 4 is the Radon
operator obtained from u on providing X with the topology (X, H).

Proof. Arguing as in the proof of Theorem 2.7 of [T| and using Theorem 1 of [P8] instead of
Appendix I: C5 of [T], we observe that the condition is sufficient.

Conversely, if u is weakly compact with its representing measure m in the sense of 18.10 of
[P18], then by Theorem 2(ii) of [P9], u™*(xw) = m(w) = x,, (say) € X for each open Baire set w

in T and hence

¥ (xy) :/wd(:c*u)

for z* € X* and hence for z* € H. Then

/dﬂ:xweX.

Therefore the condition is also necessary.
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To improve the complex version of Theorem 2.12 of [T| we need the following lemma.

Lemma 26.14. Let X be a Banach space and let u : Cy(T') — X be a continuous linear

mapping with the representing measure m (in the sense of 18.10 of [P18]). Then
/ d(z*u) = (z* om)(A) (26.14.1)
A
for * € X* and for A € B(T). If xa € L1(u), then

/ du=m(A) (26.14.2)
A

and consequently (26.14.2) holds for A € B(T) if u is weakly compact.

Proof. By the proof of (vi)=-(vii) of Theorem 26.10 (without using (26.10.1)), pz+, = 2* om
on B(T) for z* € X*. Hence

J @) = [ s = ) = (" 0 ) )

for A € B(T') and for z* € X*.

If x4 € L1(u), there exists x4 € X such that [, du = x4 € X. Consequently, by (26.14.1) we

have
z¥(za) = /Ad(x*u) = (2" om)(A)

for z* € X*. As m has range in X**, we conclude that m(A) = x4 = [, du for A € Li(u). If u
is weakly compact, B(T") C Li(u) by Theorem 26.10(i) and hence the last part holds.

Using the above lemma we obtain the following improvement of the complex version of The-

orem 2.12 of [T].

Theorem 26.15. Let X be a Banach space and let u,, : K(T)) — X be a bounded weakly
compact Radon operator for n € N If for every open Baire set w in T', the sequence ( fw duy,)$° is

convergent in X, then there exists a bounded weakly compact Radon operator u on K(T') with

ligl/fdun:/fdu

values in X such that
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for each bounded (complex) Borel function f on 7.

Proof. Let m,, be the representing measure of w,, in the sense of 18.10 of [P18]. Then by
hypothesis and by Lemma 26.14,

lim m,, (w) exists in X (26.15.1)
n

for each open Baire set w in T. Moreover, by Theorems 6(xix) and 2 of [P9], m,, is Borel
regular and o-additive in the topology 7 of X for each n € N By Lemma 18.19 of [P1§], ¢ is
m,,-integrable in 7" and by 18.10 of [P18] we have

sunle) = [ gt om,) = ([ pdm)

for z* € X* and for ¢ € Cy(T"). Then by the Hahn-Banach theorem

un(p) = /Tgodmn for o € Co(T).

Consequently, by Lemma 18.20 of [P18| there exists an X-valued continuous linear mapping u on
Co(T) such that

lim uy, (p) = u()

for ¢ € Co(T). Moreover, by (26.15.1) and by Lemma 18.18 of [P18], lim,, m, (U) € X for each
open set U in T'. Consequently, by the complex version of Proposition 2.11 of [T, lim,, | fdu, =
| fdu € X for each bounded complex Borel function f on 7. Then particularly,

lim/XAdun = /XAdu eX (26.15.2)

for each A € B(T). Hence B(T) C Li(u). If m is the representing measure of u as in 18.10 of
[P18], then by Lemma 26.14 and by (26.15.2), m(A) = [ xadu € X for each A € B(T') and hence
by Theorem 2 of [P9], u is weakly compact.

This completes the proof of the theorem.

Remark 26.16. The proofs of Propositions 2.13, 2.14, 2.17 and 2.20, of Corollary 2.20 and of
Lemma 2.21 of [T] hold for complex spaces too.
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We need the following lemma to generalize Theorem 26.10 to quasicomplete 1cHs.

Lemma 26.17. Let u be a Radon operator on I(T') with values in an lcHs X. For ¢ € T,
let uq = II; o u where I' and II, are as in the beginning of §10 of [P17|. Then for each open set

win T,

ug(w) = sup |z*u|*(w) = sup [z"u|(w)
z*eUY z*eUy

where U} is as in Notation 10.13 of [P17] and u$ is as in Definition 25.18.

Proof. Let ¢ € I'. Then v, : K(T') — )?; is a continuous linear map and hence by Lemma

26.9, by Proposition 10.14 of [P17] and by Proposition 25.4 we have

ug(w) = sup [Wprug|*(W) = sup [Wye o (Il o u)|*(w)
z*eUp z*eU?

= sup [z"ul*(w) = sup [z"u["(w)
z* el z*eUy

= sup |2"u|(w)
x*EUg

since Wy (Ilg 0 u)(z) = Wor (ux 4 ¢~(0)) = z*ux for x € X and for 2* € U and since the open

set w is |z*u|*-measurable.
The following theorem generalizes Theorem 26.10 to quasicomplete lcHs.

Theorem 26.18. Let X be a quasicomplete IcHs and let w : K£(T') — X be a bounded Radon

operator. Then the following statements are equivalent:

(i) Every bounded (complex) Borel function belongs to £1(u).
(ii) Every bounded (complex) o-Borel function belongs to £1(u).
(iii) Every bounded (complex) Baire function belongs to £;(u).

(iv) For every open set w in T' the weak integral fw du belongs to X i.e. there exists a vector

T, in X such that
/ d(z*u) = z*(zy)

for each x* € X*. Then we say that the weak integral fw du = x,.
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(v) For every o-Borel open set w in T, the weak integral fw du belongs to X.
(vi) For every open Baire set w in T', the weak integral fw belongs to X.

(vii) w is weakly compact (see Convention 26.4).

Proof. Since the results mentioned in 18.10 of [P18| hold for lcHs valued continuous linear
transformations on Cy(7T') and since the theorems in [P9| used in the proof of Theorem 26.10 are
valid not only for Banach spaces but also for quasicomplete IcHs, the proof of the latter theorem

excepting that of (vii)=(i) continues to be valid when X is a quasicomplete lcHs.

Now we shall show that (vii)=(i). Let ¢ € I" and let U; = {x € X : g(z) < 1}. Then
Ug , the polar of Uy is equicontinuous and hence by Corollary 9.3.2 of [E| or by Proposition 4 of
[P9], u*(UY) is relatively weakly compact in M(T'). Then by Theorem 1 of [P8], given A € B(T)
and ¢ > 0, there exist a compact set K and an open set U in T such that K ¢ A C U and
SUD,+ 170 |z*u|(U\K) < e. Consequently, by Lemma 26.17, ug(U\K) < e. Then arguing as in the
last part of the proof of (vii)=-(i) of Theorem 26.10 we have a ¢, € K(T') such that xx < ¢4 < xv
so that

ug(Ixa — ¢ql) < ugxv — xa) < ug(xv — xx) = ug(U\K) <.
Since ¢ is arbitrary in T', by Definition 25.20 x4 € L1 (u).
Then every Borel simple function s belongs to £i(u). If f is a bounded Borel (complex)

function, then there exists a sequence (s,) of Borel simple functions such that ||s, — f||7 — 0.

Then, for each ¢ € I', we have
ug(lf = snl) < (If = snllrug(T) — 0

s o . . L (Cu(T). | -
as n — oo, since ug(7T') is finite by Proposition 26.3 and by the hypothesis that u, : (Ce(T), ||

ll7) — )A(; is continuous.
This completes the proof of the theorem.

The following theorem gives an improvement of the complex version of Theorem 2.7 bis of [T].
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Theorem 26.19. Let X be an IcHs and let H be a subset of X* such that the topology
7 of X is the same as the topology of uniform convergence in the equicontinuous subsets of H.
Suppose H has the Orlicz property. Let u be a bounded Radon operator on K(T') with values
in X. Then u is weakly compact if and only if, for every open Baire set w in T, the ultra weak

integral [ di (relative to the topology o (X, H)) belongs to X, the lcHs completion of X.

Proof. By hypothesis, 7 is generated by the seminorms {qg : F € He} where He = {F C H :
Eis eqicontinuous} and ¢g(z) = sup,«cg |2*(x)|. As observed in the proof of Theorem 18.16 of
[P18], o(X, H) is Hausdorff.

By hypothesis, for each open Baire set w in T, there exists a vector x,, € X such that

/ d(x™u) = pig=y(w) = 2% (xy,) (26.19.1)

for each z* € H and hence for x* €< H >, the linear span of H. Then, given a disjoint sequence

(Un)$° of open Baire sets in T', for each subsequence P of N by (26.19.1) we have

Z JI*((L‘Un> = Z Mm*u(Un> = ,Uz*u( U Un) c K

nepP neP nepP

and hence ) (" zy, is subseries convergent for the topology o(X, H). Since (X,0(X,< H >
)* =< H > by Theorem 5.3.9 of [DS], >~ y, is subseries convergent in o(X, H). As H has the

Orlicz property by hypothesis, > {° 2y, is unconditionally convergent in 7. Hence
lim g (zy,) = 0. (26.19.2)
n
Then by (26.19.1) and by (26.19.2) we have

lim gg(xy,) = lim sup |z (xy,)| = im sup |pg=w(Uy)| = 0. (26.19.3)
n N z*€E " z*eE

Since E is equicontinuous and since u : Co(7T") — X is continuous, by Lemma 2 of [P9]| and
by 18.10 of [P18], w*E = {u*z* : z* € E} = {a*u : 2* € E} = {g+y : * € E} is bounded in
M(T). Then by (26.19.3) and by Theorem 1 of [P8|

{pg*y : * € E} is relatively weakly compact in M (7). (26.19.4)
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—~—

For E € Hg, 11, : X — )/(\q; C ()/(\q;) If W« is as in Proposition 10.12(i) of [P17| for
x* € E, then {¥,« : * € E} is a norm determining subset of the closed unit ball of ()?q;)* for
)/(; by Proposition 10.12(iii) of [P17] for z* € E. Then by Proposition 10.12(i) of [P17] and by
18.10 of |P18] we have

(Wyr 0 T,y 0 ) () = (27u) () (26.19.5)

for ¢ € Cy(T) and hence Wy« oIy, ou € K(T); = (Co(T),|| - ||7)* = M(T). Then by (26.19.4)
and (26.19.5), {/.L(\I/I*OHquu) :x* € E} is relatively weakly compact in M (7). Then by Corollary

9E

18.15 of [P18], I1,,, o u is weakly compact for £ € Hg. Consequently, by the complex analogue of

Lemma 2.21 of [T], u is weakly compact.

Conversely, if u is weakly compact, then by Theorem 26.18(vi) the weak integral fw fdu
belongs to X for each open Baire sets w in T" and hence there exists a vector x,, € X and hence

in X such that

a:*(/w du) = /wd(x*u) =z (zy)

for each 2* € X* and hence for each z* € H. Thus [ da (relative to the topology o(X, H))
belongs to X.

This completes the proof of the theorem.

Corollary 26.20. Under the hypothesis of Theorem 26.19 for X, H and the topology 7, a
bounded Radon operator u : K(T') — X is weakly compact (see Convention 26.4) if for each open
set w in T which is a countable union of closed sets, the ultra weak integral | du (relative to the

topology o(X, H)) belongs to )Z', the 1cHs completion of X.
Proof. By Lemma 18.3 and by Theorem 26.19, the corollary holds.

Remark 26.21. Corollary 26.20 is obtained directly in Proposition on p. 98 of [T]. But Theo-

rem 26.19 is much stronger than the said proposition of [T.

27. INTEGRATION WITH RESPECT TO A PROLONGABLE RADON
OPERATOR
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Following Thomas [T| we study the integration of complex functions with respect to a pro-
longable Radon operator v on IC(T') (Thomas calls it a prolongable Radon measure) and improve
most of the principal results such as the complex versions of Theorems 3.3, 3.4, 3.11, 3.13 and
3.20 of [T].

Definition 27.1. Let u be a Radon operator on IC(T') with values in an IcHs. Then we
say that u is prolongable if every bounded (complex) Borel function with compact support is

u-integrable.

Notation 27.2. Let w be an open set in T" and let u be a Radon operator on (7). We define
fon T by f(t) = f(t) for t € w and 0 for t € T\w. For ¢ € K(w), ¢ € K(T) and we identify
K(w) with the set of functions in K(7") whose support is contained in w. The Radon operator u,,

is defined as the restriction of u to K(w). i.e. uy(p) = u(p).

Lemma 27.3. Let u be a Radon operator on K(T') with values in a normed space, w an open

subset of T" and u,, the Radon operator induced by u on K(w). Then:
(i) For f € T"(w), f € T7(T) and (uw.)*(f) = u*(f).
(i) For f > 0 with compact support in w, (uy)*(f) = u*(f).

(i) If f is a (complex) function with compact support in w belonging to £1(us,), thenf belongs
to £1(u) and [ fdu, = [ fdu and the last conclusion also extends to Radon operators with

values in an lcHs.

For the proof of the above lemma we refer to the proof of Lemma 3.2 of Thomas [T] given in

Appendix III of [T] which holds for complex functions too.

Remark 27.4. If u*(w) < oo for w in Lemma 27.3, then u, is a bounded operator on K(w)

and hence particularly if w is relatively compact in T, then u,, is a bounded Radon operator.
Since u®(w) = SUP|y|<1,pek(w) [Uw(®)], the above remark holds.

The following theorem improves Theorem 3.3 of Thomas |T].




THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL-VI 27

Theorem 27.5. Let u be a Radon operator on IC(7T") with values in a quasicomplete lcHs X.

Then the following statements are equivalent:

(i) w is prolongable in the sense of Definition 27.1.
(ii) Every bounded o-Borel (complex) function with compact support belongs to £;(u).
(iii) Every bounded complex Baire function with compact support belongs to £1(u).

(iv) For each relatively compact open set w in 7', the weak integral fw du belongs to X; i.e.

there exists , € X such that [ d(z*u) = z*(zy) for 2* € X*.
(v) For each relatively compact open Baire set w in T, the weak integral fw du belongs to X.

(vi) If w is a relatively compact open set in T', then u| K(w) is a bounded weakly compact Radon

operator.

(vii) For each relatively compact open Baire set w in T, ulx/(, is a bounded weakly compact

Radon operator.
(viii) For each compact K in T, the weak integral [ du belongs to X.
(ix) For each compact G5 K in T, the weak integral [, du belongs to X.

(x) Aset AC K(T) is said to be bounded in IC(T') if there exists K € C such that supp ¢ C K
for each p € A and sup ey |[¢|[r < oo. For each relatively compact open set w in T, u

transforms bounded subsets of K(w) into relatively weakly compact subsets of X.
(xi) For each compact K, lim,\ g u®(w\K) = 0 where w is open in T

(xii) For every compact G5 K, lim,~\ g u®(w\K) = 0 where w is open in T

Proof. Let £ be the family of all equicontinuous subsets of X*.

(i)<(ii) As shown in the proof of (1)=(18) of Theorem 19.12 of [P18|, a Borel function with

compact support is o-Borel and a o-Borel function is obviously Borel. Hence (1)< (ii).

(ii)=-(iii) Obvious.
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(iii)=(v) If w is a relatively compact open Baire set in 7', then x,, is a bounded Baire function
with compact support and hence by (iii), xo € £1(u). Then by Theorem 25.24 there exists a vec-
tor z,, € X such that [ du = x,, and hence [ d(z*u) = z*(z,) for z* € X*. Therefore, (v) holds.

(v)=-(vi) Let w be a relatively compact open set in 7. Let (w,)$° be a disjoint sequence of
open Baire sets in w. Then (wy,)$° C Bo(T') as shown in the proof of Claim 1 in the proof of
Theorem 19.12 of [P18]. Let P C Nand let wp = |J,,cp wn. Then by (v) and by Theorem 25.24
there exists zp € X and (x,, )nep C X such that

:L'*(an)—/ d(z*u) (27.5.1)

and
¥ (xp) = /wp d(z*u) = 7;3/% d(x*u) = 7%;Drzs*(avwn)

for 2* € X*. Thus ) " 2*(z,,) is subseries convergent for each 2* € X* and hence by the
Orlicz-Pettis theorem, Y 1° x,, is unconditionally convergent in X. In other words, by (27.5.1)

we have

lim gp(e,,) = lim sup % (@) = lm sup |(zu)(wn)]
n " z*eE " z*eE
= lim sup |(v*z")(wy)| = lim sup |p(wy)| = 0.
n *€FE n MGU*E

Therefore the bounded set u*E (see Lemma 2 of [P9]) is relatively weakly compact in M (T") by
Theorem 1 of [P8]. Since E is arbitrary in £, by Proposition 4 of [P9] ux (. is a weakly compact
Radon operator (see Convention 26.4 with respect to K(w)). Hence (vi) holds.

(vi)=-(vii) Obvious.

(vii)=(i)
Claim. If A is a relatively compact Borel set, then x4 € L£i(u) and consequently, each Borel

simple function with compact support belongs to £1(u).

In fact, A = K € C and hence by Theorem 50.D of [H], there exists a relatively compact
open Baire set wg such that K C wp. By (vii), uw, = u|gy(wg) is weakly compact. Let E € &.

Then wug, = Iy, 0wy, : Co(wo) — )/(\q; is weakly compact and hence, given € > 0, by Theorem
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26.11 there exist a compact C' and an open set w in wy (hence open in T') such that C C A C w
and (uyw,)g(w\C) < e. By Urysohn’s lemma there exists ¢ € C.(w) such that 0 < ¢ < 1 and
¢l = 1. Then (uw, )y, (Ixa —¢l) < (Uuw)g, (W\C) < €. Since E is arbitrary in £, this shows that
XA € L1(uy,). Since x4 = xa by Lemma 27.3(iii), x4 € £i(u) and consequently, each Borel

simple function with compact support belongs to £1(u). Hence the claim holds.

Let f be a bounded (complex) Borel function with compact support. Then there exists a
sequence (sy) of Borel simple functions such that |s,| / |f| and s, — f uniformly in 7. Then
supp s, C suppf = K (say) for all n. Let w € V such that K C w. Then by the above claim,
(81)$° C L1(u). Then, given € > 0, choose ng such that

50 — fllT(uw)g, (Xw) < €
for n > ng. Then
(uw) gy (Isn = f1) < llsn = fllr(uw)g, (xw) <€

for n > ng. Thus f € £1(u,) and consequently, f € £1(u) by Lemma 27.3(iii). Since f(t) = f(t)
for t € wand f(t) =0 for t € T\w and K C w, f = f and hence f € £1(u). Thus (i) holds.

(i)=(iv) Let w € V. Then by Definition 27.1, x,, € £1(u) and hence [ = x, belongs to X.
Then

/wd(x*u) = x*(/w du) = x*(zy)
and hence (iv) holds.

As shown above, (iii)=(v)=(vi)=(vii)=(i).
(1)=(viii) Obvious.

(viii)=(v) Let w be a relatively compact open Baire set in 7". Then @ and the boundary
of w are compact. Hence there exist vectors zg and y in X such that 2*(zg) = [ d(z*u) and
z*(y) = [, d(xz*u) for * € X*, where A is the boundary of w. Then z*(zg —y) = [ d(z*u) for
x* € X*. Hence (v) holds.
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(viii)=(ix) Obvious.

(ix)=-(v) Let V be a relatively compact open Baire set in 7. Then arguing as in the proof of
(7)=-(5) of Theorem 19.12 of [P18|, V = K\(K\V) with K € Cy and K\V € Cy. Then by (ix)
there exist zx and zg\y in X such that [, d(z*u) = 2*(zk) and fK\V d(x*u) = x*(zp\y) for
z* € X*. Then z*(xx — xi\v) = [ d(z*u) for 2* € X*. Hence (v) holds.

(i)=(x) Let w € V and let A C K(w) be bounded. Then there exists K € C such that supp
¢ C K for p € A and sup,ey |[pllr = M < oo. Then by Theorem 50.D of [H] there exists a
relatively compact open set w in T such that K C w. Then A C C.(w). Then by (i), u(A) is

relatively weakly compact in X.

(x)=>(vi) Let w € V and let A = {p € Cy(w) : ||¢||lw < 1}. Then A is bounded in K(T') and
hence by (x), u(A) is relatively weakly compact in X. Hence u, = u[(, is a bounded weakly

compact Radon operator. Hence (vi) holds.

(xi)=-(viii) Suppose (xi) holds. Then given ¢ > 0, there exists an open set w O K such that
u®(w\K) < e. Then by Urysohn’s lemma, there exists ¢ € C.(T) such that xx < ¢ < x,, so that
u®(¢ — xk) < €. Hence xx € L1(u) so that [, du € X. Then the weak integral [, du € X and

hence (viii) holds.
(xi)=-(xii) Obvious.

(xii)=(ix) Let K be a compact G5 in T'. Then given € > 0, by (xii) there exists an open set
w in T such that K C w and u®*(w\K) < e. By Urysohn’s lemma there exists ¢ € c.(T) such that
Xk < ¢ < Xw so that u®(p — xx) < €. Hence xg € L1(u) so that [, du € X. Particularly, the
weak integral [} du € X and hence (ix) holds.

Thus (i)-(xii) are equivalent and this completes the proof of the theorem.

The following theorem is analogous to Theorems 26.13 and improves Theorem 3.4 of Thomas

[T].
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Theorem 27.6. (a) Let u be a Radon operator on K(7) with values in a Banach space (X, 7)
and let H C X* be a norm determining set for X with the Orlicz property (respectively, (b) let
u be a Radon operator on K(7') with values in a quasicomplete lcHs (X, 7) and let H C X*
have the Orlicz property and let the topology 7 of X be identical with the topology of uniform
convergence in the equicontinuous subsets of H). Let @ be the operator obtained from u on
providing X with the topology o(X, H) and let X be the lcHs completion of (X, 7). Then u is

prolongable if and only if anyone of the following conditions holds:

(i) For each w € V the ultra weak integral [ du belongs to X ie. there exists 2, € X such
that

¥ (xy) = / d(x*u)
for x* € H.

(il) Similar to (i) with w € Byo(T) (V.

(iii) For each K € C, the ultra weak integral [, da belongs to X (see (i)).
(iv) Similar to (iii) with K € Cy.

Proof. Since (b) subsumes (a), we shall prove (b).

Let £ be the family of equicontinuous subsets of H. Let w € V. If u is prolongable, then
|k (w) 15 @ bounded weakly compact Radon operator and hence by Theorem 26.19, fw di € X so
that (i) holds.

Clearly, (i)=-(ii).

Let (i) hold. Let E € Ey. For each w € By(T) V), there exists x, € X such that

() :/d(az*u) (27.6.1)

for z* € H. Arguing as in the proof of Theorem 26.19, given a disjoint sequence (wy,)$° of open

Baire sets with J7” w, C w and using (27.6.1) in place of (26.19.1), we have

lim ¢g (2, ) = 0. (27.6.2)
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Since E is equicontinuous and u : Cp(w) — X is continuous, by Lemma 2 of |[P9] u*FE is
bounded in M (T'). Then arguing as in the proof of Theorem 26.19, we conclude that II,;, o u :
K(w) — )f(\q; is a weakly compact Radon operator for £ € £. Then by the complex version of

Lemma 2.21 of [T], u is prolongable.

Conversely, let u be prolongable and let K € C. Then by Theorem 50.D of [H]| there exists
U € V such that K C U. Then by (i), the ultra weak integrals [, dii = zy and fU\K dit = T\ g
belong to X. Then

/Kd(:c*u) = /Ud(x*u) ~ /U\K d(z*u) = 2™ (vy — 20\ k)

for 2* € H. Thus the ultra weak integral [, du belongs to X and hence (iii) holds.
(ili)=(iv) Obvious.

Let (iv) hold. Let w be a relatively compact open Baire set. Then @ € C and hence
by Theorem 50.D of [H| there exists K € Cj such that @ € K. Then w = K\(K\w) and
K\w € Cy by Theorem 51.D of [H]. Then by hypothesis, there exist vectors xx and z K\w 11
X such that Jx d(z*u) = x*(zk) and fK\w d(z*u) = x*(xg\,) for z* € H. Consequently,
¥z — 2\o) = [, d(z*u) for ¥ € H. Therefore, (iv)=(i).

Let (i) hold. Then, particularly, for each open Baire set w € V, ufx/(,) is a bounded weakly
compact Radon operator by Theorem 26.19. If V € V, then V € C and hence by Theorem 50.D
of [H] there exists an open Baire set w € V such that V C V C w. Then ulx(y) is the restriction

of uy, in K(V') and hence u|x(y) is weakly compact. Hence (i) implies that u is prolongable.
This completes the proof of the theorem.

Remark 27.7. The complex versions of Theorem 3.5, Corollary 3.6, Proposition 3.7 and
Lemma 3.10 of [T] hold in virtue of Remark 26.16 above.

Proposition 27.8.Let u : (T) — X be a bounded Radon operator where X is a quasicom-

plete IcHs. Then u is weakly compact if and only if w is prolongable and the function 1 belongs
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to L1(u).

Proof. If u is weakly compact, then by Theorem 26.18 every bounded complex Borel function
belongs to £1(u) and hence the function 1 belongs to Lj(u) and u is prolongable by Definition
27.1. Conversely, if u is prolongable and the function 1 is w-integrable, then by the complex
version of Corollary 3.6 of [T| every bounded Borel function is u-measurable and hence every
bounded complex Borel function is u-integrable by the complex version of Theorem 1.22 of [T.

Consequently, by Theorem 26.18, u is weakly compact.

Theorem 27.9. Let X be a Banach space (resp. a quasicomplete IcHs) and let u : K(T') — X
be a prolongable Radon operator. Then a scalar function f on T is u-integrable if and only if
f is weakly u-integrable and for every open Baire set w in T', the weak integral fw fdu belongs
to X (resp. the weak integral fw fdi € X where 4 is the Radon operator obtained from u on
providing X with the topology o (X, X*)).

Proof. First we prove the theorem when X is a Banach space. By the complex versions of
Theorem 1.22 and Corollary 3.6 of [T}, the condition is necessary. Let @ be the operator obtained
from u on providing X with the topology o(X, X*) and let the hypothesis hold for each open
Baire set. Then fw fdu € X for each open Baire set w in T'.

Let F be the complex vector space generated by the characteristic functions of open Baire
sets in T, provided with the supremum norm. Then arguing as in the proof of Theorem 3.11 of
[T] we have

sup \/gfdﬁ] < 0.

lg|<1,9eF

Consequently, the mapping ® : 7 — X given by
®(g) = [ gtdn
is continuous. Then by Claim 4 in the proof of Theorem 22.3 of [P19], Co(T) C F, where F is

the closure of F in the Banach space of all bounded complex functions on 7.

If ¥ is the continuous extension of ® to Cy(T"), then

< \If(go),a;* >= /Sofdua:*
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for 2* € X*, as there exists (g,);° C F such that ||g, — ¢||7 — 0 and ¥(g,) = ®(g») = [ gnSfda.
Thus

U(p) = / pfdi,
| ¢fda belongs to X and ¥ is continuous on Cy(T'). Thus ¥ is a bounded Radon operator on

K(T'). By Theorem 55.A of [H], there exists (¢,)5° C Co(T') such that ¢, \, xw since w is an
open Baire set. Then by LDCT we have

/w (W) = lim /T o fd(z*0) = /w fd(z* )

for z* € X*. Thus fw d¥ = fw fdi which belongs to X by hypothesis. Then by the equivalence
of (vi) and (vii) of Theorem 26.10, ¥ is weakly compact. Since d¥,« = fdug~ and since by
hypothesis f is uy+-measurable for «* € X*, the function f is ¥ «-measurable for z* € X™.
Then by the complex version of Theorem 1.28 of [T|, f is U-measurable and consequently, by
Theorem 26.11(vii), given € > 0, there exists a compact K such that ¥*(T\K) < §. As f is
W-measurable, there exists a compact Ko C K such that f|g, is continuous and W*(K\Kj) < 5.
Then U*(T\Kj) < e. By Proposition 25.15, by Lemma 25.11 and by the fact that dW¥,« = fdu,~
we have

€> UHT\Ko) = sup [Vo|*(T\Ko) = sup [Wo~[(T\Ko)
lz*|<1 lz*|<1

_ sm>/ | Fldjuge
lx*|<1 JT\ Ko

_ SW)Ljf—meWWﬁ

lz*|<1

since X1\ k, € L£1(¥).

Since x g, f is continuous in Ko, Xk, f is bounded (as Ky is compact) and as u is prolongable,

by Definition 27.1 xk,f is u-integrable. Then by the complex version of Lemma 3.10 of |T],
ferty (’LL)

Now let X be a quasicomplete IcHs. For g € ', let II; : X — X, C )A(;. Then II, is linear
and continuous. If y* € X,*, then y* oIl, € X*. As f is weakly u-integrable, f € L£;(z*u) for
each z* € X*. Moreover, by hypothesis for each open Baire set w € T there exists a vector z,,
belonging to X such that

' o T (wn) = [ Fdly* o Tl

w
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for y* € Xi. Hence I, ([ fda) = [ fd(Il;ou) = ,(z,) € X, for g € T'. Hence by the Banach
space case, f € L1(Il; o u) for each ¢ € I'. Consequently, by the complex version of Proposition
1.28 of [T], f is u-integrable and therefore, by Theorem 25.24, [ fdu € X.

By the complex versions of Theorem 1.22 extended to lcHs (see p.77 of [T]) and of Corollary
3.6 of [T] and by 1.12 of [T] the conditions are also necessary.

This completes the proof of the theorem.

Lemma 27.10. Let (6,,)5° C K(T)* be such that for each ¢ € K(T),

> 10u(0)] < oo
1

Let u(p) = (0,(v))3° for ¢ € K(T'). Then u is a prolongable Radon operator with values in ¢; (N).
Let f be a complex function which is 6,,-integrable for each n € Nsuch that

| | fdpn| < oo
>

for each open Baire set w in T, where pu, is the complex Radon measure induced by 6,, in the
sense of Definition 4.3 of [P3]. Then f € Li(u). If s(p) = Y.7° [ @dpn, then s € K(T)*, f is
s-integrable and

o0

[ sas=3> [ sau,

1 w

for each open Baire set w in T'.

Proof. The proof of Lemma 3.14 of [T] holds here for the complex case too. Only change is
that we have to use Corollary 18.5 of [P18] in place of Appendix I, T4 of [T]. The details are left

to the reader.
The following theorem improves the complex version of Theorem 3.13 of [T].

Theorem 27.11. Let u be a prolongable Radon operator on IC(T') with values in a Banach
space X and let H be a norm determining set in X*. Suppose H has the Orlicz property. Let
@ be the operator obtained from u on providing X with the topology o(X, H). Then a complex
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function f on T is u-integrable if and only if f is @-integrable (i.e., f is u,+-integrable for each

x* € H) and for each open Baire set w in T, the integral fw fdtu belongs to X.

Proof. The proof of Theorem 3.13 of [T| holds here verbatim excepting that we have to apply
Corollary 18.5 of [P18] instead of Appendix I T4 of [T]. The details are left to the reader.

The following theorem improves the complex version of Theorem 3.20 of [T].

Theorem 27.12. Let u be a Radon operator on I(T') with values in a complete lcHs X.
Let H be a subset of X* with the Orlicz property and let the topology 7 of X be the same as
the topology of uniform convergence in the equicontinuous subsets of H. Let @ be the operator
obtained from u on providing X with the topology o(X, H). Then a complex function f on 7T is
u-integrable if and only if f is ug«-integrable for each z* € H and for each open Baire set w in
T, [ di € X (ie., there exists x,, € X such that 2*(z,) = [ fd(z*u) for 2* € H).

Proof. The proof of Theorem 3.20 holds here verbatim excepting that we have to use Theorem

26.19 in place of Theorem 2.7 bis of [T]. The details are left to the reader.

28. BAIRE VERSIONS OF PROPOSITION 4.8 AND THEOREM 4.9 OF [T]

Using the Baire version of the Diedonné-Grothendieck theorem we give a complex Baire ver-
sion of Proposition 4.8 and Theorem 4.9 of |T| including that of the remark on p. 128 of [T|. For

this we start with the following two lemmas.

Lemma 28.1. Let u be a prolongable operator on K(T") with values in a Banach space X
and let f € £1(u). Then the operator ¥ : Cy(T') — X given by

W(g) = [ efdutore € Co(1)

is weakly compact.

Proof. By the complex version of Theorem 1.22 of [T], ¢f € L1(u) for ¢ € Cy(T') and hence
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U is well defined. Clearly, W is linear and

(W () < llellru®(f)

for ¢ € Co(T). Hence ¥ is continuous.

Since f € L1(u), by the complex versions of Theorem 1.22 and Corollary 3.6 of [T], xof €

L1(u) for each open Baire set w in 7" and thus
Ty = / fdu e X. (28.1.1)
Then
x*(xy) = / fd(z*u) (28.1.2)

for each open Baire set w in T'.

Let F be the vector space spanned by the characteristic functions of open Baire sets in T
and let it be provided with the supremum norm. Then by (28.1.1), for each g € F there exists
zg € X such that

Tg :/gfdu (28.1.3)
so that
" (zg) = /gfd(x*u) (28.1.4)
for x* € X™.
Let ®(g) = x4 for g € F. Then ® : F — X is linear and

()] = | / gfdul < |lglllru®(f).

Hence @ is continuous. Therefore, ® has a unique continuous linear extension ® on the closure
F in the Banach space of all bounded complex functions on T with the supremum norm. Then
Co(T) C F by Claim 4 in the proof of Theorem 22.3 of [P19] and hence let ®¢ = @]CO(T). Thus
&g : Cp(T') — X is continuous and linear and hence by Theorem 1 of [P9] its representing measure

7 is given by ®§*|g(r). Moreover, by the same theorem, (z* on) € M(T) for each z* € X* and

¥ Po(p) = /god(a:* on) (28.1.5)
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for ¢ € Cp(T) and for z* € X*.

Let ¢ € Co(T). Then there exists (g,)7° C F such that g, — ¢ uniformly in 7" so that
Dy (p) = lim, ®(gp). Then by (28.1.4) we have

" Pp(p) = limz*®(g,,) = lima™(zy,) = lim/fgnd(x*u) (28.1.6)

for z* € X*. Since f € Li(u), f € Li(z*u) for 2* € X* and hence [} |f|d|z*u| < oo for each
x* € X*. Moreover, by the complex version of Theorem 1.22 of [T], fy € L£i(u) and hence
fo € Li(x*u) for * € X*. Since f € Ly(u), f € Li(z*u) for 2* € X* and hence

/\f\dm*u! < . (28.1.7)
Consequently, by (28.1.7) we have
| [ tedan) ~ [ fgdtaw] < 1o =gl [ 171daul -0
as n — oo and therefore
/fgod(:c*u) :lién/fgnd(a:*u) (28.1.8)
for z* € X*. Then by (28.1.6) and (28.1.8) we have
¥ Do () = /f(pd(x*u) forz* € X*. (28.1.9)

Let w be an open Baire set in 7. Then by Theorem 55.A of [H] there exists (¢y,)7° C Co(T)
such that ¢, \, xu. Consequently, by LDCT, by (28.1.2), by (28.1.5) and by (28.1.9) we have

@ o)) = [xudia”om) = tim [ endia’ on)
= lima"@o(p,) = lim / Fond(z*u)
= /wad(x*u) =z (zy,).
Thus
(2% 0 ) (w) = 2*(z) for * € X*

and for each open Baire set w in 7. Thus n(w) = x,, and hence by Theorem 3(vii) of [P9], ®¢ is

weakly compact.
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On the other hand, by (28.1.9) and by the definition of ¥ (see the statement of Lemma 28.1))

we have

T (p) = / fod(z*u) = 2" Do (p)

for ¢ € Cy(T) and for z* € X*. Then by the Hahn-Banach theorem, ¥ = & and hence ¥ is

weakly compact.

Lemma 28.2. Let u, f, X and ¥ be as in Lemma 28.1 and let Mg ={A C T :xa € L1(¥)}.
Then:

(i) My is a o-algebra in T.
(ii) B(T) C My.
(iil) If pw(A) = [, d¥, then py(w) = [ fdu for each open Baire set w in T'.

(iv) If XM(A) = [, fdu for A € B(T), then X is o-additive on B(T') and for each z* € X*, z*A(-)

is Borel regular.
(v) pw(A) = A(A) for A € B(T) and consequently, A is Borel regular.
(vi) For a bounded complex Borel function g on T’

/gd\If = /gfdu. (28.2.1)

Proof. Since ¥ is weakly compact by Lemma 28.1, (i) and (ii) hold by Theorem 29.4 (see the

next section).

(iii) For ¢ € Co(T), ¥(¢) = | fedu and hence

U (p) = /gofd(x*u) (28.2.1)

for z* € X*. Then by Theorem 55.A of [H| there exists (¢,)7° C Co(T) such that ¢, \, Xw-
Then by Theorem 4.7 (LDCT) of [T] we have

U(w) = /de\If = lim/gondlll (28.2.2)
and hence by (28.2.1) and (28.2.2) and by LDCT for complex measures we have

U (w) = liTILn/npnd(x*\I/) = liqgn(:x*\ll)(gpn) = lirrln/gonfd(x*u) = /wad(x*u)
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for x* € X*. Therefore

(z*0)(w) = / fd(xz*u) for z* € X*.

LfﬂfWZwWAfm)

(") (w) = :17*(/ fdu) for x* € X*.

w

Since f € L£1(u), we have
and hence

Then by the Hahn-Banach theorem and by the definition of pg we have

py(w) = /wfdu

for open Baire sets w in T'. Hence (iii) holds.

(iv) As u is prolongable, by the complex version of Corollary 3.6 of [T| x4 is u-measurable
for each A € B(T). As |xaf| < |f| for A € B(T) and as f € L1(u), by the complex version of
Theorem 1.22 of [T], xaf is u-integrable for each A € B(T). Let (A,)I° be a disjoint sequence of
Borel sets in T' with A = (J7° Apn. Then Y ;4 x4, ./ xa and hence (37 xa,)|f] < xalf| € L1(w)
and (37 xa,)f — xaf in T. Hence by the complex version of Theorem 4.7 of |T]

i/uﬁwzgﬁjmzAﬁu

and hence A(+) is o-additive on B(T"). Moreover,
TA() = / fd(z*u)
)

is Borel regular on B(T) by Theorem 23.6 of [P19] (see the beginning of the proof of Theorem
23.6 of [P19]) and hence (iv) holds.

(v) By (iii), A(w) = py(w) for open Baire sets w in 7" and hence by the Baire regularity of
AlBy(ry and g |,y we conclude that A(A) = py(A) for A € By(T). For x* € X*, 2*A(-) =
f(.) fd(z*u) is Borel regular and o-additive on B(T") by Theorem 23.6 of [P19]. Since py is Borel
regular and o-additive on B(T") by Theorem 29.4 (see Section 29), z*ug is Borel regular and
o-additive on B(7T'), and hence by the uniqueness part of Proposition 1 of [DP1],

T AA) = 2" g (4)




THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL-VI 41

for A € B(T') and for z* € X*. Hence by the Hahn-Banach theorem, A(A) = g (A) for A € B(T).
Consequently, X is Borel regular on B(T).

(vi) By (iv) and (v)

/sdp,q, = /sfdu (28.2.3)

for a Borel simple function s. Given a bounded complex Borel function g, there exists (s,)7° of
Borel simple functions such that s, — g uniformly in 7. Then by the complex version of 1.10 of

[T] we have
| [ sutdu [ gfdul <llsn—gllrat(r) ~ 0 (28.2.)

as n — oo. Since | [ gd¥ — [ 5,dV| = [(g — sn)d¥| < ||g — s,||7V*(T) — 0, by (iv) and (v) we
have [ gdVU = lim,, [ s,d¥ = lim, [ s,dpy = lim, [ fspdu = [ fgdu by (28.2.3) and (28.2.4).
Hence (vi) holds.

Theorem 28.3. Let u be a prolongable Radon operator on K(7") with values in a Banach
space (resp. a quasicomplete IcHs) X. Let (f,,)7° be a sequence of u-integrable complex functions
converging u-a.e. to a function f in T If the sequence [ fydu converges in 7 (the topology of
X) (respectively, converges weakly) in X for all open Baire sets w in T, then the function f is
u-integrable and fw fndu converges in 7 (resp. weakly) to fw fdu € X for each open Baire set w

in T'. Moreover, for each bounded complex Borel function g on 7',

/fngdu — /fgdu in7in X
(resp.

/fngdu — /fgdu weakly in X.)

Proof. Let w be an open Baire set in T. By hypothesis, there exists a vector x, € X such

that

lim/ frndu=z,in T (28.3.1)

n
(resp.

lim/ fndu = x,, weakly. (28.3.1"))
n w
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In both the cases, by 1.34 of |T]
hﬁn/ frnduzs = x*(x) (28.3.2)
for z* € X*. On the other hand, by hypothesis and by Theorem 23.6 of [P19] we have
liTILn/ frndugs = / fdug (28.3.3)
for x* € X*, since ug+ = x*u € IC(T')*. Then by (28.3.2) and (28.3.3) we have
() = / fdug (28.3.4)

for each open Baire set w in T and for each z* € X*. Consequently, by the hypothesis that
fn — f u-ae. in T so that f,, — f ug+-a.e. in T for 2* € X* and by Theorem 23.6 of [P19] we

have
f € Li(x*u) (28.3.5)

for 2* € X*. Then by (28.3.4) and (28.3.5) and by Theorem 27.9, f is u-integrable in both the

cases of X.

Then for an open Baire set w in T', by (28.3.4) we have

¥ /w fdu) = /w fd(z*u) = /w Fduge = o*(z.)

for each «* € X*. Since fw fdu € X, by the Hahn-Banach theorem we have

/ fdu =z,
and hence by (28.3.1) (resp. by (28.3.1"))
/fndu — / fduin T (28.3.6)
(resp.

/wfndu—>/wfdu weakly.)

Let * € X*, X a quasicomplete lcHs and g be a bounded u-measurable complex function.
Then g is an x*u-measurable function. Clearly, # = x*u € K(T')* and hence by Theorem 23.6 of
[P19] we have

lirrgl/gfnd(x*u) = /gfd(ac*u). (28.3.7)
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On the other hand, by the complex version of Theorem 1.22 of [T|, ¢gf, and gf belong to £ (u)
and hence by (28.3.7) we have

(o [ gfud) =lim [ gfudatn) = [ gfdta'u) =o*( [ gpdu)

for each x* € X*. Hence
/gfndu — /gfdu weakly.

To prove the result for the convergence in 7, let ¥, : Co(T') — X be given by U,,(¢) = [ ¢ fndu
for ¢ € Co(T) and let ¥ : Cy(T) — X be given by ¥(p) = [¢fdu for ¢ € Co(T). Then by
Lemma 28.1, ¥,, and ¥ are weakly compact. By hypothesis, by Lemma 28.2(iii) and by (28.3.6)we

/wd\Ifn—/wfnduH/wfdu—/wd\I/ in 7. (28.3.8)

Case 1. X is a Banach space

have

By (28.3.8), by Theorem 26.15 and by Lemma 28.2

lim/gd\I/n zlim/gfnduﬁ/gd\lfz/fgdu

in 7 for each bounded complex Borel function g on 7.
Case 2. X is a quasicomplete 1cHs

For each ¢ € I', by Lemma 28.1 and by the continuity of II,, II; o ¥ and II; o ¥,, are weakly
compact. By hypothesis and by the first part of the theorem, fw fn— fw fdu in 7 for each open
Baire set in T'. Then by Lemma 28.2,

Hq(/wdllln):Hq(/wfndu):/wfnd(ﬂqou)—>/wfd(quu)in X,

Hence by the case of Banach spaces, we have

liran/gd(Hq oW, = liy/gfnd(ﬂq ou) — /gfd(l_[q ou) = /gd(Hq o).

Hence

ol [[atutu~ [ gfin)=| [gdtt,ow,)~ [gdm,ow), = [ gaw, - [ gav), - o
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for each ¢ € I' and hence

/gfndu—>/gfdu in 7.

This completes the proof of the theorem.

Theorem 28.4. Let X be a Banach space with topology 7. Let u be a prolongable Radon
operator on IC(T') with values in X. Let (f,)7° be a sequence of u-integrable complex functions
and suppose the sequence ([ f,du)® converges in 7 (resp. converges weakly) in X for each
open Baire set w in T'. Then there exists a function f € £;(u), u-essentially unique, such that
[, fadu — [ fdu in 7 (resp. weakly)for each open Baire set w in T'. Moreover, when ([  fndu)

converges in 7 for each open Baire set w in T, then for each bounded complex Borel function g,

/fngduﬁ/fgdu in 7

/ fngdu — / fgdu weakly)

as well as

in X.

Proof. Let z* € X*. By hypothesis, in both the cases of convergence, fw frnd(z*u) converges
in Kfor each open Baire set w in T'. Hence by the Baire version of the Dieudonné-Grothendieck

theorem (i.e., Theorem 18.6 of [P18]),
the sequence (f,) converges weakly in L1 (uy+) (28.4.1)
for each z* € X™.
Then by the complex version of Lemma 1 on p. 126 of [T] one can suppose that the f, are
null in the complement of (J7° K, where (K,)7° C C. By the complex version of Lemma 2 on
pp. 126-127 of [T], with the sequence (K,){° we can associate a sequence (x})7° C X* with the

property mentioned in the lemma. Then by the complex version of Lemma 3 on p. 127 of [T],

there exists a sequence of barycenters g, of the f,, given by

N(n) N(n)
=3 afi, o >0 and Y ol =1 (28.4.2)
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such that (g,) converges in mean in £;(zju) and converges (z}u)-a.e. in T for each i € N Thus,
for each i € N there exists N; C T such that |z]u|*(N;) = 0 and (g, (t))° is convergent in T\ N;.
(Compare with the proof of Theorem 23.12 of [P19].) Thus, if N = ({°N;, then (g,(¢))7° is
convergent in T\N = [J7°(T\N;) and |zju|*(N) = 0 for i € N Therefore, by the complex version
of Lemma 2 on pp. 126-127 of |T|, g, converges u-a.e. in T. Let f be the u-a.e. limit of the
sequence (gn). As (fn) converges weakly in L (uy«) for each z* € X* by (28.4.1) and as (g,) is
given by (28.4.2), it follows that (g, ) also converges weakly in L£;(uy«) for each z* € X*. Then
by Theorem 23.6 of [P19] (taking 6 = x*u € K(T')*), f € L1(ug+) for each z* € X* and

lim/gfnduz* = /gfdux* (28.4.3)

for £* € X* and for a bounded complex Borel function g on T'. Thus f is weakly u-integrable

and by (28.4.3) we have

lim / Fod(z*u) = /w fd(z"u) (28.4.4)

for each open Baire set w in T and for z* € X*. But by hypothesis, in both the cases of

convergence, there exists x,, € X such that

li7rln/ frd(x*u) = 2 (zy) (28.4.5)

for each z* € X*. Thus by (28.4.4) and (28.4.5) we have

/fd z*u) = 2" (zy) (28.4.6)

for z* € X*. Then by Theorem 27.9, f € £1(u) and by (28.4.6) we have
:U*(/ fdu) = / fd(z*u) = z*(zy) (28.4.7)

for 2* € X*. Then by (28.4.5) and (28.4.7), [ fodu — [ fdu weakly.
If fw frndu converges to z, in 7, then fw fdu = z, by (28.4.7) and by the Hahn-Banach

/w Fodu — /w fduinT.

Suppose there exists h € £1(u) such that

/fndu—>/hdu

theorem and hence
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in 7 (resp. weakly). Then

and hence by Theorem 23.6 of [P19], f = h uz+-a.e. in T for each 2* € X*. Then by the complex
version of Proposition 3.7 of [T], f = h u-a.e. in T and hence f is u-essentially unique.
Let ¥,, : Co(T) — X be given by

W, (p) = / ofudu, ¢ € Co(T).

Then by Lemma 28.1, ¥,, is weakly compact for each n and by hypothesis and by Lemma 28.2(iii),
lim,, fw d¥,, € X in 7 for each open Baire set w in 1. Then by Theorem 26.15 and by Lemma
28.2 there exists a bounded weakly compact operator ¥ on IC(7") with values in X such that

lim/gd\I/n = lim/gfndu = /gd\IJ (28.4.8)

in 7 for each bounded complex Borel function g on T'. Then by the fact that f € £1(u) and g is
bounded, gf € £1(u). Moreover, by (28.4.3) and (28.4.8) we have

lién:r*/gfndu: li7rln/gfndum* - /gfdux* = x*(/gfdu) :x*(/gd\II)

for z* € X*. Consequently, by the Hahn-Banach theorem

/gd\Il:/gfdu

lim/gfndu:/gfdu inT

for each bounded complex Borel function g. Since gf, and gf are u-integrable, (28.4.3) implies

and hence by (28.4.8) we have

lim / g fudu) = lim / o fduge — / Foduye = 2*( / gfdu)

and hence

/fngdua/fgdu weakly .

This completes the proof of the theorem.
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29. WEAKLY COMPACT AND PROLONGABLE RADON VECTOR
MEASURES

If uw is a bounded Radon operator with values in a quasicomplete 1cHs, we define M,, = {A C
T : xa € L1(u)} and p,(A) = [,du for A € M,. When u is a bounded weakly compact
Radon operator, we show that M, is a o-algebra containing B(T) and p, = m,, where m, is
the representing measure of u in the sense of 18.10 of [P18], which is the Lebesgue completion of
my |z(r). In Theorem 29.7 (resp. Theorem 29.8) we give several characterizations of a bounded
weakly compact Radon (resp. a prolongable Radon) operator w. Theorems 29.9 and 29.11 study
the regularity properties of p, when u is a bounded weakly compact or a prolongable Radon
operator, respectively. Then we study the outer measure ), of p, in the sense of [Si| and give
the connection between M, and p-measurable sets in Theorem 29.20, where we also show that
M, = Myx and py(E) = p,(E) for E € M,. We introduce the concepts of Lebesgue-Radon
completion and localized Lebesgue-Radon completion and in terms of them we generalize Theo-

rems 4.4 and 4.6 of [P4].

Definition 29.1. Let X be a quasicomplete IcHs and u : (7)) — X be a Radon operator.
Let M, = {ACT:xa€ Ly(u)} and let p,(A) = [, du for A € M,. Then p, is called the
Radon vector measure induced by v and M,, is called the domain of u,. u, is called a weakly
compact (resp. prolongable) Radon vector measure if u is a bounded weakly compact (resp. a

prolongable) Radon operator on K(T).

Theorem 29.2. Let X, u, M, and p, be as in Definition 29.1. Then M, is a ring of u-

measurable sets and p,, is o-additive on M,,.

Proof. Since 0 € Li(u), 0 € M,. Let ¢ € T. For A;,As € M, and K € C, by the
complex version of Proposition 1.21 of [T], and by Theorem 25.14 there exist disjoint sequences

(Kin)2, CC,i=1,2and sets N; and Ny with u;(Nl U N2) = 0 such that

K = DKi,nUNi

n=1

with Ki,n C KNA,; or Ki,n C K\Al, 1=1,2.
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Let Ji={n:K;, CKNA;}and I; ={n: K;,, C K\A;},i=1,2. Then
N(A1\Az) = U Ky, UFy) ﬂ(U Ky, UFy)
neJy nelz
and
\(A1\A2 U KanFg U( U K27nUF4)
nely neJs

with ug(F;) = 0,7 =1,2,3,4. Consequently, A;\As is ug-measurable. As x4,\4, < x4, € L1(u),
by the complex version of Theorem 1.22 of [T] A;\As € M,. Since xa,u4, = XA, + X4\ As>
Ay U Ay € M,,. Hence M, is a ring of u-measurable sets.

For z* € X*, z*u € K(T)* and hence by the complex version of Proposition 1.30 of [T,
Li(u) C Ly(z*u). Then pg=, is the complex Radon measure induced by z*u in the sense of
Definition 4.3 of [P3]. Thus

awu(A) = (*u) (xa) = 2", (A) (202.1)

for A € M,. Let (4;){° be a disjoint sequence in M, with A = |J7° A; € M,,. Then by (29.2.1)

we have

for each x* € X*, since pz+, is o-additive on My «, and since M,, C M +,. Now by the Orlicz-
Pettis theorem which holds for lcHs by McArthur [McA| we conclude that

and hence p,, is o-additive on M,,.

Remark 29.53. 1t is possible that M, = {0}. For example, let u be the identity operator
on Cp([0,1)). Then by Example 26.6, Cy([0,1)) = L1(u) and clearly, 0 is the only idempotent
function in Cy(]0,1)).

Theorem 29.4. Let X be a quasicomplete IcHs and let v : K(T') — X be a bounded weakly

compact Radon operator. Then the following statements hold:
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(i) M, is a o-algebra in T
(ii) B(T') C M,.

(iii) If m,, is the representing measure of the continuous extension of u on Co(T'), then p,, |5 =

m,, and hence p,|gry is B(T)-regular.

(iv) For each A € M,

po(4) = lim p, (AN K)

where C is directed by the relation K7 < Ky if K1 C Ky, K1, Ky € C.

Proof. Let ¢ € I. Then UL = {a* € X* : |2*(z)| < Lforz € Uy} is equicontinuous in X*. As
u is a weakly compact operator on Cy(T") (see Convention 26.4), by Corollary 9.3.2 of Edwards
[E] and by 18.10 of [P18], u*(UY) = {u*z* : 2* € U} = {a* ou : 2* € UL} is relatively weakly
compact in M(T). Let € > 0. Then by Theorem 4.22.1 of |E| there exists a compact set K, in T
such that

sup |z* ou|(T\K,) < € (29.4.1)
z*eUyY

and by Proposition 1 of [P9], given an open set U in T there exists a compact Cy C U such that

sup |z* o u|(U\Cy) < e. (29.4.2)
z*cUQ

(i) By Theorem 29.2, M, is a ring of u-measurable sets. By (29.4.1) and by Lemma 26.17,
ug(T\K,) < e. By Theorem 50.D of [H] there exists ¢, € K(T') such that xx, < ¢4 < x1 s0
that ug(1 — ¢,) < ug(T\Ky) < €. As q is arbitrary in T, this shows that 1 € £;(u) and hence
T e M,.

Let (A,)$° be a disjoint sequence in M, with A = [J7° A,. Then Y ;_ x4, /" xa < xr €
L1(u). Since ) ) x4, = XUy 4, € L1(u), by the complex version of Theorem 4.7 of [T], x4 € £L1(u)
and hence A € M,. Therefore, (i) holds.

(ii) Let U be an open set in 7. Then by Lemma 26.17 and by (29.4.2) there exists a compact
Cq in T such that C; C U and ug(U\Cy) < e. By Urysohn’s lemma there exists ¢, € K(T') such
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that xc, < ¢q < xv and hence ug(xv — ¢q) < ug(U\Cy) < €. Therefore, U € M,. As M, is a
o-algebra, we conclude that B(T") C M,.

(iii) By 18.10 of |P18|, z*u = w*z* = z* om,, for z* € X*. Given an open set U in T" and an
€ > 0, as in the beginning of the proof choose a compact K, C U for which (29.4.2) holds. Then
by Urysohn’s lemma there exists ¢, € (1) such that xx, < ¢4 < xv so that by (29.4.2) we

have
ug(xv — ¢q) < uf(U\K,) < e. (29.4.3)
Then
() = [ padmily = sup | (ma(0) - [ pydm,)
T z*eUy T
= sup | XUd(x*u)—/cpqdm*mu)]
z*eU? JT T
= sup | XUd(x*u)—/gpqd(x*u)\
z*eU? JT T
= sup /|XU—goq|dv(:z:*u) (29.4.4)
z*eUd JT
< sup atul(U\K,)
z*eUy

= ug(U\Ky) <e
by Lemma 26.17 and (29.4.3). Consequently, by 18.10 of [P18] we have

imy, (U) = u(pg)lg = sup Iw*(mu(U)—/qudmu)! <e (29.4.5)

z*eUY

since ¢4 is my-integrable in 7. On the other hand,

)~ ule)ly = | [ xwdu (e,
= sup | [ xvd(z*u) — x u(pq)|
z*cUQ JT
< sup | | |xu — pqldv(zu) (29.4.6)
z*eUQ JT
< ug(U\K,) <e

by (29.4.4).




THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL-VI 51

Therefore, by (29.4.5) and (29.4.6) we have
mu(U) — p, (U)], < 2.
Since € is arbitrary,
mu(U) = 2, (U)] = 0.

Now, as ¢ is arbitrary in I', m,(U) = p,,(U).

If Uy, Uy are open sets with Uy C Us, then

m, (U2\U1) = my (Uz) — my(Ur) = p,(Uz) = p, (Ur) = p,(U2\U1)
and consequently, u,, (F) = my(F) for E in the ring generated by U , the family of open sets in T'.
Let M ={A € B(T) : p,(A) = my(A)}. If (E,){° is a monotone sequence in M, by the
o-additivity of w, on B(T') by Theorem 29.2 and by (ii) above and by the o-additivity of m,, on
B(T) by Theorem 2 of |P9] as u is weakly compact, we have w,(lim, E,) = m,(lim, F,) and

hence M is a monotone class. Then by Theorem 6.B of [H|, u = m, on B(T). Consequently, by
Theorem 6 of [P9], p,|p(r) is Borel regular. Hence (iii) holds.

(iv) By (ii), C € M, and hence AN K € M, for A € M, and K € C. Given q € T', by the

lcHs complex version of Lemma 1.24 of [T| we have
lim ug(xavx) = lim ug(A\(AN K)) =0.

As ¢ is arbitrary in T, this shows that xanx — X4 in the topology of £;(u) and consequently,
du = li du.
/XA U Iérenc / XANK QU
j.e. A)=1 ANK).
ey iy (A) = lim o, ( )

This complete the proof of the theorem.

Definition 29.5. Let X be a quasicomplete IcHs and let u : Co(T) — X be a continuous

linear mapping. As in 18.10 of [P18], let m, = u™|g(7), the representing measure of u and
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—

let my, be the Lebesgue-completion of m, with respect to B(T) and let B(T) be the Lebesgue
completion of B(T) with respect to m,. In the light of Theorem III.10.17 of [DS], we define
m,(AUN) = my(A) where A € B(T) and N C M € B(T) with v(m,, B(T))(M) = 0.(See
Definition II1.10.18 of [DS]). Thus we use the symbol m,, to denote its Lebesgue completion on

—

B(T) also.

Theorem 29.6. Let X be a quasicomplete IcHs and let u : K(T') — X be a bounded weakly
compact Radon operator and let ¢ € I'. By Convention 26.4, u : Cy(T) — X is continuous and
let m, be the representing measure of u with m, whose Lebesgue completion with respect to

B(T) is denoted by m, also. By Theorem 6 of [P9], my|g(ry is Borel regular. Then:

(i) For M € B(T), ug(M) = |jmy||4(M). (Recall uy = II; o u from Lemma 26.17.)

——

(ii) For A € B(T'), the Lebesgue completion of B(T") with respect to m,,, suppose there exists
M € B(T) such that A C M and v(Il; om,, B(T))(M) = 0. Then ug(A) = |jm,|[4(A) = 0.

—_—~

(iii) A set A in T is u-integrable if and only if it is my,-integrable and hence B(T) = M,,.
Consequently, for A € M, p,(A) = m,(A). (See Definition 29.5.)

(iv) A function f:T — Kis u-measurable if and only if it is m,-measurable.

Proof. (i) Since B(T') C M,, by Theorem 29.4(ii), the set M is u-measurable and u-integrable.
Then by the complex version of Theorem 1.11 of [T], M is II; o u- integrable and hence xy €
L1(ug). Let Upe(z 4+ ¢71(0)) = 2*(z) for z € X and z* € U(?. Then W« is well defined, linear
and continuous and {W,« : x* € Ug } is a norm determining subset of the closed unit ball of (X,)*
by Proposition 10.14 of [P17]. Consequently, by the complex version of 1.13 of [T], by 18.10 of
[P18] and by Lemma 25.11 we have

ug(M) =ug(xm) = sup |z7ul*(xm)
z*eUy

= sup |[u"z"|(xm)
z*eUy

= sup [(z"om,)|(M)
z*eUy

= [|my[lg(M).

Hence (i) holds.
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(ii) By (i), ug(M) = 0 implies |[my[|o(M) = 0. As A C M, ug(A) < ug(M) = 0 and

[lmy||q(A) < ||my||q(M) = 0. Hence (ii) holds.

(iii) Suppose A C T is u-integrable. Then it is u-measurable and hence by the analogue
of Theorem 21.9 of [P19], given a compact K in T" and ¢ € I', there exists a disjoint sequence
(K,(ﬂ))fo of compacts and a set N contained in K such that K\N = |J{° K,(f), ug(N) = 0 and
K c KnAor K ¢ K\A for each n. Then N = K\(K\N) = K\ U K € B(T). Conse-
quently, by (i) we have ||my||4(N) = 0. Then by Theorem 21.9 of [P19] and by the arbitrariness
of ¢ € T" we conclude that A is Lusin m,-measurble. Consequently, by Theorem 21.5 of [P19], A
is m,,-measurable. Since 1 € £;(m,,) by Theorem 19.14(b) of [P18], by the domination principle

X4 is m,-integrable.

Conversely, let x4 be m,-integrable. Then A is m,-measurable. Therefore, by Theorem 21.9
of [P19], given a compact K and ¢ € T, there exist a disjoint sequence (Ky(ﬂ))cl’o of compacts and a
set N C K such that K\N = J® K\? with K9 ¢ Aor K\? ¢ (K\A) and with ||m,||,(N) = 0.
Then N € B(T') and by (i), ug(N) = 0. Since ¢ is arbitrary in I, by the analogue of Theorem 21.9
of [P19], A is u-measurable. Since 1 € £;(u) by Theorem 29.4(i), by the domination principle

P

XA is u-integrable and hence A € M,,. Consequently, M, = B(T).

—_—~—

For A e M, = B(T), p,(A) = [ xadu and hence by 18.10 of [P18] we have

i) = [ dt) = [ dwe) = [ deom,) = o'm, (4

for z* € X*. As m,(A) and p,(A) belong to X, by the Hahn-Banach theorem p,,(A) = m,(A)
for A € M,. Thus (iii) holds.

(iv) If f is u-measurable, given a compact K and g € TI', there exist a disjoint sequence
(Ki(q))i’O C C and a set N with u$(N) = 0 such that K\N = [J{° Kl-(q) and with f|Ki<q) continuous
for each i. Since N € B(T'), by (i), |[myl|4(N) = u3(N) = 0 and hence by Theorem 21.4 of [P19],
f is Lusin m,,- measurable. Then by Theorem 21.5 of [P19], f is m,-measurable. Conversely, if f
is m,, measurable, then by Theorem 21.5 of [P19], f is Lusin m,-measurable and hence reversing

the argument and using (i), one can easily show that f is u-measurable.

This completes the proof of the theorem.
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The following theorem generalizes Theorem 3.3 of [P4] to bounded weakly compact Radon
operators on K(T') and improves the first part of Theorem 9.13 of [P13]. Moreover, Theorem 9.13

of [P13] was announced earlier in [P6].

Theorem 29.7. Let X be a quasicomplete lcHs and let u : K(T') — X be a bounded Radon
operator. Let M, and m, be given as in Definitions 29.1 and 29.5 respectively. Then the following

statements are equivalent:

(i) w is a bounded weakly compact Radon operator.
(ii) M, is a o-algebra in T and Cy C M,,.
(iii) B(T) C M,.
(iv) Bo(T) C M,,.
(v) Bo(T) € M.
(vi) Every bounded u-measurable complex function f belongs to £;(my,).
(vii) Every bounded complex Borel function f belongs to £;(my,,).
(viii) Every bounded complex o-Borel function f belongs to £;(my,,).
(ix) Every bounded complex Baire function f belongs to £1(m,,).
(x) Every bounded u-measurable complex function f belongs to £1(u).
(xi) Every bounded complex Borel function f belongs to £1(u).
(xii) Every bounded complex o-Borel function f belongs to £1(u).
(xiii) Every bounded complex Baire function f belongs to £1(u).

(xiv) For every open set U in T there exists a vector xzy € X such that the weak integral

Jiy du = zy in the sense that

x*(zy) = / d(x*u)
U
for each x* € X*, where x™u is treated as a complex Radon measure in 7'

(xv) Similar to (xiv) except that the open set U is o-Borel.
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(xvi) Similar to (xiv) except that the open set U is an open Baire set.
(xvii) Every bounded u-measurable complex function f belongs to £1(p,,)-
(xviii) Every bounded complex Borel function f belongs to £1(p,,).

(xix) Every bounded complex o-Borel function f belongs to £;(,,).

(xx) Every bounded complex Baire function f belongs to £1(g,,).

Proof. By Theorem 29.4, (i)=-(ii) and (i)=-(iii)=-(iv)=(v). Obviously, (ii)=-(v).

(v)=(i) Since By(T) C M,, every open Baire set U is u-integrable and hence there exists a
vector zy € X such that [ xpdu = xy. Consequently, the weak integral fU du belongs to X and
therefore, by (vi)=-(vii) of Theorem 26.10, (i) holds.

Thus (1)< (i) (i) < (iv) < (v).

(i)=(vi) By the hypothesis (i) and by Theorem 29.6, A € M, if and only if A m,-integrable
in T. If f is a bounded u-measurable complex function, then by Theorem 29.4(i) xr is u-
integrable and hence by the complex lcHs version of Theorem 1.22 of [T], f € £1(u). Moreover,
by Theorem 29.6(iv) f is m,-measurable and hence, given g € I', there exists a set N € B(T)
with ||my||4(N) = 0 and a sequence (s,)° of B(T)-simple functions such that |s,| < [f| and
$n — fxr\n uniformly in 7. Then by the complex lcHs versions of Proposition 1.3 and of 1.10
of [T]

\/Sndu - /fduq <ug(|sn = fI) < [If = snllrug(l) — 0
as n — oo since ug(1) < co by Proposition 26.3. Hence

/ fdu = lim / Spdu (29.7.1)

since ¢ is arbitrary in I'.

Since M, is the set of all m,-measurable sets which are m,-integrable in 7" and as p,(A4) =
m,(A) for A € M, by Theorem 29.6(iii), each s, is m,-integrable in 7" and as p(A) = m,(A)
for A € M, by the said theorem, we have

/sndu—/sndmu. (29.7.2)
T
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Consequently, by (29.7.1),

/ fdu = lim / Spdm,, (29.7.3)

and hence by (29.7.1), (29.7.2) and (29.7.3) we have

/fdmu = hm/ Spdm, = hm/sndU,— /fdu

Thus every bounded u-measurable complex function f is w-integrable and m,-integrable in T

and

/ Fdu = /T fdm,,. (29.7.4)

Hence (i)=-(vi).

As shown in the above, (vi)=(x). Obviously, by the complex version of Corollary 2.18 of [T],
(x)=>(xi)=>(xii) =(xiii). Clearly, (xi)=(xiv) (resp. (xii)=(xv), (xiii) =>(xvi)) and consequently,
(xiv) (resp. (xv), (xvi)) implies by Theorem 26.10 that u is a weakly compact Radon operator.
Clearly, (vi)=(vii)=(viii) =(ix) and (ix) implies that [, dm, = zy € X for each open Baire set
Uin T. Then by (29.74), [;du = [, dm, = xy for each open Baire set U in T and hence by
Theorem 26.10, (ix)=-(i). Thus (i)<(vi)<(vil) < (viii)e(ix).

By (29.7.4), [;;du = [;;dm, = zy € X for each open Baire set U in T and hence by Theorem
26.10, (xiii)=-(i). Hence (i)<(x)<(xi)<(xil) < (xiii).

(iii)=(xiv)=(xv) (obvious)=-(xvi) obvious and (xvi)=-(i) by Theorem 26.10. Hence (i)« (iii)< (xiv)<(xv)

< (xvi).

Since m,, = p,, on M, (xvii)<(vi); (xviil)<(vil); (xix)<(vill) and (xx)<(ix) and hence all

the statements are equivalent.
This complete the proof of the theorem.

The following theorem has been given without proof in Theorem 9.14 of [P13]. It was also

announced earlier in [P6].
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Theorem 29.8. Let X be a quasicomplete lcHs and let u : (7)) — X be a Radon operator.

Then the following statements are equivalent:

(i) w is prolongable.
(ii) 6(C) C M,,.
(iii) 6(Co) C M.
(iv) M, is a 0-ring containing all relatively compact open sets in 7.
(v) M, is a d-ring containing C.
(vi) M, is a d-ring containing Cp.
(vii) Every bounded complex Borel function with compact support belongs to £1(u).

(viii) For every compact K in T, there exists zx € X such that pg-,(K) = 2*(zg) for 2* € X*,
where i+, is the complex Radon measure induced by z*u in the sense of Definition 4.3 of
[P3].

(ix) Similar to (viii) for each relatively compact open set U instead of K.

(x) Similar to (viii) with K compact Gjs.

Proof. (i)=(ii) Suppose u is prolongable. Let V' € V. Then by (i), v : K(V) — X is a
bounded weakly compact Radon operator and hence by Theorem 29.4, B(V) C M,, where uy
is ulx(y). Since V' is arbitrary in V and since 6(C) = Uy ¢y B(V), by the complex analogue of
Lemma 3.2 of [T] (ii) holds.

(ii)=-(iii) Obvious.

(i)=(iv) Let (A,) be a decreasing sequence in M, with A, N\, A. Since x4, — xa and
XA < xa, for all n, by the complex lcHs analogue of Theorem 4.7 of [T] x4 € £1(u) and hence
A € M,. Since M, is a ring of sets by Theorem 29.2, M, is a é-ring of sets. Since (i)=-(ii),
VY C M, and hence (i)=(iv).

(iv)=(v) If C € C, then by Theorem 50.D of [H] there exists V' € V such that C' C V. Then
C=V\(V\C) € M, by (iv). Hence (iv)=(v).
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(v)=-(vi) Obvious.
(vi)=-(iii) Obvious.

(i)=(vii) Let f be a bounded complex Borel function with supp f = K € C. Let U € V with
K C U. By (i), ulgw) is a bounded weakly compact Radon operator and hence by Theorem
29.7(xi), f is ulx(u)-integrable. Then given € > 0 and ¢ € I' there exists ¢ € K(U) such that
(ulic@)g(If — ¢l) < e Now by the complex analogue of Lemma 3.2 of [T], ¢ = ¢ and f=fand

hence we have

ug(If —l) = ug(If = ¢I) = (uglx@))*(If — o) <.

Hence f is u-integrable and thus (vii) holds.

(vii)=(viii) Let K € C. Then by (vii), xx € L1(u) and hence [, du = zk(say) € X. Then
¥ (rg) = x*(fK du) = fK d(x*u) = pgry(K).

(vii)=(ix) Let U € V. Then by (vii), xv € £1(u) and hence [, du = zy(say) € X. Then
x*(mU) = x*(fU du) = fU d(x*u> = Mx*u(U)

(vii)=(x) The proof is similar to that of (vii)=-(viii).

(viii)=(i) as (iv)«<(i) of Theorem 19.13 of [P18| and as (z* o m,,) = z*u.
(ix)=(i) as (ii)<(i) of Theorem 19.13 of [P18| and as z* o m,, = x*u.
(x)=(i) as (ix)«<(i) of Theorem 19.13 of [P18] and as z* o m,, = z*u.

(iii) =(i) By (iii), every K € Co belongs to M, and hence is u-integrable. Hence [, du € X.
But [ du = p,(K) = m,(K), and hence m,(K) € X. Then by the equivalence (7) and (1) of
Theorem 19.12 of [P18], u is prolongable and hence (i) holds.

Hence the statements (i)-(x) are equivalent and this completes the proof of the theorem.

Theorem 29.9. Let X be a quasicomplete IcHs and suppose u : (1) — X is a bounded
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weakly compact Radon operator. Then:

(i) pm,, is M,-regular. That is, given A € M, and a neighborhood W of 0 in X, there exist
a compact C' C A and an open set U D A such that p,(F) € W for all F' € M, with
FcU\C.

(ii) For A € M,

A= 1 K)= 1 U)= 1 JK)= 1 (U
Ky (A) Kelé?A)““< ) plm pu(U) i m (K) pim, m (U)
where C(A) = {K € C : K C A} is directed by the relation K; < Ky if K1 C Ks and

U(A) ={U €U : A C U} is directed by the relation U; < Us if Uy C Uy.

Proof. Let W be a neighborhood of 0 in X and letWj be a closed balanced neighborhood of
0 in X such that Wy + Wy C W. Then there exist an € > 0 and a finite family (¢;)} in I" such
that

ﬂ{m 1 qi(z) < 2e} C W. (29.9.1)
i=1

Let A € M,. Then by the complex lcHs version of Lemma 1.24 of |T] there exists Ky € C
such that

ug (ANANK) = ug (xaAXT\K) < € (29.9.2)

for all K € C with K D Ky and for ¢+ = 1,2,...,n. By Theorem 29.2,u,, is additive on M, and
by Theorem 29.4, AN K € M, for K € C. Hence by (29.9.2) and by Theorem 29.2 and by the

complex IcHs version of 1.10 of [T| we have
@i(py(A) = p (AN K)) = qi(p (AN(AN K)) < ug (A\(ANK)) <e (29.9.3)

for i = 1,2,...,n and for K € C with K D Ky. On the other hand, as the members of M, are
u-measurable by Theorem 29.2, there exists a compact K; C Ko such that x|k, is continuous
and ug (Ko\K;) < efori=1,2,...,n. Let J ={k: Ky C AN Ko} and C = (e K. If J is

empty, then K; C Ko\ A for all 7 and in that case, C = (). Thus C € C, C C AN K and in both

the cases we have

n

ug (AN K)\C) < g ({(Ko N A) U K\ N[ J ;)

= ug (Ko\ | K)) < ug,(Ko\K;) < e
1
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fori=1,2,...,n.

Thus there exists C € C with C C AN K{ such that
ug, (AN Ko)\C) < e (29.9.4)

for i = 1,2,...,n. Then by (29.9.3) and (29.9.4) and by the complex lcHs version of 1.10 of |T]

we have

Q'L(H’u(A) - /’l’u(A N KO)) + ql(“u(A N KO) - :u’u(C))
€+ qi(p, (AN Ko)\C)

e +ul (AN Ko\C)

2e

IN A A

N

for i =1,2,...,n. Hence p,(A) — p,(C) € Wy.

Now let F' C A\C with F' € M,. Then by (29.9.2) and (29.9.4) we have

qi (e (F))

IN

u;Z(F) < u;i (A\C)

* ({(A 1K) U (A\E9)\C)
u;i (AN Ko)\C) + u;l_ (A\Ky)
2e

U

IN

N

fori=1,2,...,n. Hence

o (F) € Wo. (29.9.5)

Since M, is a g-algebra by Theorem 29.4(i), A € M, if and only if A’ € M,, and hence by the
above argument applied to A in place of A, there exists a compact K C A’ such that u, (F) € Wy
for all F € M, with F C A\K. Let U = K/ =T\K. Then U is open, A C U and

wo(F) € Wy (29.9.6)

for all F € M,, with F C U\A. Thus C C ACU,C e€C,U € U and for F € M,, with FF C U\C

we have

e Wo+WoyCW
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by (29.9.6) and (29.9.5), respectively.
Hence (i) holds.

(ii) Given a neighborhood W of 0 in X, by (i) there exist Ky € C and Uy € U such that
KyCc AcCUyand pu,(F) e W forall F € M,, with FF C Up\Ky. Let K € C with Ko Cc K C A
and U € U with A C U C Uy. Such K and U exist by the regularity of u,, in M,,. Then

P (A) = oy, (K) = p (A\K) € W (29.9.7)
as A\K C A\K, C Up\Kp and
pu(U) = py(A) = p, (UNA) € W (29.9.8)

as U\A C Uo\A C Uo\Ko.
Since p,, = m, by Theorem 29.6(iii), (ii) holds by (29.9.7) and (29.9.8).

Lemma 29.10. Let X be a quasicomplete IcHs and let u : K(T') — X be a prolongable Radon
operator. Let U be a relatively compact open set in T'. Let v = u|x (7). Then for each compact set
KcUand EFe M, ENK € M,. Moreover, given ¢ € I' and € > 0, there exist open sets O and
VinTsuchthat ENKCOCV CVCU,{FCO\(ENK):FeM,}={FCO\(ENK):

F e My}, p,(F) = p,(F) for such F' and ug(F) = vg(F) < vg(O\(ENK)) = ug(O\(ENK)) < e.

Proof. Since K € C and K C U, by Theorem 50.D of [H| there exists an open set V' such
that K CV C V CU. Since E € M, and since §(C) C M, by Theorem 29.8(ii), EN K € M,.

Claim.For each p € K(T'), poxk € L1(v). (29.10.1)

In fact, as v is weakly compact on Cy(U), given ¢ € " and € > 0, by Theorem 6 of [P9] there
exists an open set G such that K ¢ G C V with

sup |z* 0 v|(G\K) < ———.
peetd el
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Then by Lemma 26.17 we have vy (G\K) < W. By Urysohn’s lemma there exists g € K(U)
such that yx < g < xg. Then ¢g € K£(U) and

vg(lexr —wgl) < llellrvi(Ixx —gl) < llellrvg(G\K) <e.

This shows that pxx € L1(v).

As E € M,, there exists ¥ € IC(T) such that ug(|xg — ¥|) < e. By the above claim
Uxx € L1(v) and vi([xenx —Yxk|) = vi(xx (Ixe —¥])) = ug(xx|xE —¥|) < ui(lxp—¥|) <e,
since xx|xE — V| has compact support contained in U so that by the complex version of Lemma
3.2 of [T] applies. Thus EN K € M,. Moreover, E N K is relatively compact in 7" and hence
by the complex IcHs version of Lemma 1.19 of [T] and by Theorem 29.8(ii), given ¢ € I' and
€ > 0, there exists an open set O in T with O € M, such that ENK Cc O CcV CcV CcU
such that v7(O\(E N K)) < e. Then each F' € M, with F' C O\(£ N K) has compact support
contained in U and hence by the complex version of Lemma 3.2 of [T| F' € My, p,(F) = p,(F)
and ug(F) = vy (F) < vg(O\(ENK)) <e.

Conversely, let us suppose FF C O\(F N K) and F € M,,. Then given q € T and € > 0, let
¢ € K(T) such that u$(|¢ — xr|) <e. Clearly,as F CO CV CV CU, we have

lexv —xrl = lexy —xvxr| < le —xrl,
©xy € L1(v) by the above claim and by the complex version of Lemma 3.2 of [T| we have
va(Ixr —oxpl) < ugllxr —ol) <e

as |[xr — ¢xy| < |Ixr — ¢|. Thus xr € £1(v) and hence F € M,,.

Theorem 29.11. Let X be a quasicomplete IcHs and let u : (7)) — X be a prolongable
Radon operator. Then:

(i) p, is M,-inner regular in the sense that given E € M, and a neighborhood W of 0 in X,
there exists C' € C such that C C E and p,(F) € W for all F C E\C with F € M,,.

(ii) p,, is restrictedly M,-outer regular in the sense that given E € M,,, K € C and a neighbor-
hood W of 0 in X, there exists a relatively compact open set O in T such that ENK C O
with p,(F) € W for all F C O\(E N K) with F' € M,.




THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL-VI 63

(iil) ey l5(c) is 0(C)-regular.

(iv) For each E € M,,

E)y= 1 K)=1 li O
HalF) KCIIEI,III(EC““( ) IéIE%EﬂKCO}IOnEMOS(C)MU( )

where C is directed by the relation K7 < Ky if K1 C Ky and U N §(C) is directed by the
relation O1 < Oy if Oy C O;.

Proof. Choose a neighborhood Wy of 0 in X such that Wy + Wy C W. Let (¢;)7 C I" and
€ > 0 such that () {z : ¢;(x) < 2¢} C Wy. Let E € M,. Then E is u-integrable and hence by
the complex IcHs version of Lemma 1.24 of T there exists Ky € C such that

us (E\(ENK)) < e (29.11.1)

for Ko C K € C and for ¢ = 1,2,...,n. Since u is prolongable, by Theorem 29.8, M,, is a d-ring
containing 6(C) and p,, is o-additive on M, by Theorem 29.2. Consequently, E N K € M, for
K € C and by (29.11.1) we have

(1, (B) = oy (BN K)|g, = |y, (E\(E N K))g, < ug (E\(ENK)) <e
fort=1,2,...,n and for Ko C K € C. Hence

p,(E) = Ilfne% w,(ENK). (29.11.2)

(1) Since E is u-measurable, there exists a compact K; C Ky such that xg|k, is continuous so

that K; ¢ ENKpor K; C E'NKjy and ug, (Ko\K;) < efori=1,2,...,n. Let J = {i: K; C ENKo}

i

and let C = {J,c; K;. If J =0, take C' = ). Then
CeC,CCKonFEandugy (ENKp)\C) <e (29.11.3)

fori=1,2,...,n, since

ug (ENKo\E) < ug({(EnKo)U(E nK)N|JEK:)
1

= g (Ko\|JK)
1

< ug, (Ko\Ky)
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Then C' C E, C € C and by (29.11.1) and (29.11.3) we have
ug (E\C) < ug (E\(E N Ky)) +ug, (EN Ko)\C) < 2¢
fori =1,2,...,n. Then for F € M, with F C E\C we have
(Pl < 1, (F) < g (E\C) < 2

for i =1,2,...,n and hence p,(F) € Wy C W. Thus (i) holds.

(ii) Let K € C and let U be a relatively compact open set in 7' such that K C U. Then
by Lemma 29.10 there exist open sets O and V such that ENK Cc O CV CcV Cc U, {F C
O\(ENK): Fe M} ={FCO\(ENK) : F e My}, p,(F) = p,(F) for such F and
v, (O\(EN K)) = uy (O\(ENK)) < efori=1,2,..,n where v = u|(U). This shows that for
all F' € M, with FF C O\(FNK),

1, (F)lg; < ug,(ON(ENK)) <€

fori=1,2,...,n and hence p,(F) € Wy C W for F € M, with F' C O\(ENK). Hence (ii) holds.

(iii) Let w = p,|s5(c) and let £ € §(C). By (i) there exists C C E, C € C such that
W(F) = 1, (F) € Wy

for F C E\C with F € 6(C).

As E € §(C), there exist a compact C' and a relatively compact open set V' in 7" such that
E c C V. Then E = ENC and hence by (ii) there exists a relatively compact open set O such
that £ C O and p, (F) € Wy for all F € M, with FF C O\E. Thus particularly for all F' € §(C)
with FF C O\FE, w(F) = p,(F) € Wo. Then CC EC O, C e€C, O c¢UN(C), and for F € §(C)
with F* C O\C we have

W(F) = iy (F) = i (F 1 (O\E)) + u(F 1 (B\C)) € Wy + Wo C W.
Hence p,,|0(C) is 6(C)-regular.

(iv) Let ¢ € T, e > 0 and K € C. By (ii) there exists O; € UNJ(C) such that KNE C O and
for all O € U with ENK C O C Oy we have |u, (F)|, < € for all F' € M, with F C (O;\ENK).
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Then we have
o (ENK) = py,(0)]g = |p,(ON(ENK))|g <€
and hence

li 0) = u (ENK). 29.11.3
Echggmé(C)uu() ey, ( ) ( )

Then by (29.11.2) and (29.11.3) we have

E) = i ENK)=li li 0). 29.11.4
Hy (E) Klg&,uu( ) I(Hen(ZEchgélumd(C)MU( ) ( )

Finally, as p,, is inner regular in M, by (i), we have

w(B) = tim_ p (K). (20.11.5)

and hence by (29.11.4) and (29.11.5), (iv) holds.

This completes the proof of the theorem.

Definition 29.12. Let X be a quasicomplete IcHs and let v : K(T)) — X be a bounded
weakly compact Radon operator with p, as in Definition 29.1. For each open set U in T, by

Theorem 29.9(ii),

wU) = dim (). (292.)

Let A C T and let

py(A) = lim p,(U)

whenever the limit exists, where U is directed by the relation Uy < Us if Uy C Uj.

Theorem 29.13. Let X,u and p} be as in Definition 29.12. Then pu}(A) exists in X for
each ACT.

Proof. u, is o-additive on M, by Theorem 29.2 and M, is a o-algebra in T" by Theorem
29.4(i). Therefore, the range of p,, is relatively weakly compact in X by Theorem on Extension

of [K3] (or by Corollary 2 of [P7| ) and hence is bounded in the lcHs topology 7 of X. Since
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B(T) C M, by Theorem 29.4(ii) and since p,, is o-additive on M, for each increasing sequence
(K,)$° C C, limy, p,(K,) € X. Moreover, by Theorem 29.9(i), p, is M,-regular and hence,
given K € C and a neighborhood W of 0 in X, there exists U € U such that K C U and for
each compact C' with K ¢ C C U, p,(C) — p,(K) € W. Thus conditions 6.1 of Sion [Si] are
satisfied by T,C,U and p,,, excepting that X is a quasicomplete IcHs so that every bounded
closed set in X is complete. Since u,, is o-additive on M, and since Y C M,,, for every monotone
sequence (U,)$° of open sets in T, lim,, p,,(U,) € X. Consequently, by Lemma 2.5 of Sion [Si],
{1, (U)}acveu is a Cauchy net in X. Since X is quasicomplete and since the range of p,, is

bounded, limacyey b, (U) exists in X and hence pf(A) € X for each A C T.

Theorem 29.14. Let X be a quasicomplete IcHs and let u : K£(T') — X be a bounded weakly
compact Radon operator. Then a subset A of T is u-integrable if and only if, for each ¢ € I" and
€ > 0, there exist a compact C and an open set U in T such that C € A C U and u;(U\C) < e.

Proof. Suppose A is u-integrable. Proceeding as in the proof of Theorem 29.9(i) with ¢ € T,
by the complex lcHs analogue of Lemma 1.24 of [T there exists Ky € C such that

ug(A\(A N K)) = u(eaxre) < (20.14.1)

S

for all K € C with K D Kj. Since A is u-measurable, there exists a compact C' C Ky such that
Xalc is continuous and ug(Ko\C) < §. Then C C A, C' € C and

ug(A\C) = ug((ANKo)\C) U ((A\Ko)\C)
< ug((AN Ko)\C) + ug(A\Ko)

€

5"

A

By a similar argument applied to A" = T\A € M,, there exists a compact K C A’ such
that ug(A'\K) < §. Let U = T\K. Then U is open, A C U and ug(U\A) = ug(A"\K) < 5.
Consequently, C CACU, C €C, U €U and uz(U\C) <.

Conversely, let us suppose that the conditions are satisfied for each ¢ € I' and for each € > 0.
ForgeT'and e > 0,let C C ACU, C €C,U €U with uy(U\C) < e. Then by Urysohn’s
lemma, there exists ¢ € IC(T) such that xo < ¢ < xy. Then |x4 — ¢| < xuv — x¢ and hence we

have

ug(xa — ) < uglxv\c) = ug(U\C) <e.
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Therefore, x4 € £1(u) and hence A € M,,.

Definition 29.15. Let My = {E C T : py(A) = py(ANE) + py(A\E)for allA C T}.

Members of M- are called Carathéodory-Sion p;-measurable sets.

Theorem 29.16. My- C M, and p;(E) = p,(E) for £ € My+. Consequently, each

E € My is u-measurable and u-integrable.

Proof. Since the range of p,, is bounded and since X is quasicomplete, Theorem 6.3 of Sion
[Si] holds here and hence B(T) C Mpy+. Let A € Myx, ¢ € I' and € > 0. Then by (3) of
Theorem 6.3 of Sion [Si] there exists K € C and U € U such that K C A C U and q(py(F)) < §
for all '€ My with ' C U\K. As B(T) C M, by Theorem 29.4(ii), by Definition 29.12
and by Theorem 29.9(ii) we have p}(A) = limacvey 1, (U) = p,(A) for A € B(T) and hence
q(p, (F)) < § for all '€ B(T') with FF C U\K. Since U\K is open, by Lemma 26.17 we have

ug(U\K) = sup |2 ou|(U\K)
m*EUg
< 4 sup |tz u (F)]
z*€UQ,FCU\K,FeB(T)
= 4 sup (2" ) (F)

z*cUQ,FCU\K,FeB(T)

€
= 4 supg(p(F)) <4y =
FCU\K,FeB(T)

where we use the relation
¥y (E) = pig=y(E) for E € M,, and hence for £ € M, (29.16.1)

as mathcal B(T) C M,. In fact, as E € M,, E € My, If f € L1(u), then f € Ly(z*u) and
hence fiz=(f) = [ fd(z*u) = 2*([ fdu) and hence fip+y(E) = 2*([pdu) = z*p,(E) so that
', (E) = pg=u(F) for E € M,,.

Consequently, by Theorem 29.14, A € M,, and hence My C M,. Then by Theorem 29.9(ii)
it follows that py,(A) = p, (A) for A € My-. The last part is evident from Definition 29.1.

This completes the proof of the theorem.
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To prove that My = M,, we proceed as below and prove the following lemmas.

Let 0 be a positive linear functional on K(T'). For E C T, let

ps(E) = inf  sup{f(¥): ¥ < g, ¥ e CHT)}.

xe<gelt

Then by Rudin [Rul], uj is an outer measure on P(T), the family of all subsets of T Let
Mz ={E C T : Eis puj -measurable — that is, u5(A) = pug(AN E) + pg(A\E) for allA C T'}.
Then M, is a o-algebra in T" and contains B(T'). (See Theorem 2.2 of [P3]).

Lemma 29.17. Let § € K(T')*. For A C T with ,ure‘(A) < 00, let
po(A) = {hgr — pp-) + s — =)} (A)
where 6 = Ref + iImf, Ref) = Hf — 0,7, andImb = 0; —0,. Let E € My ={F € MN*+ N
01

MM;_ N M#Z+ N MN;_ with M‘9|(E) < OO} Then
1 2

2

Wi A) = (AN E) + (A\E), (20.17.1)
Proof. Let E € My. Then for A C T, we have
,u;;r (A) = ,u;j(A NE)+ “Zj(A\E) (29.27.2)
and
’u;f (A) = ,u;i_ (ANE)+ sz (A\E) (29.17.3)
fori = 1,2. If p?‘e'(A) < 00, then “ZJ(A) < oo and M;Z(A) < oo for i = 1,2 and hence by

(29.17.2) and (29.17.3) and by the definition of pj(A), (29.17.1) holds.

Lemma 29.18. If § € I(T)* and is bounded, then for A C T

po(A) = lim 5(U).

Proof. By Theorem 2.2 of [P3],

py+(A) = inf{pg (U): ACU eU}

Aéll%u Hox ()}
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fort =1,2 for A C T. A similar expression holds for u;., (A) for i = 1,2. Then by the definition
of uj(A) as given in Lemma 29.17, the lemma holds.

Lemma 29.19. Let 6, My, 61 and 65 be as in Lemma 29.17 and let uy = fots B2 = Hg- i3 =
I} and pyq = ;- For AC T and E € My,

wANE) = | b 0 =l ()
= ACH(}feL{'uj(Um E)= Aéltrfréuuj(UﬂE) (29.19.1)
and
Y(A\E) = inf ) = li U
15 (ANE) A\E%ICLUGMNJ( ) A\Elcnllfeuluj( )
= Acullffeu p;(U\E) = Aéllrjréu p;(U\E) (29.19.2)
for j = 1,2,3,4. Consequently,
S(ANE S(A\E) = i s E li 5 E). 29.19.
po(ANE) +pp(A\E) = lim pp(UNE)+ lim 45(U\E) (29.19.3)
Proof.
; = i “(U) > i ; > ik
AN E) Amélgjeuujw) - Aé%feuu](UﬁE) 2 15(ANE)
and hence
wANE) = | b 50 = b ()
= LAk, mUNE) = lm 5 (UNE)

for j = 1,2,3,4 and hence (29.19.1) holds. Similarly, (29.19.2) holds. Then (29.19.3) holds by
(29.19.1) and (29.19.2).

Theorem 29.20. Let X be a quasicomplete IcHs and let u : K(T') — X be a bounded weakly
compact Radon operator. Then My = M, and py(A) = m,(A) = p,(A) for A € M,.

Proof. In the light of Theorem 29.16 it suffices to show that M, C MMZZ' Let £ € M,. Then
x*u € K(T)* and is bounded. Moreover,

E € Mg+, for eachz™ € X* (29.20.1)
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since F is u-integrable and hence is z*u-integrable for each x* € X*. Then by Definition 29.12

we have

(A) = i for AcCT. 29.20.2
Hi(A) = T, (U) for A€ (20.20.2)

Then by (29.20.2) and by (29.16.1) we have

FEA) = Jim 2, ()

= li T*u
ACllI]réU H (U)

= i T E li 2 u(U\E 29.20.

Jdm g (UNE)+ Hm o pieu(U\E) (29.20.3)

by (29.20.1) since U N E and U\ E belong to My=,. Then by (29.20.3) and by (29.19.3) we have
¥y (A) = ey (AN E) + pie, (A\E). (29.20.4)

On the other hand, by (29.19.1) and (29.16.1) we have

*Ww(ANE)= lim pey(UNE)= lim z* E 29.20.4
poru(ANE) = lim po(UNE) = lim a2™p,(UNE) (29.20.4)

since U € B(T) C M, by Theorem 29.4 and since E € M,, by hypothesis.

Similarly,

e(A\E) = 1 u(U\E) = i * E 29.20.
P AVE) =l ey (U\E) = lim o', (U\E)  (29.205)
and hence by (29.20.3), (29.20.4) and (29.20.5) and by Lemma 29.19 we have

' p,(A) = Aélerréuﬂm*u(UmE) +Aé1{[réuﬂm*u(U\E)

AﬁElgllJEM'u ( ) + A\EICK?JGZ/{'u ( )

— S WLANE) + 2" (A\E)
for * € X*. Therefore, by the Hahn-Banach theorem we have
pu(A) = uy (AN E) + p, (A\E)

for A C T and hence £ € My+. Then by Theorem 29.16, M, = Myx. Moreover, p,(E) =
m,(E) = p!(E) for E € M, by Theorems 29.6 and 29.16.
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This completes the proof of the theorem.

Theorem 29.21. Let X be a quasicomplete IcHs. Let u : (T') — X be a bounded weakly
compact Radon operator and let ¢ € I'. Given A € M,,, there exist a o-compact set F' and a Gy
set G such that F' C A C G and ug(G\F') = 0. Conversely, given A C T', suppose for each ¢ € T
there exist a o-compact F' and a G5 G such that F' C A C G and ug(G\F) = 0. Then A € M,.

Proof. Let ¢ € I be given. For € = %, by Theorem 29.14 there exist a compact K, and an
open set Uy, in T' such that K,, C A C U, with ug(U,\K,) < L Then F = J° K,, is o-compact,
G=N7Unis Gs and F C A C G. Clearly, u$(G\F) = 0 since u$(G\F) < ug(Up\K,) < L for
alln e N

Conversely, let A C T be such that for each ¢ € T' there exist a o-compact F and a Gj
G such that F' C A C G with ug(G\F) = 0. Without loss of generality we shall assume that
F=UCp, (Ch)*cC, C, /F,G=N]Up, (Un)* CU and Uy, \, G. Since U,\Cy, \, G\ F,
(Un\Cn)7® C My, and ug(-) = [|jmyl|¢(-) by Theorem 29.6(i) and since |jm,[[, is continuous as

m,, is o-additive, we have
0= ug(G\F) = |[my[|o(G\F) = lim ||my[[o(Un\Cy)-

Thus, given € > 0, there exists ng such that ||m,||,(U,\Cp) < € for n > ng. Let U = Uy, and
C = Cpy- Then ug(U\C) = [|m,|[4(U\C) < € and hence by Theorem 29.14, A € M,.

This completes the proof of the theorem.

Definition 29.22. Let X be a quasicomplete IcHs. Let D be a J-ring containing C and
let w: D — X be g-additive. If p is the restriction of an X-valued weakly compact Radon
vector measure p,,, then the Lebesgue-Radon completion D of D with respect to p,, is defined
as the family {E C T : giveng € I there exist ac-compact F'and a Gs Gsuch that ' C E C
G withug(G\F) = 0} and the Lebesgue-Radon completion g, of g, with respect to D is said to
exist on D if

- i K
pu(E) Kelcl,Ilr(lcE“( )

exists in X for each F € D.
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The following theorem generalizes the bounded case of Theorem 4.4 of [P4].

Theorem 29.23. Let X be a quasicomplete lcHs. Let p : §(C) — X be o-additive. Then
p is the restriction of an X-valued weakly compact Radon vector measure p,, if and only if p is
0(C)-regular and its range is relatively weakly compact. In that case, u is unique and is called the
bounded weakly compact Radon operator determined by p. Moreover, M,, = 5(?), the Lebesgue-
Radon completion of §(C) with respect to w,. The Lebsesgue-Radon completion p,, of u, with

respect to §(C) exists on §(C) and coincides with p,,.

Proof. Suppose u : K(T) — X is a bounded weakly compact Radon operator and suppose
= p,l5c)- Then g, is My-regular by Theorem 29.9(i) and §(C) C M, by Theorem 29.4(ii).
Let E € 0(C). As p,, is M,-regular, given a neighborhood W of 0 in X, there exist a compact
K C F and an open set U in T such that U D E and such that u, (F) € W for all F' € M, with
F C U\K. Hence, particularly, p,|sc) is (C)-regular. Therefore, g is §(C)-regular. Since M,
is a o-algebra in T by Theorem 29.4(i) and since p,, is o-additive on M,, by Theorem 29.2, the
range of p,, and hence that of p is relatively weakly compact by Theorem on Extension of [K3]

or by Corollary 2 of [P7].

If p is also equal to NJ&(C) for another bounded weakly compact Radon operator v on T,
then by the uniqueness part of Theorem 4.4(i) of [P4|, pz+y = fz+, on 6(C) and hence z*u = z*v
on K(T) for each z* € X*. Then by the Hahn-Banach theorem, u = v. Therefore, u is unique.

Conversely, let p be o-additive and §(C)-regular on 6(C) with its range relatively weakly
compact. Then by the Theorem on Extension of [K3| or by Corollary 2 of [P7], p has a unique
o-additive extension p, on B.(T') with values in X. If py = p.|g,(7), then by Theorem 1 of [DP1]
, Mo has a unique X-valued Borel (resp. o-Borel) regular o-additive extension fu (resp. i) on
B(T) (resp. on B.(T')) and fi|g (1) = H.. Since fi, and p, are o-additive and extend p to B.(T),
by the uniqueness part of Proposition 1 of [DP1| 2*u, = z*4, for z* € X* and consequently,
by the Hahn-Banach theorem gi, = p, on B.(T). Therefore, p, is B.(T)-regular. Thus p has a
unique B(T')-regular o-additive extension p, on B.(T) and p. = fi| g, (1)
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Let

uf:/deuc, f € Co(T). (29.23.1)

Then by Theorem 1 of [P7], u is weakly compact and let m,, be the representing measure of u in
the sense of 18.10 of [P18|. Then m,, has range in X by Theorem 2 of [P9] and by Theorem 1 of
[P9] and by (29.23.1) we have

suf = [ riem) = [ fden)

for f € Co(T) and for x* € X*. Moreover, my|g(r) is Borel regular. Then by Theorem 20.12 of
[P19], my|p, (1) is Be(T)-regular. Consequently. by the uniqueness part of the Riesz representa-
tion theorem (o-Borel version) we conclude that z*p, = x*m, on B.(T') for each z* € X* and
hence by the Hahn-Banach theorem, pu, = m,|g, (7). Since p |5y = p, p is the restriction of
m,, to 6(C). Then by Theorem 29.6(iii), p is the restriction of p,, to §(C).

M, = §(C), the Lebesgue-Radon completion of 6(C) with respect to p, by Definition 29.22

and by Theorem 29.21. Then the Lebesgue-Radon completion p,, of u,, exists on 6(C) by Theo-

rem 29.9(ii). Moreover, by the same theorem, w, = p,,.
This completes the proof of the theorem.
The following theorem generalizes the bounded case of Theorem 4.6 of [P4].

Theorem 29.24. Let X be a quasicomplete lcHs. Let py : 6(Co) — X be o-additive with
range relatively weakly compact. Then pg admits a unique X-valued §(C)-regular o-additive

extension p : 6(C) — X. Moreover, the following assertions hold:

(i) pg is the restriction of a weakly compact Radon vector measure p, and such u is unique.

We say that p, determines the bounded weakly compact Radon operator u.

(ii) If p is as above, then py and p determine the same bounded weakly compact Radon

operator u (see Theorem 29.23).

(iii) If wis as in (i) and (ii), then

M, = the Lebesgue-Radon completion §(C)with respect to u,,
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and
w,(E) = p,(FE) for each E € M,,.
where p, is the Lebesgue-Radon completion of u,, with respect to §(C).

Proof. By Theorem on Extension of |[K3| or by Corollary 2 of [P7], by Proposition 1 of
[DP1] and by the Hahn-Banach theorem g, has a unique o-additive X-valued Baire extension
v:By(T) — X and let

uf:/deV, feCyT).

Then u is weakly compact by Theorem 1 of [P7] and hence the Borel restriction of its representing
measure (see 18.10 of [P18]) my,, is the restriction of p, to B(T) by Theorem 29.6(iii). Moreover,
by 18.10 of [P18|, Then

x'uf = /de(m*u) = /de(a:*mu) for f € Cy(T') and for z* € X*.

Then by the uniqueness part of the Riesz representation theorem (Baire version) we have z*v =
(z*my)|g, 7y for each * € X*. Consequently, by the Hahn-Banach theorem we have v =
my g, (7). Since m, = p, by Theorem 29.6(iii), we have v = p,|g,(7). Then by Theorem
29.11(iii), p = pyls(c)y = myls(c) is o-additive and 6(C)-regular and extends pg. If py : 6(C) — X
is o-additive, §(C)-regular and extends g, then by the uniqueness part of Theorem 4.1(i) of [P4],
x*py = x*p for each £ € X™* and hence by the Hahn-Banach theorem, g = p. Hence py admits
a unique 0(C)-regular o-additive extension p : §(C) — X.

(i) If there exists another weakly compact operator v : Co(1T)) — X such that u,|5c,) = Ho,
then by the uniqueness part of Theorem 1 of [DP1] and by the uniqueness of o-additive extension
of pg to Bo(T), p, = p, and hence this implies that x*p,, = 2*p, for z* € X*. Consequently,
by (29.16.1) and by Theorem 29.4 we have fiz«, = fiz=, on B(T) for each z* € X*. Thus
r*u(p) = x*v(yp) for ¢ € K(T') and for 2* € X*. Consequently, by the Hahn-Banach theorem,

u = v. Hence u is unique.

(ii) Let w be the X-valued o-additive extension of p to B.(T). This exists by hypothesis
and by Corollary 2 of [P7]. Then w also extends g to Be(T). Then uf = [, fdv = [, fdw for
f € Co(T). Then p and py determine the same bounded weakly compact Radon operator wu.
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Hence (ii) holds.

(iii) By Theorem 29.23

M, = 06(C), the Lebesgue-Radon completion of §(C) with respect to u,,. Hence (iii) holds.

By Theorem 29.9(ii) and by Theorem 29.6(iii),

po(E) = my(E) = o B (K) = po (E).

This completes the proof of the theorem.

Theorem 29.25. Let u; and uy be prolongable Radon operators on K(T). If uul\(s(co) =
Nuz’zi(co), then u; = ug so that M,, = M,,.

Proof. Let U be a relatively compact open Baire set in 7. Then by Theorem 29.8(iii),
Bo(U) C 0(Co) C My,, i =1,2. Then pu,, [y(r) = Hu,|Bo) = my (say). Then my : Bo(U) — X

is o-additive and the linear transformation wy : Co(U) — X given by
wuf = [ fdm,  fecw)
U
is weakly compact by Theorem 1 of [P7]|. Then for f € Cy(U),
wuf = [ fimy = [ il = [ San s = wftori= 1.2
U U T
Thus
urf =wuaf, feC(U).

Since each f € IC(T) belongs to C.(U) for some relatively compact open Baire set U by Theorem
50.D of [H|, we conclude that u; = ug on K(T).

This completes the proof of the theorem.

Remark 29.26. One can also use Theorem 4.6(i) of [P4] to prove the above result since

Uagruy = Moy, 00 0(Co) for each z* € X*.
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The following theorem generalizes Theorem 4.4 of [P4].

Theorem 29.27. Let X be a quasicomplete lcHs. Let p : §(C) — X be o-additive. Then
p is the restriction of an X-valued prolongable Radon vector measure p,, if and only if p is
0(C)-regular. In that case, u is unique and w is called the prolongable Radon operator determined
by p. Moreover, the Radon vector measure p,, on M, is given by

paB) = Jim (K, E € M,. (29.27.1)

The localized Lebesgue-Radon completion of §(C) with respect to p is defined by ¢(6(C)) = {E C
T: giveng € I',) K € Cande > 0, there exist C' € C and a relatively compact open set U inT such that C' C
EnNK c Uwithug(U\C) < eand limgec ug(U\(E N K)) = 0}. The localized Lebesgue-Radon
completion fr of p with respect to 6(C) is said to exist on E(éf(\CJ)) if f(F) =limgcp rec n(K)

exists in X for each E € ¢(6(C)). Then ¢(6(C)) = M,, and i(E) exists in X for each E € £(§(C))
and p(E) = p,(F) for E € M,,.

Proof. If u is a prolongable Radon operator on K(7T'), then by Theorems 29.2, 29.8 and
29.11(iii), 0(C) C M,, and ps(c) is o-additive and 6(C)-regular. Conversely, let g : §(C) — X be
o-additive and §(C)-regular. Let U be a relatively compact open set in T' and let my = p|g ().
Let Viy : Co(U) — X be given by

VUf:/demUa feCoU).

Then by Theorem 1 of [P7], Viy is weakly compact. On the other hand, if uf = fT fdp for
f € K(T), then ulx@y = Vulk@w) is continuous and hence the unique continuous extension of

ulic(uy to Co(U) coincides with Vi which is weakly compact. Hence u is prolongable.

Let p : 6(C) — X be o-additive and §(C)-regular and let my = p|g(rr). Since my is B(U)-
regular by the hypothesis, by Lemma 18.19 my is the representing measure of the weakly compact
operator Vi and since u|cy ) = Vo, it follows by Theorem 29.4 that p,|gw) = my = plgw-
Since U is an arbitrary relatively compact open set in T, it follows that p,[sc) = p. In fact,
given E € 6(C), let U be a relatively compact open set such that £ C U. Then E € B(U) and
hence p,,(E) = p(E).
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The uniqueness of u follows from Theorem 29.25 and thus u is uniquely determined by pu.
Moreover, by Theorem 29.11(iv),

plB) = dim_ p(K) = lm_ p(K), EeM, (29212

and hence p,, is also determined by pu.

Let R={E C T :given K € C,q € l'and € > 0, there exists C' € Cand a
relatively compact open set U inT'such that C C EN K C U withug(U\C)
< eand limgec ug(E\E N K) = 0for each ¢ € T'}.

Let E € M. Let K € C, g € I' and € > 0. Then by Lemma 29.10 there exists a relatively
compact open set U in T such that EN K C U and ug(U\(E N K)) < §. Since EN K € M,,
by Theorem 29.11(i) there exists a compact C' C £ N K such that uf((E N K)\C) < §. Then
CCENKCU and ug(U\C) <e.

Since xg € L1(u), by the complex lcHs-version of Lemma 1.24 of |T]
Jim 3 () = lim g (B\ (B 1 K)) = 0

for each ¢ € I' and hence M,, C R.

To prove the reverse inclusion, let £ € R. Then, given ¢ € I';, K € C and € > 0, there exist
C eCandU € U()4(C) such that C C ENK C U with ug(U\C) < e. By Urysohn’s lemma there
exists ¢ € K(T') such that xc < ¢ < xv. Then ug(|p — xenk|) < ug(xv — xc) = ug(U\C) < e
Thus EN K € M, for each K € C. Since limgecug(E\E N K) = 0 by hypothesis, and since
ENK € M, for all K € C and since £1(u) is closed in F°(u), it follows that E € M, and hence

M, = R. Thus M, = £(6(C)), the localized Lebesgue-Radon completion of 6(C). Finally, i = p,,

is immediate from the definition and from (29.27.2).
This completes the proof of the theorem.

The following theorem generalizes Theorem 4.6 of [P4].
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Theorem 29.28. Let X be a quasicomplete lcHs. Let p : §(Co) — X be o-additive. Then
W is the restriction of a unique X-valued prolongable Radon vector measure pu,, and u is called
the prolongable Radon operator determined by p,. Then g admits a unique 6(C)-regular o-
additive extension p : 6(C) — X and p and p determine the same prolongable Radon operator

u.

Proof. By Theorem of Dinculeanu and Kluvanek [DK]|, p, has a unique o-additive 6(C)-
regular extension p: 0(C) — X.

Since each f € IC(T) is py-integrable in T,

uf = /T fdue, £ € K(T)

is well defined, linear and has values in X. Moreover, for a relatively compact open set U in T,
by Theorem 50.D of [H| there exists a relatively compact open Baire set Uy such that U C Uj.
Then for f € C.(U) and for g € T

guf) = o /T Fdbto) < [1f1107] 10l q(Uo)

and hence u is a Radon operator. Moreover, the operator
u:Co(U) — X
given by
uf = [ Fduo. 1€ Co0)

is continuous and is the restriction of

uy : Co(Up) — X
given by

wf = /U fdpg, = /U fdu € Co(U)

which is weakly compact by Lemma 18.19. Then by the proof of Theorem 29.28, u is prolongable.

Since p is uniquely determined by p and since g determines u, gy and g determine u uniquely.

This completes the proof of the theorem.
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30. L,(u) AS £L,(m,), 1 <p < oo, u WEAKLY COMPACT AND £;(v) AS £;(m,), v
PROLONGABLE

Let X be a Banach space (resp. a quasicomplete lcHs)and let u : (7)) — X be a bounded
weakly compact Radon operator. Then by Convention 25.8, u : Cy(T) — X is continuous and
weakly compact. Let m,, : B(T) — X be the representing measure of u in the sense of 18.10 of

Ch. IV. Then m,, is o-additive, its restriction to B(T') is Borel regular and

u(ip) = /T pdm,, ¢ € Co(T)

where the integral is a (BDS)-integral. See Definition 3 and Theorems 2 and 6 of [P9]|. Hereafter,
m,, will denote the Borel restriction of the representing measure of u unless otherwise stated.
Let u be a bounded weakly compact Radon operator with values in X. In the first part of this
section, we show that f € £1(u) if and only if f € £1((m,) and in that case, [ fdu = [ fdm,.

For such u, we also show that £,(u) is the same as £,(m,,) for 1 <p < oo.

Let v : K(T') — X be a prolongable Radon operator, X being a Banach space or a quasi-
complete IcHs. Let m, : 6(C) — X be the representing measure of v (see Definition 19.5 and
Theorem 19.9 of Ch. IV). In the second half of this section, we show that f € £;(v) if and only
if f € £1(m,) and in that case, [ fdv = [, fdm,. Thus the questions (Q5) and (Q6) mentioned

in Introduction of Ch. I are answered in the affirmative. See Remark 30.23.

Let g : T — Kbe my,-measurable. Then by Theorem 5.3 we have
1
m3o.7) = swp ([ loPtetma)i
T 1

for 1 <p < 0.

Definition 30.1. Let u : K(T) — X be a bounded weakly compact Radon operator. Let
g : T — Kbe u-measurable. For 1 < p < oo, let
1
= sup / lg|Pd|z*ul)» (30.1.1)
|z*|<1

where |z*u| is given by (12) on p.55 of [B].
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The following theorem gives the relation between (my)5(g,7) and us(g) for 1 < p < co.

Theorem 30.2. Let u : £(T) — X be a bounded weakly compact Radon operator and
let m, be the representing measure of u as in 18.10 of Ch. IV. Then a function g : T — Kis

u-measurable if and only if g is m,-measurable. Moreover, for a u-measurable scalar function g,

up(9) = (my)p(g, T) (30.2.1)
for 1 < p < co. Also we have
w49 Sup()+upl)  (3022)
up(af) = lajuy(f), « € K (30.2.3)

and

ui(fg) < up, (f) - up,(9) (30.2.4)

for u-measurable scalar functions f and g on T if 1 < p1,pe < co with p% + p% =1.
Proof. By Theorem 29.6(iv), g is m,-measurable if and only if it is u-measurable.

By (30.1.1) and by 18.10 we have

1
ut(g) = sup ( /T glPdjz*ul)?

|lz*|<1

1
— sup ( / lglPd|uz*|)?
T

|lz*|<1

1
— sup ( /T gPd|z* o ma|)?

lz*[<1

= swp (f lgldv(a” om,))

|lz*|<1

B =

by Notation 4.4, Theorem 4.7(vi) and Theorem 4.11 of [P3| and by Theorem 3.3 of [P4] where
v(z* om,) = v(z* om,, B(T)) on B(T). Hence

up(9) = (my)y(g, T).
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Now by (30.2.1) and by Theorem 5.13 we have

9 )
T) + (my)y(9,T)
»(9)

us(f+g) = (m)}
< (m,);

(f +
(f,
— )+

u

and

up(ef) = lafuy(lf1)

forl < p < oo and for a € Kwhenever f, g : T'— Kare u-measurable. Moreover, if 1 < py,ps < 00

with -+ —|— -~ =1, then by Theorem 5.13 and by (30.2.1) we have

I
=
<

ui(fg)

This completes the proof of the theorem.

Definition 30.3. Let X be a Banach space and let 1 < p < co. Let u : K(T) — X be a
bounded weakly compact Radon operator. Let F)(u) = {f : T — K fu-measurable and u®(| f|P) <
oo}. Let I,(u) = {f: T — K fu-measurable and |f|P € L1(u)}. Let

I(u) ={f : T — K fu-measurable and u-integrable}.

Theorem 30.4. Under the hypothesis of Definition 30.3, I1(u) = I(u).

Proof. If f € I(u), then f € L£1(u). Thus, given € > 0, there exists ¢ € K(T) such that
u*(|f—¢|) < e Sinceu®(|f|—l¢l) <u*(|f—¢l) <€ |f] € L1(u) and hence f € I;(u). Conversely,
if f € I1(u), then f is u-measurable and |f| is u-integrable. Then by the complex analogue of
Theorem 1.22 of [T, f is u-integrable. Hence I1(u) = I(u).
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Definition 30.5. Let X be a Banach space, u : K(T) — X be a bounded weakly compact
Radon operator and 1 < p < co. Let L£,(u) = {f € Ip(u) : u*(|f|P) < oc0}.

Theorem 30.6. Let X, u and p be as in Definition 30.5. Then £,(u) = I(u) C Fy(u).

Proof. If f € I,(u), then f is u-measurable and |f|” € £1(u). Then by the complex analogue
of Definition 1.6 and by that of Lemma 1.5 of [T], u®(|f|P) < oc.

Theorem 30.7. Let X be a Banach space and u : K(T') — X be a bounded weakly compact

Radon operator. Then a function f : T — Kis u-integrable if and only if f is m,-integrable in T

/ fdu = /T fdm,.

Moreover, for f € L£q(u), u(f) = (my)}(f).

and in that case

Proof. Let ¢ € Co(T). Then by the proof of Lemma 18.19, ¢ is m,-integrable in 7. Then by
18.10 we have

vrule) = [ edtan) = [ paeean) = [ e om) = ([ pam,)

T

for * € X*. Hence by the Hahn-Banach theorem

u(go):/godu:/Tgpdmu (30.7.1)

for p € Co(T).

Let f be wu-integrable. Then there exists (¢,)7° C C.(T') such that u®(|f — ¢n|) — 0 as

n — oo and hence by the complex analogue of 1.10 of [T| we have

|/fduu<son>\ - !/(f — gu)du| < u*(|f — ul) — 0

as n — oo and hence

/fdu = limu(yp,) = lim/gondu. (30.7.2)
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Then by Proposition 25.10, by Lemma 25.11 and by 18.10 we have

u*([f —enl) = sup |ug|*(|f — @nl)

|z*|<1

= sup |ug|(|f — @n])(by25.11)
ja*|<1

= sup [|z*ul(|f — @nl)
ja*|<1

= sup [u*z*[(|f — @nl)
ja*|<1

- sup /‘f_(pn|d‘x*omu
lz*<1

- / f — puldv(@®om,) (%)
| <1

by Notation 4.4 and by Theorems 4.7(vi) and 4.11 of [P3| and by Theorem 3.3 of [P4] where
v(z* omy) = v(z* omy, B(T)).

Therefore, by (*) we have

(1 — onl) = sup / f — paldv(@® omy) = (M)3(f — o T).  (30.7.3)

lz*|<1JT

As u*(|f — on]) — 0, by (30.7.3) we have (m,)}(f — ¢n,T) — 0. Consequently, by Theorem
20.10, f € £4(m,). Moreover, by (30.7.1), (30.7.3), (5.3.1) and (30.7.2) we have

/fdmu - 1jm/ ppdm, = lim/gpndu = /fdu.
T noJr "

Thus f is m,-integrable in 7" if f is u-integrable and
/fdu = / fdm,,. (30.7.4)
T

Conversely, let f be m,-integrable in 7. Then by Theorem 20.10 there exists (¢,,)5° C Ce(T)
such that (my)(f — ¢n,T) — 0 so that by (5.3.1) we have

/fdmu = hm/ Ppdmy,,.
/gondmu:/gpndu
T

/fdmu = lim/gondu. (30.7.5)

But by (30.7.1) we have

and hence
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As ()1 (f = #n, T) = w*(|f = nl) by (30.2.1), u*(|f = pn[) — 0 and hence f € L1(u) by the
complex version of Definition 1.6 of [T|. Then by the complex analogue of 1.10 of [T| we have

[ gdu= [ udul < (15 = a)) 0

as n — oo and hence by (30.7.1) and (30.7.5) we have

/fdu:hm/gpndu —hm/ opdm,, = / Jdm,,.

Thus £1(u) = £1(m,,) and for f € L1 (u)

/ fu = / fdm,

whenever u is a bounded weakly compact Radon operator on (7") with values in a Banach space
X. Moreover, for f € Li(u), u(f) = (my,)(f,T) by (30.2.1).

This completes the proof of the theorem.
Theorem 30.8. Let X, u and p be as in Definition 30.5. Then £,(u) is a seminormed space.

Proof. Let f, g € L,(u) and a be a scalar. Then [f|P, |g|P € Li(u). Since |f + g|P <
2P max (| f|?, [g|P) < 2P(|f|P + |g|P), since |f + g|P is u-measurable and since |f|P + |g|P € L1(u) by
the complex version of Theorem 1.22 of [T], |f + g|? € £1(u) and hence f + g € L,(u). Clearly,
lafP € Li(u) for « € Kand hence £,(u) is a vector space over KK Moreover, by (30.2.2) and
(30.2.3) and by Theorem 30.6, £,(u) is a seminormed space.

Theorem 30.9. Let X, u and p be as in Definition 30.5. Then £,(u) = £,(m,,) and hence
is complete for 1 < p < 0.

Proof. By Definition 30.5 and Theorem 30.6, £,(u) = I,(u) for 1 < p < co. Moreover, by
Theorem 30.2, for f € L,(u),

u(f) = (m, )3 (f.7). (30.9.1)

Then by Theorems 30.6, 30.7 and 7.5, f € L,(u) if and only if f € £,(m,). Consequently, by
(30.9.1) and by Theorem 6.8 of Ch. II, £,(u) is complete.
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This completes the proof of the theorem.

Definition 30.10. Let X be a quasicomplete IcHs and u : K(T) — X be a bounded weakly
compact Radon operator. A w-measurable function f : T — Kis said to be u-integrable in T if
it is uy = I, o u-integrable in T" with values in )7(] (considering u, : K(T) — X, C )z]) for each
q € T (see Definition 25.18). In that case, using Notation 10.16 of Ch. III, we define

/fdu:@/fduq.

Definition 30.11. Let X be a quasicomplete IcHs and u : K(T') — X be a bounded weakly
compact Radon operator. Let 1 < p < 0. For ¢ € I" and g : T' — Ku-measurable, let

[un

(uq)p(g) = sup /|g|pdvx u))r
z*eUy

where U = {2* € X* : |z*(z)| < lforz € Ug}.

Theorem 30.12. Under the hypothesis of Definition 30.11,
(uq)p(9) = ((mu)q)p(g, T).

Proof. By Proposition 10.14(ii)(b) and by the definition of W,« as given in Proposition
10.14(ii)(a) of Ch. III, {¥ - : 2* € US} is a norm determining subset of the closed unit ball of
(X4)* and for a* € Ug, z*(jou) = Yyrug = x*uq = x*u by (ii)(a) of the said proposition. Then
by Lemma 5.2(ii) of Ch. II and by (30.2.1) we have

1

(Wortg)3(9) = ( /T 9P do(Weuy))F = ( /T lgPdo(z* o my))

3=

and hence

(ug)3(g) = sup (Tpeug)(g) = sup / lglPdo(* o my))F = ((m,))3(0. T)
x*eUg T* eUO

by Theorem 13.2 of Ch. III.

Theorem 30.13. Let X be a quasicomplete IcHs and u : IC(T') — X be a bounded weakly
compact Radon operator. Let f : T — Kbe u-measurable. If f is u-integrable, then [ fdu € X.
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Proof. By Theorem 30.12, (uq)$(9) = ((my,)q)3(g,T). If f is ugs-integrable, then given € > 0,
there exists ¢ € C,(T') such that ug(|¢— f[) < €. Then by Theorem 30.12, ((my)q)}(f —¢,T) <€
and hence there exists z, € )A(; such that [ fdug, = [, fdm, = x4 for each ¢ € T'. Thus

/fdu = Iim/fduq = limz, = lim/fqu e X

by Definition 12.1 and Theorem 12.3 of Ch. III. Hence the theorem holds.

Remark 30.14 By using the complex version of Lemma 2.21 of |[T] and Theorem 25.24, one

can give an alternative proof of the above theorem.

Definition 30.15. Let X be a quasicomplete IcHs and u : K(T') — X be a bounded weakly
compact Radon operator. Let 1 < p < co. Let ) = {f : T — K fu-measurable and (u,)3(f) <
oo for each g € T'}. Then we define £,(u) = {f € F)(u) and | f|Pu-integrable (with values in X)}.

Using Theorem 30.12 and adapting the proof of Theorem 15.3(i) of Ch. III one can prove the

following theorem. The details are left to the reader.

Theorem 30.16. Let X be a quasicomplete IcHs, u : K(T) — X be a bounded weakly
compact Radon operator and 1 < p < oo. Let j}gq), n € IV be us-measurable scalar functions on T
for g € T. Let K(9 be a finite constant such that ]féq)| < K@ ug-a.e. in T If fé") — fuga.e. in
T where f is a scalar function on 7', then f, fflq) ,n € Nbelong to £, (uq) and limn(uq);,(f,sq) —-f)=
0 for ¢ € I'. Consequently, f € £L,(u). When p =1, f is u-integrable and

imlq( [ fdu) ~| [ £0dugls| 0.

Lemma 30.17. Let X be a Banach space and let u : (T) — X be a prolongable Radon
operator with m, as its representing measure (see Theorem 19.9 of Ch. IV). For a relatively

compact open set w in T', let v = uli(,y. If f € L1(u), then fx, € L1(v). If m, = m,|g,), then

[ o= [ radu= [ prodm, = [ fdm,.

Proof. By hypothesis, f is u-integrable. Since w is prolongable and w is a relatively compact

fXw € £1(m,) and

open set in T', v = ulxy,) is a bounded weakly compact Radon operator. Since f € £1(u), given
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e > 0, there exists ¢ € K(T') such that u*(|f —¢|) < €. Since |pxw| < |¢| € L1(v), by the complex
version of Theorem 1.22 of [T] the function ¢x, € £1(v). Moreover, in the notation of Lemma

27.3 we have f/x\w = fxw and px, = pXw and hence by Lemma 27.3(ii)

v (1Fxw — oxwl) = ut (1 Fxw — oX0)) = ut(1Fxw — oxul) S ut(1f — o) < e

and hence fx, € £1(v) by the complex version of the argument given in the last lines on p. 67

of [T] since px,, € L1(v).

Since v = u| K(w), My = m,,| B(w)- Since v is a bounded weakly compact Radon operator, and

since fx, € L£1(v), by Theorem 30.7 we have fx, € £1(m,) and

[ o= [ radu= [ prodm, = [ froam,

Hence the lemma holds.

Lemma 30.18. Let f : T — Kand let u : K(T') — X be a prolongable Radon operator

where X is a Banach space. Then f is u-integrable if and only if f is m,-integrable in T'.

Proof. Let f be w-integrable. Then by Theorem 27.9, f is z*u-integrable in T for each

z* € X* and for each open Baire set w in T there exists x,, € X such that

o*(z,) = /w fd(z*u)

for z* € X*. By 18.10 of Ch. IV, z*u = u™z* = z* om, since v = u|¢y(,) : Co(w) — X is

weakly compact. Hence

2 (z) = / fda*om,)  (30.18.1)

for z* € X*. Let H = {z* € X* : |2*| <1}. Then H is a norm determining set for X and by the
Orlicz-Pettis theorem, H has the Orlicz property. Hence by (30.18.1), by the arbitrariness of the
open Baire set w in T" and by Theorem 22.4 of Ch. V, f is m,-integrable.

Conversely, let f be m,-integrable in 1. Then clearly f is * om,-integrable in T for z* € X*.
Moreover, by 18.10 of Ch. IV, x* o m, = x*u|¢,(,) and hence f is x*u-integrable in T" for each

x* € X*. As observed above, H is a norm determining set for X with the Orlicz property. Then
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by Theorem 22.4 of Ch. V, for each open Baire set U in T, there exists a vector zyy € X such
that

o*(ov) = [ fda® om,) = [ fila"u)

for * € X*. Consequently, by Theorem 27.9 f is u-integrable. Hence the lemma holds.

Theorem 30.19. Let X be a Banach space and let v : £(T') — X be a prolongable Radon
operator. If f € £1(v), then f € £1(m,) and

/ fdv = /T fdm,.

Conversely, if f € £1(m,), then f € £1(v) and

/demv:/fdv.

Proof. Let f : T — K be v-integrable. Then f is z*v-integrable for each z* € X™* and
hence N(f) is o-bounded. Let (K,)° C C such that N(f) C |J7® K. Then by Theorem 50.D

o0

of [H], there exist relatively compact open sets (w,)$° in T such that K,, C wp, n € N Then
N(f) c U7 wn. Let Uy = Uj_; wk. Then Uy, /* and U, is relatively compact and open in 7" for
each n. Moreover, fxy, — f pointwise in 7. As |fxu,| < |f] € £1(v), by the complex analogue
of Theorems 1.22 and 4.7 of [T| we have

/fdv—lirrbn/fXUndv. (30.19.1)

Let vn, = v[k,). As Up,n € N are relatively compact open sets in 7', by the hypothesis
on v, vp,n € K are bounded weakly compact Radon operators on K(U,) and by Lemma 30.17,

fXUn € Ll(vn))> fXUn € Ll(m'l}n) and

/ Fxv,dun = / Fxvndv = / fxv,dm,, = / fxv,dm,.

Then by (30.19.1), by Lemma 30.18 and by LDCT given by Theorem 3.7 and Remark 4.3 of Ch.

/fdv:lim/fXUndv:Iim/fXUndmv :/fdmv.

Conversely, let f € £1(m,). Then clearly N(f) is o-bounded and hence there exists a sequence

I we have

of (wy,)}° of relatively compact open sets in T" such that N(f) C U;° wn. Take U,, = U}'_;wg. Then
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fxu, — f pointwise in 7. Then by Theorem 3.5(vii) and Remark 4.3 of Ch. I, fxy, € £1(m,)
for each n. Then by LDCT given by Theorem 3.7 and Remark 4.3 of Ch. I we have

/fdmv zlim/fXUnde. (30.19.2)
Let vn, = v|x(,). Then by Lemma 30.17 we have

/fXUndvn = /fXUnd(mvn)

and

lim/fXUndv —lim/fXUnd(mvn) —lim/fxyndmv = / fdm, (30.19.3)
n n n T

by (30.19.2).

Since (fxv, ) C L1(v) and fxy, — f pointwise in T and since f is v-integrable by hypoth-
esis, by Theorem 4.7 of [T| we have

/ fdv = lim / Fxu, dv.

Then by (30.19.3) we conclude that
/fdv = / fdm,,.
T

This completes the proof of the theorem.

Definition 30.20. Let X be a quasicomplete IcHs and v : K£(T) — X be a prolongable
Radon operator. A v-measurable scalar function is said to be v-integrable if it is v, = I, o v-
integrable with values in )7(] (considering vg : K(T) — X, C )f(vq) for each ¢ € I'. In that case,
using Notation 10.16 of Ch. III, we define

/fdv :@/fdvq.

Theorem 30.21. Let X be a quasicomplete lcHs and v : K(T') — X be a prolongable Radon
operator. Let f: T — Kbe v-measurable. If f is v-integrable, then [ fdv € X.

Proof. This follows from Definition 30.20, the complex version of Lemma 2.21 of [T| and
Theorem 25.24.
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Theorem 30.22. Let X be a quasicomplete lcHs and v : K(T') — X be a prolongable Radon
operator. If f € £1(v), then f € £1(m,) and

/ fdv = / fdm,.

Conversely, if f € £1(m,), then f € £;(v) and

/fdmvz/fdv.

Proof. This is immediate from Definitions 12.1 (of Ch. III) and 30.20 and from Theorem 30.19.

Remark 30.23. By Theorems 30.7 and 30.21, the questions (Q5) and (Q6) mentioned in In-

troduction of Ch. I are answered in the affirmative.

Remark 30.24. It is not known whether the results analogous to Theorems 30.9 and 30.12
hold for prolongable Radon operators on KC(T).
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