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THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL
VI. COMPLEMENTS TO THE THOMAS THEORY OF

RADON INTEGRATION

T.V. PANCHAPAGESAN

The enumeration of sections will be continued from [P19]. We use the same notation and

terminology given in [P15-P19].

Abstract

This chapter consists of Sections 25-30. In Section 25 we briefly indicate how the results in
§1 of [T] can be extended to complex functions in K(T ). Section 26 is devoted to integration
with respect to a bounded weakly compact Radon operator, improving the complex versions
of Theorems 2.2, 2.7, 2.12 and 2.7 bis and Proposition 2.5 of [T]. In Section 27, integration
with respect to a prolongable Radon operator is studied, improving the complex versions of
Theorems 3.3, 3.4, 3.11 and 3.20 of [T]. Section 28 is devoted to the complex Baire versions
of Proposition 4.8 and Theorem 4.9 of [T]. The results of [P4] are generalized to vector mea-
sures in Section 29, while in Section 30, it is shown that Lp(u) is the same as Lp(mu) for
1 ≤ p < ∞ when u is a bounded weakly compact Radon operator on K(T ) and L1(u) is the
same as L1(mu) when u is a prolongable Radon operator on K(T ).
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25. INTEGRATION OF COMPLEX FUNCTIONS WITH

RESPECT TO A RADON OPERATOR

Thomas developed in §1 of [T] a theory of vectorial Radon integration of real functions with

respect to a Radon operator u on K(T, IR) (see Notation 19.1 and Definition 19.3 of [P18]). In

this section we indicate briefly how the results in §1 of [T] can be extended to complex functions

in K(T ).

In this section we extend Definition 1.1 of Thomas [T] to Radon operators on K(T ) with

values in a normed space X over CI.

Definition 25.1. Let u : K(T ) → X be a Radon operator in the sense of Definition 19.3 of

P18], where X is a normed space over CI. We define

u•(f) = sup
|ϕ|≤f,ϕ∈K(T )

|u(ϕ)|

for f ∈ I+, where I+ is the set of all non negative lower semicontinuous functions on T . When

f : T → [0,∞] has compact support we define

u•(f) = inf
f≤g,g∈I+

u•(g)

and when f : T → [0,∞] is arbitrary, we define

u•(f) = sup
h≤f

u•(h)

where h : T → [0,∞] has compact support. This Definition is similar to that in §1 in Chapter V

of [B].

u•(f) is called the semivariation of f with respect to u. For A ⊂ T , we define u•(A) = u•(χA).

If u•(A) = 0, we say that A is u-null and use the expression u-almost everywhere (briefly, u-a.e.)

correspondingly.

It is easy to verify that the definition is consistent.

Thomas [T] uses the terminology of Radon measure u instead of our terminology of Radon

operator.
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Unless otherwise stated, X will denote a normed space over CI and u : K(T ) → X will denote

a Radon operator.

Proposition 25.2. For f ∈ I+,

u•(f) = sup
0≤ϕ≤f,ϕ∈K(T )

u•(ϕ).

Proof. By Definition 25.1 we have

u•(f) = sup
|ϕ|≤f,ϕ∈K(T )

|u(ϕ)|

= sup
Ψ∈K(T ),|Ψ|≤f

sup
|ϕ|≤|Ψ|,ϕ∈K(T )

|u(ϕ)|

= sup
Ψ∈K(T ),|Ψ|≤f

u•(|Ψ|) = sup
0≤ϕ≤f,ϕ∈K(T )

u•(ϕ).

Hence the proposition holds.

We recall the following definition from [B].

Definition 25.3. Each element u ∈ K(T )∗ is called a complex Radon measure and is some-

times identified with the complex measure µu induced by u in the sense of Definition 4.3 of [P3].

|u| is the positive linear functional in K(T )∗ given by (12) on p.55 of [B] and |u|∗(f) for f ∈ I+

is given by Definition 1 on p.107 of Ch. IV of [B].

Proposition 25.4. If u ∈ K(T )∗ and f ∈ I+, then

u•(f) = sup
0≤Ψ≤f,Ψ∈K(T )

|u|(Ψ) = |u|•(f) = |u|∗(f).

Consequently,

u•(f) = |u|•(f)

for f : T → [0,∞].

Proof. For f ∈ I+, by Definition 25.1 we have

u•(f) = sup
|ϕ|≤f,ϕ∈K(T )

|u(ϕ)|

= sup
0≤Ψ≤f,Ψ∈K(T )

sup
|ϕ|≤Ψ,ϕ∈K(T )

|u(ϕ)|

= sup
0≤Ψ≤f,Ψ∈K(T )

|u|(Ψ) (25.4.1)
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by (12) on p. 55 of Ch. III of [B].

Therefore, by (25.4.1)

|u|•(f) = sup
|ϕ|≤f,ϕ∈K(T )

||u|(ϕ)|

= sup
0≤Ψ≤f,Ψ∈K(T )

|u|(Ψ) = |u|•(f)

and hence again by (25.4.1) we have

|u|•(f) = sup
0≤Ψ≤f,Ψ∈K(T )

|u|(Ψ) = u•(f).

Moreover, by the definition on p.107 of Ch. IV of [B]

|u|•(f) = sup
0≤Ψ≤f,Ψ∈K(T )

|u|(Ψ) = |u|∗(f).

Now the last part is evident from Definition 25.1.

Definition 25.5. F0(u) = {f : T → KI, u•(|f |) < ∞} and we define u•(f) = u•(|f |) if

f : T → KI.

Clearly, u• is a seminorm on F0(u) and hence F0(u) is a seminormed space with respect to

u•(·).

The complex versions of Proposition 1.3 and of Lemmas 1.4 and 1.5 of [T] hold and conse-

quently, we have the following definition.

Definition 25.6. The space L1(u) of u-integrable functions is the closure of K(T ) in the

space F0(u). Thus, a complex function f belongs to L1(u), if given ε > 0, there exists ϕ ∈ K(T )

such that u•(|ϕ− f |) < ε.

Remark 25.7. A complex function f on T belongs to L1(u) if and only if, given ε > 0, there

exists g ∈ L1(u) such that u•(|f − g|) < ε. Also note that if the complex function f = g u-a.e. in

T and if g ∈ L1(u), then f ∈ L1(u).
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Convention 25.8. Let f : T → [0,∞]. Then f is said to be u-integrable if there exists a

complex function g ∈ L1(u) such that f = g u-a.e. in T .

The complex analogues of Proposition 1.7, Theorem 1.8 and Remark following it in [T] hold.

Definition 25.9. As K(T ) is dense in L1(u), the continuous linear extension of u to L1(u)

with values in X̃, the completion of X, is denoted by
∫

du. Thus, if f ∈ L1(u), then
∫

fdu ∈ X̃.

Then the complex analogues of 1.10, Theorem 1.11 and 1.12 of [T] hold.

The following result is the complex analogue of Proposition on p. 70 of [T].

Proposition 25.10. Let X be a normed space and u : K(T ) → X be a Radon operator. Let

H be a norm determining set in X∗ so that |x| = supx∗∈H | < x, x∗ > | for x ∈ X. Then

u•(|f |) = sup
x∗∈H

|ux∗ |•(|f |) (25.10.1)

for f ∈ L1(u) or for f ∈ I+, where ux∗ = x∗ ◦ u.

Proof. By Lemma 18.13 of [P18], H ⊂ {x∗ ∈ X∗ : |x∗| ≤ 1}. In view of the complex version

of Lemma 1.4 of [T], the proof of 1.13 of [T] as given in [T] holds for complex functions too and

hence the proposition holds.

Lemma 25.11. For µ ∈ K(T )∗,

µ•(|f |) = |µ|(|f |)) = sup
|ϕ|≤1,ϕ∈K(T )

|
∫

T
ϕfdµ|

for f ∈ L1(µ) where |µ| is given by (12) on p. 55 of Ch. III of [B].

Proof. Let νf (ϕ) =
∫
T ϕfdµ for f ∈ L1(µ) and ϕ ∈ K(T ). Then

|νf (ϕ)| ≤ ||ϕ||T
∫

T
|f |d|µ|
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so that νf ∈ K(T )∗b . Hence by Theorem 3.3 of [P4] we have

|νf |(T ) = v(µνf
|B(T ),B(T )) = ||νf || = sup

|ϕ|≤1,ϕ∈K(T )
|νf (ϕ)|

= sup
|ϕ|≤1,ϕ∈K(T )

|
∫

T
ϕfdµ|. (25.11.1)

As noted in the beginning of the proof of Theorem 23.6 of [P19],

|νf |(T ) =
∫

T
|f |d|µ|.

Then by (25.11.1) and by Proposition 25.4 we have

|νf |(T ) =
∫

T
|f |d|µ| = sup

|ϕ|≤1,ϕ∈K(T )
|
∫

T
ϕfdµ| = |µ|(|f |) = µ•(|f |)

for f ∈ L1(µ).

Theorem 25.12. For f ∈ L1(u),

u•(|f |) = sup
|ϕ|≤1,ϕ∈K(T )

|
∫

T
ϕfdu|.

Proof. Let H be a norm determining set in X∗. For x∗ ∈ H, by Lemma 25.11 we have

u•x∗(|f |) = sup
ϕ∈K(T ),|ϕ|≤1

|
∫

T
ϕfdux∗ |

for f ∈ L1(u). Therefore, by Proposition 25.10 and by Proposition 24.4 of [P19] we have

u•(|f |) = sup
x∗∈H

u•x∗(|f |) = sup
x∗∈H

sup
ϕ∈K(T ),|ϕ|≤1

|
∫

T
ϕfdux∗ |

= sup
ϕ∈K(T ),|ϕ|≤1

sup
x∗∈H

|
∫

T
ϕfdux∗ |

= sup
ϕ∈K(T ),|ϕ|≤1

|
∫

T
ϕfdu|.

Definition 25.13. Let u : K(T ) → X be a Radon operator where X is a normed space. If

Y is a topological space and f : T → Y , then f is said to be u-measurable if, for every compact

K ⊂ T and ε > 0, there exists a compact K1 ⊂ K such that u•(K\K1) < ε and f |K1 is continuous.

Replacing ||m|| by u• and arguing as in the proof of Theorem 21.4 of [P19], we obtain the

following theorem.
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Theorem 25.14. Let u, X, f and Y be as in Definition 25.13. Then f is u-measurable if and

only if, given K ∈ C, there exist a u-null set N ⊂ K and a countable disjoint family (Ki)∞1 ⊂ C
such that K\N =

⋃∞
1 Ki and f |Ki is continuous for each i ∈ NI.

The set of u-measurable complex functions is evidently stable under the usual algebraic op-

erations and under composition with a continuous function. Every continuous function on T is

u-measurable.

The proof given in Appendix III of [T] holds good for complex normed spaces too and hence

Lemma 1.19 of [T] holds for complex spaces too. The proofs of Propositions 1.20 and 1.21, Remark

on p.74, Theorem 1.22, Lemmas 1.23, 1.24, 1.25 and 1.25 bis of [T] hold for complex functions too.

Proposition 25.15. Let X be a normed space and let H be a norm determining set in X∗

so that |x| = supx∗∈H | < x, x∗ > | for x ∈ X. Then for every u-measurable bounded positive

function f ,

u•(f) = sup
x∗∈H

|ux∗ |•(f).

Proof. By the complex version of Lemma 1.23 of [T], fχK ∈ L1(u) for K ∈ C. Then by

Proposition 25.10 we have

u•(f) = sup
K∈C

u•(fχK) = sup
K∈C

sup
x∗∈H

|ux∗ |•(fχK)

= sup
x∗∈H

sup
K∈C

|ux∗ |•(fχK) = sup
x∗∈H

|ux∗ |•(f).

Corollary 25.16. Under the hypothesis of Proposition 25.15, for a u-measurable set A

u•(A) = sup
x∗∈H

|ux∗ |•(A).

Corollary 25.17. If f is locally u-integrable (i.e., if ϕf is u-integrable for each ϕ ∈ K(T )),

then

u•(f) = sup
x∗∈H

|ux∗ |•(f)

where H is a norm determining set in X∗.
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Proof. By Urysohn’s lemma, for each K ∈ C, there exists ϕK ∈ K(T ) such that χK ≤ ϕK ≤ 1.

Then

u•(f) = sup
K∈C

u•(fχK) ≤ sup
K∈C

u•(fϕK) ≤ sup
0≤ϕ≤1,ϕ∈K(T )

u•(fϕ) ≤ u•(f) (25.17.1)

and hence by Proposition 25.15, by Definition 25.5 and by (25.17.1) we have

u•(f) = sup
0≤ϕ≤1,ϕ∈K(T )

u•(fϕ)

= sup
x∗∈H

sup
0≤ϕ≤1,ϕ∈K(T )

|ux∗ |•(ϕf)

= sup
x∗∈H

|ux∗ |•(f).

Thus the corollary holds.

Definition 25.18. Let u ba a Radon operator with values in an lcHs X over CI. Let q ba a

continuous seminorm on X. We denote q(x) by |x|q. The semivariation of u with respect to q for

f ∈ I+ is defined by

u•q(f) = sup
|ϕ|≤f,ϕ∈K(T )

|u(ϕ)|q

and one completes the definition for f : T → [0,∞] as in Definition 25.1 given in the case of a

normed space.

For q ∈ Γ, let Xq = X/q−1(0) and let X̃q be the Banach space completion of Xq with respect

to | · |q. Let Πq : X → X̃q be the canonical quotient map. (See the beginning of §10 of [P17].)

Let uq = Πq ◦ u. Then |uq(ϕ)| = |u(ϕ)|q so that u•q is the semivariation of uq.

Definition 25.19. For the Radon operator u on K(T ) with values in the lcHs X and for

q ∈ Γ, the family of continuous seminorms on X,

F0(u) = {f : K(T ) → KI, u•q(|f |) < ∞ for each q ∈ Γ}.

Then by the complex version of Lemma 1.5 of [T], K(T ) ⊂ F0(u) and this permits the fol-

lowing definition.
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Definition 25.20. Let F0 = (u) be provided with the seminorms u•q(·) for q ∈ Γ. The

space L1(u) of u-integrable functions is the closure of K(T ) in the space F0. Hence a function

f : K(T ) → KI is u-integrable if, for each q ∈ Γ, there exists ϕq ∈ K(T ) such that u•q(|ϕq−f |) < ε.

Thus L1(u) is the intersection of the spaces L1(uq) provided with the smallest topology per-

mitting the injections L1(u) ⊂ L1(uq) continuous for each q ∈ Γ.

Definition 25.21. We say that a function f : T → Y is u-measurable where Y is a topolog-

ical space if f is uq-measurable for each q ∈ Γ and is u-null if it is uq-null for each q ∈ Γ.

With these definitions the complex versions of Propositions 1.7, 1.20 and 1.21 and Theorem

1.22 of [T] hold without any modifications for complex lcHs valued Radon operators u. Thus

a function f is u-integrable if and only if it is u-measurable and is dominated in modulus by

a u-integrable function. The Hausdorff space L1(u) associated with L1(u) consists of classes of

functions in which two functions equal u-a.e in T are identified.

Definition 25.22. For a function f ∈ L1(u), we denote by u(f) or by
∫

fdu the value in f

of the continuous linear extension of u to L1(u). Thus this is an element in the completion X̃ of

X. Then the mapping f →
∫

fdu is a continuous linear mapping of L1(u) in X̃.

Hereafter, by lcHs we mean a complex lcHs. i.e., an lcHs over CI. Then Propositions 1.28 and

1.30 and results 1.31, 1.32, 1.33 and 1.34 of [T] hold for complex lcHs-valued u on K(T ).

If X is a projective limit of Banach spaces Xi, then
∫

fdu is identified with the element

(
∫

fdui)i(i.e., with the projective limit of (
∫

fdui)i).

Lemma 25.23. Suppose X is a quasicomplete lcHs. If A ⊂ X is bounded and if x0 belongs

to the closure of A in X̃, then x0 ∈ X.

Proof. Let τ be the lcHs topology of X. By hypothesis there exists a net (xα) ⊂ A such that

xα → x0 in τ̃ , the topology of the completion X̃. Thus (xα) is Cauchy in τ̃ . As A is τ -bounded

and as X is quasicomplete, the τ -closure of A is τ -complete. Since τ̃ |A = τ , it follows that (xα)
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is τ -Cauchy. Hence there exists x1 in the τ -closure of A (so that x1 ∈ X) such that xα → x1 in

τ and hence in τ̃ . Since τ̃ is Hausdorff, x0 = x1 ∈ X.

Theorem 25.24. Let u be a Radon operator on K(T ) with values in a quasicomplete lcHs

X. Then for each f ∈ L1(u),
∫

fdu belongs to X. In other words, if X is an lcHs, then
∫

fdu

belongs to the quasicompletion of X for each f ∈ L1(u).

Proof. By Lemma 25.23 above, it suffices to show that
∫

fdu belongs to the closure in X̃ of

a τ -bounded set A ⊂ X whenever f ∈ L1(u).

For the sake of completeness, we give the proof of this result and we follow the proof of

Theorem 1.35 of [T].

Case 1. Suppose f is bounded with compact support. Let ω be a relatively compact open set

such that f is null in T\ω and let |f | ≤ 1.

If | <
∫

ϕdu, x∗ > | ≤ 1 for ϕ ∈ K(T ) with |ϕ| ≤ χω, then

1 ≥ sup
|ϕ|≤χω ,ϕ∈K(T )

| <
∫

ϕdu, x∗ > | = sup
|ϕ|≤χω ,ϕ∈K(T )

|ux∗(ϕ)|

= u•x∗(χω) = |ux∗ |(ω)

by Proposition 25.4. As |f | ≤ χω, f is u-integrable and

| <
∫

fdu, x∗ > | = |
∫

fdux∗ | ≤
∫
|f |d||ux∗ | ≤ |ux∗ |(ω) ≤ 1

and hence
∫

fdu ∈ A00 where A = {
∫

ϕdu : ϕ ∈ K(T ), |ϕ| ≤ χω} ⊂ X ⊂ X̃.

Since A is absolutely convex, by the bipolar Theorem 8.1.5 of [E] A00 is the σ(X̃,X∗)- closure

of A, and hence by Theorem 3.12 of [Ru2] is also the τ̃ -closure of A. As A is weakly bounded, it

is τ -bounded by Theorem by Theorem 3.18 of [Ru2]. Hence by Lemma 25.23,
∫

fdu ∈ X.

Case 2. Let f be null outside a compact set.

First let us consider the case f ≥ 0. Let fn = min(f, n). Then by Case 1,
∫

fndu ∈ X for all

n and by the lcHs analogue of Lemma 1.25 bis of [T],
∫

fdu = limn

∫
fndu. Thus

∫
fdu belongs

to the closure of (
∫

fndu)∞n=1 in X̃ and as (
∫

fn)∞n=1 is convergent, it is bounded in X. Hence
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by Lemma 25.23,
∫

fdu ∈ X. Consequently, by the complex analogue of Proposition 1.7 of [T],∫
fdu belongs to X in this case too.

Case 3. f is an arbitrary element in L1(u).

By the above cases,
∫

fϕdu ∈ X for each ϕ ∈ K(T ). The set B = {
∫

fϕdu}|ϕ|≤1,ϕ∈K(T ) is

weakly bounded since

sup
|ϕ|≤1,ϕ∈K(T )

| <
∫

fϕdu, x∗ > | ≤
∫
|f |d|ux∗ | < ∞

for each x∗ ∈ X∗. Then by Theorem 3.18 of [Ru2], B is τ -bounded. If | <
∫

fϕdu, x∗ > | ≤ 1 for

ϕ ∈ K(T ) with |ϕ| ≤ 1, then by Theorem 25.12, u•x∗(|f |) ≤ 1 and hence | <
∫

fdu, x∗ > | ≤ 1.

Therefore,
∫

fdu ∈ B00. Then arguing as in Case 1 and appealing to Lemma 25.23, we conclude

that
∫

fdu ∈ X. This completes the proof of the theorem.

The proof of Proposition on p. 84 of [T] holds here for metrizable lcHs and hence we have:

Theorem 25.25. If X id a metrizable lcHs and if u : K(T ) → X is a Radon operator, then

the space L1(u) is seudo-metrizable and complete.

26. INTEGRATION WITH RESPECT TO A BOUNDED WEAKLY COMPACT

RADON OPERATOR

The aim of this section is to improve the results in Section 2 of Thomas [T]. Remark 2 on

p.161 of [G] and Theorem 6 of [G] when T is compact, play a key role in [T] to develop the

theory of vectorial Radon integration with respect to a bounded weakly compact (respectively,

a prolongable) Radon operator. Grothendieck comments in the said remark that his techniques

developed in earlier sections of [G] are textually valid for C0(T ), where T is a locally compact

Hausdorff space. But, as shown in [P10], his techniques can be used to prove the said remark if

and only if T is further σ-compact. However, by different methods, we established in [P9] and

[P11] the validity of Theorem 6 of [G] for C0(T ) where T is an arbitrary locally compact Haus-

dorff space, thereby restoring the validity of the Thomas theory in [T]. The proposition given
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in Complements of Section 2 of [T] improves Theorem 2.7 and Theorem 2.7 bis of [T]. But, we

obtain here results which further improve the said proposition of [T].

Definition 26.1. Let X be a quasicomplete lcHs and let u : K(T ) → X be a Radon operator

(see Definition 19.3 of [P17]). Then u is said to be bounded if u : (Cc(T ), ||·||T ) → X is continuous.

Notation 26.2. Whenever X ia a quasicomplete lcHs, Γ denotes the family of continuous

seminorms on X.

Proposition 26.3. Let X be a quasicomplete lcHs. The Radon operator u : K(T ) → X is

bounded if and only if u•q(T ) < ∞ for each q ∈ Γ.

Proof. Let u be bounded. Then, for each q ∈ Γ, by Definition 25.18 there exists a constant

Mq such that |uq(ϕ)| = |u(ϕ)|q = q(u(ϕ)) ≤ Mq||ϕ||T for each ϕ ∈ K(T ). Then

u•q(T ) = u•q(χT ) = sup
|ϕ|≤1,ϕ∈K(T )

q(u(ϕ)) ≤ Mq < ∞

and hence u•q(T ) < ∞ for each q ∈ Γ.

Conversely, if u•q(T ) = Mq < ∞ for each q ∈ Γ, then for ϕ ∈ K(T ), we have |ϕ| ≤ ||ϕ||T χT

and hence

q(u(ϕ)) = |uq(ϕ)|q ≤ ||ϕ||T u•q(χT ) = Mq||ϕ||T

for q ∈ Γ. Hence u is bounded.

Convention 26.4. Let X be a quaicomplete lcHs and let u : K(T ) → X be a bounded Radon

operator. Then u has a continuous linear extension to the whole of C0(T ) with values in X and

hence we shall always assume that u : (C0(T ), || · ||T ) → X is continuous whenever u : K(T ) → X

is a bounded Radon operator.

Proposition 26.5. Let X be a quasicomplete lcHs. If u : K(T ) → X is a bounded Radon

operator, then C0(T ) ⊂ L1(u). Moreover,for f ∈ C0(T ), uf =
∫

fdu.
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Proof. Let f ∈ C0(T ) and let q ∈ Γ. Then there exists (ϕn)∞1 ⊂ K(T ) such that ||ϕn−f ||T →
0. By hypothesis and by Proposition 26.3, u•q(T ) < ∞ and hence

u•q(|ϕn − f |) ≤ u•q(||f − ϕn||T χT ) ≤ ||f − ϕn||T u•q(T ) → 0

as n → ∞. Hence f ∈ L1(uq). As q is arbitrary in Γ, it follows that f ∈ L1(u). Thus

C0(T ) ⊂ L1(u).

Moreover, uf = limn uϕn and
∫

fdu = limn uϕn. Hence uf =
∫

fdu.

For a bounded Radon operator u, it is possible that L1(u) = C0(T ) as shown below.

Example 26.6. Let u : K(T ) → C0(T ) be the identity operator. Then u : (Cc(T ), || ·
||T ) → (C0(T ), || · ||T ) is continuous and has a unique continuous extension to C0(T ). Then

L1(u) = C0(T ).

If f ∈ I+, then

u•(f) = sup
|ϕ|≤f,ϕ∈K(T )

|u(ϕ)| = sup
|ϕ|≤1,ϕ∈K(T )

||ϕ||T = ||f ||T (26.6.1)

since f = sup0≤ϕ≤f,ϕ∈K(T ) ϕ.

If f : T → [0,∞] has compact support, then by (26.6.1) and by Definition 25.1 we have

||f ||T ≤ inf
f≤g∈I+

||g||T = u•(f).

Let K be the support of f . By Urysohn’s lemma there exists Ψ ∈ Cc(T ) with 0 ≤ Ψ ≤ 1 and

Ψ|K = 1. Then 0 ≤ f ≤ ||f ||T Ψ ∈ I+ and

u•(||f ||T Ψ) = ||f ||T u•(Ψ) = ||f ||T ||Ψ||T = ||f ||T

by (26.6.1) as Ψ ∈ I+. Hence u•(f) = ||f ||T .

When f : T → [0,∞] is arbitrary, then

u•(f) = sup
K∈C

u•(fχK) = sup
K∈C

||fχK ||T = ||f ||T . (26.6.2)
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If f ∈ L1(u), then given ε > 0, there exists ϕ ∈ K(T ) such that u•(|f−ϕ|) < ε. Then by (26.6.2),

||f − ϕ||T < ε and hence f ∈ C0(T ). Therefore, L1(u) = C0(T ).

Definition 26.7. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded Radon

operator. (See convention 26.4.) Then u is called a bounded weakly compact Radon operator if

{uϕ : ϕ ∈ C0(T ), ||ϕ||T ≤ 1} is relatively weakly compact in X.

Remark 26.8. Bounded Radon operators and bounded weakly compact Radon operators

are respectively called bounded Radon measures and weakly compact bounded Radon measures

in [T].

Lemma 26.9. Let X be a Banach space and let u : K(T ) → X be a continuous linear map.

Then for each open set ω in T ,

u•(ω) = sup
|x∗|≤1

|x∗u|(ω) (26.9.1)

where |x∗u|(ω) = µ|x∗u|(ω) and µ|x∗u| is the (complex) Radon measure induced by |x∗u| in the

sense of Definition 4.3 of [P3].

Proof. By Definition 25.1 we have

u•(ω) = sup
|ϕ|≤χω ,ϕ∈K(T )

|u(ϕ)|

= sup
|ϕ|≤χω ,ϕ∈K(T )

sup
|x∗|≤1

|x∗u(ϕ)|

= sup
|x∗|≤1

sup
|ϕ|≤χω ,ϕ∈K(T )

|x∗u(ϕ)|

= sup
|x∗|≤1

(x∗u)•(ω)

= sup
|x∗|≤1

|x∗u|∗(ω)

by Proposition 25.4. Since ω is |x∗u|∗-measurable, we have

u•(ω) = sup
|x∗|≤1

|x∗u|(ω)

and hence (26.9.1) holds.
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Using the above lemma and [P9], we give in the following theorem an improved version of

Theorem 2.2 of [T] for complex functions.

Theorem 26.10. Let X be a Banach space and let u : K(T ) → X be a bounded Radon

operator. Then the following statements are equivalent:

(i) Every bounded Borel (complex) function belongs to L1(u).

(ii) Every bounded σ-Borel (complex) function belongs to L1(u).

(iii) Every bounded (complex) Baire function belongs to L1(u).

(iv) For every open set ω in T , the weak integral
∫
ω du belongs to X; i.e., there exists a vector

xω in X such that ∫
ω

d(x∗u) = x∗(xω)

for each x∗ ∈ X∗ and we say that the weak integral
∫
ω du = xω.

(v) For every σ-Borel open set ω in T , the weak integral
∫
ω belongs to X.

(vi) For every open Baire set ω in T , the weak integral
∫
ω du belongs to X.

(vii) u is a bounded weakly compact Radon operator (so that by Convention 26.4, u : C0(T ) → X

is weakly compact).

Proof. Clearly, (i)⇒(ii)⇒(iii).

(iii)⇒(vi) By (iii), for each open Baire set ω in T , there exists xω ∈ X such that
∫
ω du = xω

and hence

x∗(xω) =
∫

ω
d(x∗u)

for x∗ ∈ X∗. Hence (vi) holds.

(vi)⇒(vii) By (vi), for each open Baire set ω in T there exists xω ∈ X such that∫
ω

d(x∗u) = x∗(xω) (26.10.1)
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for x∗ ∈ X∗. As x∗u ∈ C0(T )∗ = M(T ), the complex Radon measure µx∗u induced by x∗u in the

sense of Definition 4.3 of [P3] is a B(T )-regular complex measure on B(T ). Let K be a compact

Gδ in T . Then by Theorem 55.A of [H] there exists (ϕn)∞1 ⊂ C0(T ) such that 0 ≤ ϕn ↘ χK .

Then by LDCT and by 18.10 of [P18] we have

µx∗u(K) = lim
n

∫
T

ϕndµx∗u = lim
n

(x∗u)(ϕn) = lim
n

∫
T

ϕnd(x∗ ◦m) = (x∗ ◦m)(K)

where m is the representing measure of u. Then by the Baire regularity of µx∗u|B0(T ) and of

(x∗ ◦m)|B0(T ) we have µx∗u|B0(T ) = (x∗ ◦m)|B0(T ) and consequently, by Theorem 2.4 of [P4] and

by the Borel regularity of µx∗u and of x∗ ◦m on B(T ), we conclude that

µx∗u = x∗ ◦m onB(T ). (26.10.2)

Then by (26.10.1) and (26.10.2) we have

x∗(xω) =
∫

ω
d(x∗u) = µx∗u(ω) = (x∗ ◦m)(ω) = (x∗ ◦ u∗∗)(χω)

for x∗ ∈ X∗. Since u∗∗(χω) ∈ X∗∗, we conclude that m(ω) = u∗∗(χω) = xω ∈ X. Consequently,

by Theorem 3(vii) of [P9], u is a weakly compact operator on C0(T ) and hence (vii) holds.

(vii)⇒(iv) (resp. (vii)⇒(v), (vii)⇒(vi)) By (vii) and by Theorem 2(ii) of [P9], u∗∗(χA) ∈ X

for each A ∈ B(T ) and hence u∗∗(χω) ∈ X for each open set (resp. σ-Borel open set, open Baire

set) ω in T . Let u∗∗(χω) = xω ∈ X. Then by (26.10.2) we have

x∗(xω) = x∗u∗∗(χω) = (x∗ ◦m)(ω) = µx∗u(ω) =
∫

ω
d(x∗u)

and hence (iv) (resp. (v), (vi)) holds.

(vii)⇒(i) Since u : C0(T ) → X is weakly compact, u∗ is also weakly compact and hence

{µu∗x∗ : |x∗| ≤ 1} = {µx∗u : |x∗| ≤ 1} is relatively weakly compact in M(T ). Then by Theorem 1

of [P8], given a Borel set A in T and ε > 0, there exist a compact set K and an open set U in T such

that K ⊂ A ⊂ U and sup|x∗|≤1 |µx∗u|(U\K) < ε. Then by Lemma 26.9 we have u•(U\K) < ε.

Now choose ϕ ∈ K(T ) such that χK ≤ ϕ ≤ χU so that u•(χU−ϕ) ≤ u•(χU−χA) = u•(U\K) < ε.

Then

u•(|χA − ϕ|) ≤ u•(χU − χA) ≤ u•(χU − χK) = u•(U\K) < ε.

Therefore, by Definition 25.6, χA ∈ L1(u).
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Consequently, every Borel simple function s ∈ L1(u). If f is a bounded Borel (complex)

function, then there exists a sequence (sn) of Borel simple functions such that ||sn − f ||T → 0.

Then

u•(|f − sn|) ≤ ||f − sn||T u•(T ) → 0

as n →∞, since u•(T ) is finite by Proposition 26.3. Hence f ∈ L1(u) and thus (i) holds.

Hence the statements (i)-(vii) are equivalent.

The following theorem is an improved complex version of Proposition 2.5 of Thomas [T].

Theorem 26.11. Let X be a Banach space and let u : K(T ) → X be a bounded Radon

operator. Then the following statements are equivalent:

(i) u is weakly compact (see Convention 26.4).

(ii) Given ε > 0, for each open set ω in T , there exists a compact K ⊂ ω such that u•(ω\K) < ε.

(iii) Given ε > 0, for each A ∈ B(T ), there exist a compact K and an open set ω in T such that

K ⊂ A ⊂ ω and u•(ω\K) < ε.

(iv) Given ε > 0, for each compact K in T there exists an open set U in T such that K ⊂ U

with u•(U\K) < ε and there exists a compact C in T such that u•(T\C) < ε.

(v) Given ε > 0, for each σ-Borel open set ω ⊂ T there exists a compact K ⊂ ω such that

u•(ω\K) < ε and there exists a compact C in T such that u•(T\C) < ε.

(vi) Given ε > 0, for each A ∈ Bc(T ) there exist a compact K and a σ-Borel open set ω in T

such that K ⊂ A ⊂ ω and u•(ω\K) < ε.

(vii) Given ε > 0, for each compact K in T there exists a σ-Borel open sets U in T such that

K ⊂ U with u•(U\K) < ε and there exists a compact Gδ such that u•(T\C) < ε.

(viii) Given ε > 0, for each open Baire set ω in T there exists a compact Gδ K ⊂ ω such that

u•(ω\K) < ε and there exists a compact C such that u•(T\C) < ε.

(ix) Given ε > 0, for each Baire set A ∈ T there exist a compact Gδ K and an open Baire set

ω in T such that K ⊂ A ⊂ ω and u•(ω\K) < ε.



18 T.V. PANCHAPAGESAN

(x) Given ε > 0, for each compact Gδ K in T there exists an open Baire set U in T such that

K ⊂ U with u•(U\K) < ε and there exists a compact Gδ C such that u•(T\C) < ε.

Proof. Since u is a bounded operator on C0(T ) by Convention 26.4, the set F = {µx∗u : |x∗| ≤
1} = {µu∗x∗ : |x∗| ≤ 1} is bounded in M(T ). Let |F | = {µ|x∗u| : |x∗| ≤ 1}. Then by Theorem

1 of [P8], F is relatively weakly compact in M(T ) if and only if |F | is so (resp. if and only if

u is weakly compact (as u is weakly compact if and only if u∗ is weakly compact)). Moreover,

by Theorem 4.11 of [P3] and by Theorem 3.3 of [P4], µ|x∗u|(A) = v(µx∗u,B(T ))(A) = |µx∗u|(A)

for A ∈ B(T ). Then by Lemma 26.9 and by (vi) (resp. (vi)’, (vi)”) of Proposition 1 of [P9], (ix)

(resp. (iii), (vi)) holds if and only if u is weakly compact. Hence (i)⇔(iii)⇔(vi) ⇔(ix).

(iii)⇒(ii) obviously.

(ii)⇒(i) Let ω be an open set in T and let ε > 0. Then by hypothesis, there exists a compact K

such that K ⊂ ω and u•(ω\K) < ε. By Lemma 26.9, this means means sup|x∗|≤1 µ|x∗u|(ω\K) < ε.

Then by Theorem 4.11 of [P3] and by Theorem 3.3 of [P4], sup|x∗|≤1 v(µx∗u,B(T ))(ω\K) < ε and

hence by Theorem 1 of [P8], u is weakly compact. Thus (i) holds.

(i)⇔(iv) By Theorem 4.11 of [P3], |F | = {|µx∗u| : |x∗| ≤ 1} and hence by Theorem 4.22.1 of

[E], |F | is relatively weakly compact in M(T ) if and only if , given ε > 0, for each compact K

in T there exists an open set U in T such that K ⊂ U and sup|x∗|≤1 |µx∗u|(U\K) < ε and there

exists a compact C in T such that sup|x∗|≤1 |µx∗u|(T\C) < ε. Consequently, by Lemma 26.9, |F |
is relatively weakly compact in M(T ) if and only if (iv) holds and hence if and only if u is weakly

compact.

Similarly, using Theorem 4.22.1 of [E], Theorem 4.11 of [P3], Theorem 50.D of [H] and Lemma

26.9 one can show that (i)⇔(vii) and (i)⇔(x).

By Proposition 1(iii) of [P9], by Theorem 4.11 of [P3] and by Lemma 26.9, (i)⇔(v) and

(i)⇔(viii).

Hence the statements (i)-(x) are equivalent.
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Definition and Notation 26.12. Let X be a Banach space and let u : K(T ) → X be a

Radon operator. Let H be a subset of X∗ separating the points of X. A function f : T → KI is said

to be u-integrable with respect to the topology σ(X, H) if f is x∗u-integrable for each x∗ ∈ H.

Then the integral of f with respect to σ(X, H) is an element in the completion of (X, σ(X, H))

which is identified with < H >alg, the set of all linear functionals on the liner span < H > of

H and the integral is denoted by
∫

fdũ. This is identified with the function x∗ →
∫

fd(x∗u) for

x∗ ∈ H. Thus

< x∗,

∫
fdũ >=

∫
fdux∗ for x∗ ∈ H.

The Orlicz property of a set H in X∗ (see Definition 18.9 of [P18]) plays a key role in the sequel.

The following result improves the complex version of Theorem 2.7 of Thomas [T].

Theorem 26.13. Let X be a Banach space and let H be a norm determining subset of X∗.

Suppose H possesses the Orlicz property. Let u : K(T ) → X be a bounded Radon operator.

Then u : C0(T ) → (X, σ(X, H)) is continuous (here we use Convention 26.4) and u is weakly

compact on C0(T ) if and only if
∫
ω dũ ∈ X for each open Baire set ω in T , where ũ is the Radon

operator obtained from u on providing X with the topology σ(X, H).

Proof. Arguing as in the proof of Theorem 2.7 of [T] and using Theorem 1 of [P8] instead of

Appendix I: C2 of [T], we observe that the condition is sufficient.

Conversely, if u is weakly compact with its representing measure m in the sense of 18.10 of

[P18], then by Theorem 2(ii) of [P9], u∗∗(χω) = m(ω) = xω (say) ∈ X for each open Baire set ω

in T and hence

x∗(xω) =
∫

ω
d(x∗u)

for x∗ ∈ X∗ and hence for x∗ ∈ H. Then∫
ω

dũ = xω ∈ X.

Therefore the condition is also necessary.
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To improve the complex version of Theorem 2.12 of [T] we need the following lemma.

Lemma 26.14. Let X be a Banach space and let u : C0(T ) → X be a continuous linear

mapping with the representing measure m (in the sense of 18.10 of [P18]). Then∫
A

d(x∗u) = (x∗ ◦m)(A) (26.14.1)

for x∗ ∈ X∗ and for A ∈ B(T ). If χA ∈ L1(u), then∫
A

du = m(A) (26.14.2)

and consequently (26.14.2) holds for A ∈ B(T ) if u is weakly compact.

Proof. By the proof of (vi)⇒(vii) of Theorem 26.10 (without using (26.10.1)), µx∗u = x∗ ◦m

on B(T ) for x∗ ∈ X∗. Hence∫
A

d(x∗u) =
∫

A
dµx∗u = µx∗u(A) = (x∗ ◦m)(A)

for A ∈ B(T ) and for x∗ ∈ X∗.

If χA ∈ L1(u), there exists xA ∈ X such that
∫
A du = xA ∈ X. Consequently, by (26.14.1) we

have

x∗(xA) =
∫

A
d(x∗u) = (x∗ ◦m)(A)

for x∗ ∈ X∗. As m has range in X∗∗, we conclude that m(A) = xA =
∫
A du for A ∈ L1(u). If u

is weakly compact, B(T ) ⊂ L1(u) by Theorem 26.10(i) and hence the last part holds.

Using the above lemma we obtain the following improvement of the complex version of The-

orem 2.12 of [T].

Theorem 26.15. Let X be a Banach space and let un : K(T ) → X be a bounded weakly

compact Radon operator for n ∈ NI. If for every open Baire set ω in T , the sequence (
∫
ω dun)∞1 is

convergent in X, then there exists a bounded weakly compact Radon operator u on K(T ) with

values in X such that

lim
n

∫
fdun =

∫
fdu
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for each bounded (complex) Borel function f on T .

Proof. Let mn be the representing measure of un in the sense of 18.10 of [P18]. Then by

hypothesis and by Lemma 26.14,

lim
n

mn(ω) exists in X (26.15.1)

for each open Baire set ω in T . Moreover, by Theorems 6(xix) and 2 of [P9], mn is Borel

regular and σ-additive in the topology τ of X for each n ∈ NI. By Lemma 18.19 of [P18], ϕ is

mn-integrable in T and by 18.10 of [P18] we have

x∗un(ϕ) =
∫

T
ϕd(x∗ ◦mn) = x∗(

∫
T

ϕdmn)

for x∗ ∈ X∗ and for ϕ ∈ C0(T ). Then by the Hahn-Banach theorem

un(ϕ) =
∫

T
ϕdmn for ϕ ∈ C0(T ).

Consequently, by Lemma 18.20 of [P18] there exists an X-valued continuous linear mapping u on

C0(T ) such that

lim
n

un(ϕ) = u(ϕ)

for ϕ ∈ C0(T ). Moreover, by (26.15.1) and by Lemma 18.18 of [P18], limn mn(U) ∈ X for each

open set U in T . Consequently, by the complex version of Proposition 2.11 of [T], limn

∫
fdun =∫

fdu ∈ X for each bounded complex Borel function f on T . Then particularly,

lim
n

∫
χAdun =

∫
χAdu ∈ X (26.15.2)

for each A ∈ B(T ). Hence B(T ) ⊂ L1(u). If m is the representing measure of u as in 18.10 of

[P18], then by Lemma 26.14 and by (26.15.2), m(A) =
∫

χAdu ∈ X for each A ∈ B(T ) and hence

by Theorem 2 of [P9], u is weakly compact.

This completes the proof of the theorem.

Remark 26.16. The proofs of Propositions 2.13, 2.14, 2.17 and 2.20, of Corollary 2.20 and of

Lemma 2.21 of [T] hold for complex spaces too.
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We need the following lemma to generalize Theorem 26.10 to quasicomplete lcHs.

Lemma 26.17. Let u be a Radon operator on K(T ) with values in an lcHs X. For q ∈ Γ,

let uq = Πq ◦ u where Γ and Πq are as in the beginning of §10 of [P17]. Then for each open set

ω in T ,

u•q(ω) = sup
x∗∈U0

q

|x∗u|•(ω) = sup
x∗∈U0

q

|x∗u|(ω)

where U0
q is as in Notation 10.13 of [P17] and u•q is as in Definition 25.18.

Proof. Let q ∈ Γ. Then uq : K(T ) → X̃q is a continuous linear map and hence by Lemma

26.9, by Proposition 10.14 of [P17] and by Proposition 25.4 we have

u•q(ω) = sup
x∗∈U0

q

|Ψx∗uq|•(ω) = sup
x∗∈U0

q

|Ψx∗ ◦ (Πq ◦ u)|•(ω)

= sup
x∗∈U0

q

|x∗u|•(ω) = sup
x∗∈U0

q

|x∗u|∗(ω)

= sup
x∗∈U0

q

|x∗u|(ω)

since Ψx∗(Πq ◦ u)(x) = Ψx∗(ux + q−1(0)) = x∗ux for x ∈ X and for x∗ ∈ U0
q and since the open

set ω is |x∗u|∗-measurable.

The following theorem generalizes Theorem 26.10 to quasicomplete lcHs.

Theorem 26.18. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded Radon

operator. Then the following statements are equivalent:

(i) Every bounded (complex) Borel function belongs to L1(u).

(ii) Every bounded (complex) σ-Borel function belongs to L1(u).

(iii) Every bounded (complex) Baire function belongs to L1(u).

(iv) For every open set ω in T the weak integral
∫
ω du belongs to X; i.e. there exists a vector

xω in X such that ∫
ω

d(x∗u) = x∗(xω)

for each x∗ ∈ X∗. Then we say that the weak integral
∫
ω du = xω.



THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL-VI 23

(v) For every σ-Borel open set ω in T , the weak integral
∫
ω du belongs to X.

(vi) For every open Baire set ω in T , the weak integral
∫
ω belongs to X.

(vii) u is weakly compact (see Convention 26.4).

Proof. Since the results mentioned in 18.10 of [P18] hold for lcHs valued continuous linear

transformations on C0(T ) and since the theorems in [P9] used in the proof of Theorem 26.10 are

valid not only for Banach spaces but also for quasicomplete lcHs, the proof of the latter theorem

excepting that of (vii)⇒(i) continues to be valid when X is a quasicomplete lcHs.

Now we shall show that (vii)⇒(i). Let q ∈ Γ and let Uq = {x ∈ X : q(x) ≤ 1}. Then

U0
q , the polar of Uq is equicontinuous and hence by Corollary 9.3.2 of [E] or by Proposition 4 of

[P9], u∗(U0
q ) is relatively weakly compact in M(T ). Then by Theorem 1 of [P8], given A ∈ B(T )

and ε > 0, there exist a compact set K and an open set U in T such that K ⊂ A ⊂ U and

supx∗∈U0
q
|x∗u|(U\K) < ε. Consequently, by Lemma 26.17, u•q(U\K) < ε. Then arguing as in the

last part of the proof of (vii)⇒(i) of Theorem 26.10 we have a ϕq ∈ K(T ) such that χK ≤ ϕq ≤ χU

so that

u•q(|χA − ϕq|) ≤ u•q(χU − χA) ≤ u•q(χU − χK) = u•q(U\K) < ε.

Since q is arbitrary in Γ, by Definition 25.20 χA ∈ L1(u).

Then every Borel simple function s belongs to L1(u). If f is a bounded Borel (complex)

function, then there exists a sequence (sn) of Borel simple functions such that ||sn − f ||T → 0.

Then, for each q ∈ Γ, we have

u•q(|f − sn|) ≤ ||f − sn||T u•q(T ) → 0

as n → ∞, since u•q(T ) is finite by Proposition 26.3 and by the hypothesis that uq : (Cc(T ), || ·
||T ) → X̃q is continuous.

This completes the proof of the theorem.

The following theorem gives an improvement of the complex version of Theorem 2.7 bis of [T].
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Theorem 26.19. Let X be an lcHs and let H be a subset of X∗ such that the topology

τ of X is the same as the topology of uniform convergence in the equicontinuous subsets of H.

Suppose H has the Orlicz property. Let u be a bounded Radon operator on K(T ) with values

in X. Then u is weakly compact if and only if, for every open Baire set ω in T , the ultra weak

integral
∫
ω dũ (relative to the topology σ(X, H)) belongs to X̃, the lcHs completion of X.

Proof. By hypothesis, τ is generated by the seminorms {qE : E ∈ HE} where HE = {E ⊂ H :

E is eqicontinuous} and qE(x) = supx∗∈E |x∗(x)|. As observed in the proof of Theorem 18.16 of

[P18], σ(X, H) is Hausdorff.

By hypothesis, for each open Baire set ω in T , there exists a vector xω ∈ X̃ such that∫
ω

d(x∗u) = µx∗u(ω) = x∗(xω) (26.19.1)

for each x∗ ∈ H and hence for x∗ ∈< H >, the linear span of H. Then, given a disjoint sequence

(Un)∞1 of open Baire sets in T , for each subsequence P of NI, by (26.19.1) we have∑
n∈P

x∗(xUn) =
∑
n∈P

µx∗u(Un) = µx∗u(
⋃
n∈P

Un) ∈ KI

and hence
∑∞

1 xUn is subseries convergent for the topology σ(X, H). Since (X, σ(X, < H >

)∗ =< H > by Theorem 5.3.9 of [DS],
∑∞

1 xUn is subseries convergent in σ(X, H). As H has the

Orlicz property by hypothesis,
∑∞

1 xUn is unconditionally convergent in τ . Hence

lim
n

qE(xUn) = 0. (26.19.2)

Then by (26.19.1) and by (26.19.2) we have

lim
n

qE(xUn) = lim
n

sup
x∗∈E

|x∗(xUn)| = lim
n

sup
x∗∈E

|µx∗u(Un)| = 0. (26.19.3)

Since E is equicontinuous and since u : C0(T ) → X is continuous, by Lemma 2 of [P9] and

by 18.10 of [P18], u∗E = {u∗x∗ : x∗ ∈ E} = {x∗u : x∗ ∈ E} = {µx∗u : x∗ ∈ E} is bounded in

M(T ). Then by (26.19.3) and by Theorem 1 of [P8]

{µx∗u : x∗ ∈ E} is relatively weakly compact in M(T ). (26.19.4)
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For E ∈ HE , ΠqE : X̃ → X̃qE ⊂ (̃X̃qE ). If Ψx∗ is as in Proposition 10.12(i) of [P17] for

x∗ ∈ E, then {Ψx∗ : x∗ ∈ E} is a norm determining subset of the closed unit ball of (X̃qE )∗ for

X̃qE by Proposition 10.12(iii) of [P17] for x∗ ∈ E. Then by Proposition 10.12(i) of [P17] and by

18.10 of [P18] we have

(Ψx∗ ◦ΠqE ◦ u)(ϕ) = (x∗u)(ϕ) (26.19.5)

for ϕ ∈ C0(T ) and hence Ψx∗ ◦ ΠqE ◦ u ∈ K(T )∗b = (C0(T ), || · ||T )∗ = M(T ). Then by (26.19.4)

and (26.19.5), {µ(Ψx∗◦ΠqE
◦u) : x∗ ∈ E} is relatively weakly compact in M(T ). Then by Corollary

18.15 of [P18], ΠqE ◦u is weakly compact for E ∈ HE . Consequently, by the complex analogue of

Lemma 2.21 of [T], u is weakly compact.

Conversely, if u is weakly compact, then by Theorem 26.18(vi) the weak integral
∫
ω fdu

belongs to X for each open Baire sets ω in T and hence there exists a vector xω ∈ X and hence

in X̃ such that

x∗(
∫

ω
du) =

∫
ω

d(x∗u) = x∗(xω)

for each x∗ ∈ X∗ and hence for each x∗ ∈ H. Thus
∫
ω dũ (relative to the topology σ(X, H))

belongs to X̃.

This completes the proof of the theorem.

Corollary 26.20. Under the hypothesis of Theorem 26.19 for X, H and the topology τ , a

bounded Radon operator u : K(T ) → X is weakly compact (see Convention 26.4) if for each open

set ω in T which is a countable union of closed sets, the ultra weak integral
∫
ω dũ (relative to the

topology σ(X, H)) belongs to X̃, the lcHs completion of X.

Proof. By Lemma 18.3 and by Theorem 26.19, the corollary holds.

Remark 26.21. Corollary 26.20 is obtained directly in Proposition on p. 98 of [T]. But Theo-

rem 26.19 is much stronger than the said proposition of [T].

27. INTEGRATION WITH RESPECT TO A PROLONGABLE RADON

OPERATOR
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Following Thomas [T] we study the integration of complex functions with respect to a pro-

longable Radon operator u on K(T ) (Thomas calls it a prolongable Radon measure) and improve

most of the principal results such as the complex versions of Theorems 3.3, 3.4, 3.11, 3.13 and

3.20 of [T].

Definition 27.1. Let u be a Radon operator on K(T ) with values in an lcHs. Then we

say that u is prolongable if every bounded (complex) Borel function with compact support is

u-integrable.

Notation 27.2. Let ω be an open set in T and let u be a Radon operator on K(T ). We define

f̂ on T by f̂(t) = f(t) for t ∈ ω and 0 for t ∈ T\ω. For ϕ ∈ K(ω), ϕ̂ ∈ K(T ) and we identify

K(ω) with the set of functions in K(T ) whose support is contained in ω. The Radon operator uω

is defined as the restriction of u to K(ω). i.e. uω(ϕ) = u(ϕ̂).

Lemma 27.3. Let u be a Radon operator on K(T ) with values in a normed space, ω an open

subset of T and uω the Radon operator induced by u on K(ω). Then:

(i) For f ∈ I+(ω), f̂ ∈ I+(T ) and (uω)•(f) = u•(f̂).

(ii) For f ≥ 0 with compact support in ω, (uω)•(f) = u•(f̂).

(iii) If f is a (complex) function with compact support in ω belonging to L1(uω), thenf̂ belongs

to L1(u) and
∫

fduω =
∫

f̂du and the last conclusion also extends to Radon operators with

values in an lcHs.

For the proof of the above lemma we refer to the proof of Lemma 3.2 of Thomas [T] given in

Appendix III of [T] which holds for complex functions too.

Remark 27.4. If u•(ω) < ∞ for ω in Lemma 27.3, then uω is a bounded operator on K(ω)

and hence particularly if ω is relatively compact in T , then uω is a bounded Radon operator.

Since u•(ω) = sup|ϕ|≤1,ϕ∈K(ω) |uω(ϕ)|, the above remark holds.

The following theorem improves Theorem 3.3 of Thomas [T].
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Theorem 27.5. Let u be a Radon operator on K(T ) with values in a quasicomplete lcHs X.

Then the following statements are equivalent:

(i) u is prolongable in the sense of Definition 27.1.

(ii) Every bounded σ-Borel (complex) function with compact support belongs to L1(u).

(iii) Every bounded complex Baire function with compact support belongs to L1(u).

(iv) For each relatively compact open set ω in T , the weak integral
∫
ω du belongs to X; i.e.

there exists xω ∈ X such that
∫
ω d(x∗u) = x∗(xω) for x∗ ∈ X∗.

(v) For each relatively compact open Baire set ω in T , the weak integral
∫
ω du belongs to X.

(vi) If ω is a relatively compact open set in T , then u|K(ω) is a bounded weakly compact Radon

operator.

(vii) For each relatively compact open Baire set ω in T , u|K(ω) is a bounded weakly compact

Radon operator.

(viii) For each compact K in T , the weak integral
∫
K du belongs to X.

(ix) For each compact Gδ K in T , the weak integral
∫
K du belongs to X.

(x) A set A ⊂ K(T ) is said to be bounded in K(T ) if there exists K ∈ C such that supp ϕ ⊂ K

for each ϕ ∈ A and supϕ∈A ||ϕ||T < ∞. For each relatively compact open set ω in T , u

transforms bounded subsets of K(ω) into relatively weakly compact subsets of X.

(xi) For each compact K, limω↘K u•(ω\K) = 0 where ω is open in T .

(xii) For every compact Gδ K, limω↘K u•(ω\K) = 0 where ω is open in T .

Proof. Let E be the family of all equicontinuous subsets of X∗.

(i)⇔(ii) As shown in the proof of (1)⇒(18) of Theorem 19.12 of [P18], a Borel function with

compact support is σ-Borel and a σ-Borel function is obviously Borel. Hence (i)⇔(ii).

(ii)⇒(iii) Obvious.
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(iii)⇒(v) If ω is a relatively compact open Baire set in T , then χω is a bounded Baire function

with compact support and hence by (iii), χω ∈ L1(u). Then by Theorem 25.24 there exists a vec-

tor xω ∈ X such that
∫
ω du = xω and hence

∫
ω d(x∗u) = x∗(xω) for x∗ ∈ X∗. Therefore, (v) holds.

(v)⇒(vi) Let ω be a relatively compact open set in T . Let (ωn)∞1 be a disjoint sequence of

open Baire sets in ω. Then (ωn)∞1 ⊂ B0(T ) as shown in the proof of Claim 1 in the proof of

Theorem 19.12 of [P18]. Let P ⊂ NI and let ωP =
⋃

n∈P ωn. Then by (v) and by Theorem 25.24

there exists xP ∈ X and (xωn)n∈P ⊂ X such that

x∗(xωn) =
∫

ωn

d(x∗u) (27.5.1)

and

x∗(xP ) =
∫

ωP

d(x∗u) =
∑
n∈P

∫
ωn

d(x∗u) =
∑
n∈P

x∗(xωn)

for x∗ ∈ X∗. Thus
∑∞

1 x∗(xωn) is subseries convergent for each x∗ ∈ X∗ and hence by the

Orlicz-Pettis theorem,
∑∞

1 xωn is unconditionally convergent in X. In other words, by (27.5.1)

we have

lim
n

qE(xωn) = lim
n

sup
x∗∈E

|x∗(xωn)| = lim
n

sup
x∗∈E

|(x∗u)(ωn)|

= lim
n

sup
x∗∈E

|(u∗x∗)(ωn)| = lim
n

sup
µ∈u∗E

|µ(ωn)| = 0.

Therefore the bounded set u∗E (see Lemma 2 of [P9]) is relatively weakly compact in M(T ) by

Theorem 1 of [P8]. Since E is arbitrary in E , by Proposition 4 of [P9] u|K(ω) is a weakly compact

Radon operator (see Convention 26.4 with respect to K(ω)). Hence (vi) holds.

(vi)⇒(vii) Obvious.

(vii)⇒(i)

Claim. If A is a relatively compact Borel set, then χA ∈ L1(u) and consequently, each Borel

simple function with compact support belongs to L1(u).

In fact, Ā = K ∈ C and hence by Theorem 50.D of [H], there exists a relatively compact

open Baire set ω0 such that K ⊂ ω0. By (vii), uω0 = u|C0(ω0) is weakly compact. Let E ∈ E .

Then uqE = ΠqE ◦ uω0 : C0(ω0) → X̃qE is weakly compact and hence, given ε > 0, by Theorem
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26.11 there exist a compact C and an open set ω in ω0 (hence open in T ) such that C ⊂ A ⊂ ω

and (uω0)
•
q(ω\C) < ε. By Urysohn’s lemma there exists ϕ ∈ Cc(ω) such that 0 ≤ ϕ ≤ 1 and

ϕ|C = 1. Then (uω0)
•
qE

(|χA−ϕ|) ≤ (uω0)
•
qE

(ω\C) < ε. Since E is arbitrary in E , this shows that

χA ∈ L1(uω0). Since χ̂A = χA by Lemma 27.3(iii), χA ∈ L1(u) and consequently, each Borel

simple function with compact support belongs to L1(u). Hence the claim holds.

Let f be a bounded (complex) Borel function with compact support. Then there exists a

sequence (sn) of Borel simple functions such that |sn| ↗ |f | and sn → f uniformly in T . Then

supp sn ⊂ suppf = K (say) for all n. Let ω ∈ V such that K ⊂ ω. Then by the above claim,

(sn)∞1 ⊂ L1(u). Then, given ε > 0, choose n0 such that

||sn − f ||T (uω)•qE
(χω) < ε

for n ≥ n0. Then

(uω)•qE
(|sn − f |) ≤ ||sn − f ||T (uω)•qE

(χω) < ε

for n ≥ n0. Thus f ∈ L1(uω) and consequently, f̂ ∈ L1(u) by Lemma 27.3(iii). Since f̂(t) = f(t)

for t ∈ ω and f̂(t) = 0 for t ∈ T\ω and K ⊂ ω, f̂ = f and hence f ∈ L1(u). Thus (i) holds.

(i)⇒(iv) Let ω ∈ V. Then by Definition 27.1, χω ∈ L1(u) and hence
∫
ω = xω belongs to X.

Then ∫
ω

d(x∗u) = x∗(
∫

ω
du) = x∗(xω)

and hence (iv) holds.

As shown above, (iii)⇒(v)⇒(vi)⇒(vii)⇒(i).

(i)⇒(viii) Obvious.

(viii)⇒(v) Let ω be a relatively compact open Baire set in T . Then ω̄ and the boundary

of ω are compact. Hence there exist vectors xω̄ and y in X such that x∗(xω̄) =
∫
ω̄ d(x∗u) and

x∗(y) =
∫
A d(x∗u) for x∗ ∈ X∗, where A is the boundary of ω. Then x∗(xω̄ − y) =

∫
ω d(x∗u) for

x∗ ∈ X∗. Hence (v) holds.
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(viii)⇒(ix) Obvious.

(ix)⇒(v) Let V be a relatively compact open Baire set in T . Then arguing as in the proof of

(7)⇒(5) of Theorem 19.12 of [P18], V = K\(K\V ) with K ∈ C0 and K\V ∈ C0. Then by (ix)

there exist xK and xK\V in X such that
∫
K d(x∗u) = x∗(xK) and

∫
K\V d(x∗u) = x∗(xK\V ) for

x∗ ∈ X∗. Then x∗(xK − xK\V ) =
∫
K d(x∗u) for x∗ ∈ X∗. Hence (v) holds.

(i)⇒(x) Let ω ∈ V and let A ⊂ K(ω) be bounded. Then there exists K ∈ C such that supp

ϕ ⊂ K for ϕ ∈ A and supϕ∈A ||ϕ||T = M < ∞. Then by Theorem 50.D of [H] there exists a

relatively compact open set ω in T such that K ⊂ ω. Then A ⊂ Cc(ω). Then by (i), u(A) is

relatively weakly compact in X.

(x)⇒(vi) Let ω ∈ V and let A = {ϕ ∈ C0(ω) : ||ϕ||ω ≤ 1}. Then A is bounded in K(T ) and

hence by (x), u(A) is relatively weakly compact in X. Hence uω = u|K(ω) is a bounded weakly

compact Radon operator. Hence (vi) holds.

(xi)⇒(viii) Suppose (xi) holds. Then given ε > 0, there exists an open set ω ⊃ K such that

u•(ω\K) < ε. Then by Urysohn’s lemma, there exists ϕ ∈ Cc(T ) such that χK ≤ ϕ ≤ χω so that

u•(ϕ− χK) < ε. Hence χK ∈ L1(u) so that
∫
K du ∈ X. Then the weak integral

∫
K dũ ∈ X and

hence (viii) holds.

(xi)⇒(xii) Obvious.

(xii)⇒(ix) Let K be a compact Gδ in T . Then given ε > 0, by (xii) there exists an open set

ω in T such that K ⊂ ω and u•(ω\K) < ε. By Urysohn’s lemma there exists ϕ ∈ cc(T ) such that

χK ≤ ϕ ≤ χω so that u•(ϕ − χK) < ε. Hence χK ∈ L1(u) so that
∫
K du ∈ X. Particularly, the

weak integral
∫
K du ∈ X and hence (ix) holds.

Thus (i)-(xii) are equivalent and this completes the proof of the theorem.

The following theorem is analogous to Theorems 26.13 and improves Theorem 3.4 of Thomas

[T].
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Theorem 27.6. (a) Let u be a Radon operator on K(T ) with values in a Banach space (X, τ)

and let H ⊂ X∗ be a norm determining set for X with the Orlicz property (respectively, (b) let

u be a Radon operator on K(T ) with values in a quasicomplete lcHs (X, τ) and let H ⊂ X∗

have the Orlicz property and let the topology τ of X be identical with the topology of uniform

convergence in the equicontinuous subsets of H). Let ũ be the operator obtained from u on

providing X with the topology σ(X, H) and let X̃ be the lcHs completion of (X, τ). Then u is

prolongable if and only if anyone of the following conditions holds:

(i) For each ω ∈ V the ultra weak integral
∫
ω dũ belongs to X̃; i.e. there exists xω ∈ X̃ such

that

x∗(xω) =
∫

ω
d(x∗u)

for x∗ ∈ H.

(ii) Similar to (i) with ω ∈ B0(T )
⋂
V.

(iii) For each K ∈ C, the ultra weak integral
∫
K dũ belongs to X̃ (see (i)).

(iv) Similar to (iii) with K ∈ C0.

Proof. Since (b) subsumes (a), we shall prove (b).

Let EH be the family of equicontinuous subsets of H. Let ω ∈ V. If u is prolongable, then

u|K(ω) is a bounded weakly compact Radon operator and hence by Theorem 26.19,
∫
ω dũ ∈ X̃ so

that (i) holds.

Clearly, (i)⇒(ii).

Let (ii) hold. Let E ∈ EH . For each ω ∈ B0(T )
⋂
V, there exists xω ∈ X̃ such that

x∗(xω) =
∫

ω
d(x∗u) (27.6.1)

for x∗ ∈ H. Arguing as in the proof of Theorem 26.19, given a disjoint sequence (ωn)∞1 of open

Baire sets with
⋃∞

1 ωn ⊂ ω and using (27.6.1) in place of (26.19.1), we have

lim
n

qE(xωn) = 0. (27.6.2)
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Since E is equicontinuous and u : C0(ω) → X is continuous, by Lemma 2 of [P9] u∗E is

bounded in M(T ). Then arguing as in the proof of Theorem 26.19, we conclude that ΠqE ◦ u :

K(ω) → X̃qE is a weakly compact Radon operator for E ∈ EH . Then by the complex version of

Lemma 2.21 of [T], u is prolongable.

Conversely, let u be prolongable and let K ∈ C. Then by Theorem 50.D of [H] there exists

U ∈ V such that K ⊂ U . Then by (i), the ultra weak integrals
∫
U dũ = xU and

∫
U\K dũ = xU\K

belong to X̃. Then ∫
K

d(x∗u) =
∫

U
d(x∗u)−

∫
U\K

d(x∗u) = x∗(xU − xU\K)

for x∗ ∈ H. Thus the ultra weak integral
∫
K dũ belongs to X̃ and hence (iii) holds.

(iii)⇒(iv) Obvious.

Let (iv) hold. Let ω be a relatively compact open Baire set. Then ω̄ ∈ C and hence

by Theorem 50.D of [H] there exists K ∈ C0 such that ω̄ ⊂ K. Then ω = K\(K\ω) and

K\ω ∈ C0 by Theorem 51.D of [H]. Then by hypothesis, there exist vectors xK and xK\ω in

X̃ such that
∫
K d(x∗u) = x∗(xK) and

∫
K\ω d(x∗u) = x∗(xK\ω) for x∗ ∈ H. Consequently,

x∗(xK − xK\ω) =
∫
ω d(x∗u) for x∗ ∈ H. Therefore, (iv)⇒(i).

Let (i) hold. Then, particularly, for each open Baire set ω ∈ V, u|K(ω) is a bounded weakly

compact Radon operator by Theorem 26.19. If V ∈ V, then V̄ ∈ C and hence by Theorem 50.D

of [H] there exists an open Baire set ω ∈ V such that V ⊂ V̄ ⊂ ω. Then u|K(V ) is the restriction

of uω in K(V ) and hence u|K(V ) is weakly compact. Hence (i) implies that u is prolongable.

This completes the proof of the theorem.

Remark 27.7. The complex versions of Theorem 3.5, Corollary 3.6, Proposition 3.7 and

Lemma 3.10 of [T] hold in virtue of Remark 26.16 above.

Proposition 27.8.Let u : K(T ) → X be a bounded Radon operator where X is a quasicom-

plete lcHs. Then u is weakly compact if and only if u is prolongable and the function 1 belongs
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to L1(u).

Proof. If u is weakly compact, then by Theorem 26.18 every bounded complex Borel function

belongs to L1(u) and hence the function 1 belongs to L1(u) and u is prolongable by Definition

27.1. Conversely, if u is prolongable and the function 1 is u-integrable, then by the complex

version of Corollary 3.6 of [T] every bounded Borel function is u-measurable and hence every

bounded complex Borel function is u-integrable by the complex version of Theorem 1.22 of [T].

Consequently, by Theorem 26.18, u is weakly compact.

Theorem 27.9. Let X be a Banach space (resp. a quasicomplete lcHs) and let u : K(T ) → X

be a prolongable Radon operator. Then a scalar function f on T is u-integrable if and only if

f is weakly u-integrable and for every open Baire set ω in T , the weak integral
∫
ω fdu belongs

to X (resp. the weak integral
∫
ω fdũ ∈ X where ũ is the Radon operator obtained from u on

providing X with the topology σ(X, X∗)).

Proof. First we prove the theorem when X is a Banach space. By the complex versions of

Theorem 1.22 and Corollary 3.6 of [T], the condition is necessary. Let ũ be the operator obtained

from u on providing X with the topology σ(X, X∗) and let the hypothesis hold for each open

Baire set. Then
∫
ω fdũ ∈ X for each open Baire set ω in T .

Let F be the complex vector space generated by the characteristic functions of open Baire

sets in T , provided with the supremum norm. Then arguing as in the proof of Theorem 3.11 of

[T] we have

sup
|g|≤1,g∈F

|
∫

gfdũ| < ∞.

Consequently, the mapping Φ : F → X given by

Φ(g) =
∫

gfdũ

is continuous. Then by Claim 4 in the proof of Theorem 22.3 of [P19], C0(T ) ⊂ F̄ , where F̄ is

the closure of F in the Banach space of all bounded complex functions on T .

If Ψ is the continuous extension of Φ to C0(T ), then

< Ψ(ϕ), x∗ >=
∫

ϕfdux∗
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for x∗ ∈ X∗, as there exists (gn)∞1 ⊂ F such that ||gn−ϕ||T → 0 and Ψ(gn) = Φ(gn) =
∫

gnfdũ.

Thus

Ψ(ϕ) =
∫

ϕfdũ,∫
ϕfdũ belongs to X and Ψ is continuous on C0(T ). Thus Ψ is a bounded Radon operator on

K(T ). By Theorem 55.A of [H], there exists (ϕn)∞1 ⊂ C0(T ) such that ϕn ↘ χω since ω is an

open Baire set. Then by LDCT we have∫
ω

d(x∗Ψ) = lim
n

∫
T

ϕnfd(x∗u) =
∫

ω
fd(x∗u)

for x∗ ∈ X∗. Thus
∫
ω dΨ̃ =

∫
ω fdũ which belongs to X by hypothesis. Then by the equivalence

of (vi) and (vii) of Theorem 26.10, Ψ is weakly compact. Since dΨx∗ = fdux∗ and since by

hypothesis f is ux∗-measurable for x∗ ∈ X∗, the function f is Ψx∗-measurable for x∗ ∈ X∗.

Then by the complex version of Theorem 1.28 of [T], f is Ψ-measurable and consequently, by

Theorem 26.11(vii), given ε > 0, there exists a compact K such that Ψ•(T\K) < ε
2 . As f is

Ψ-measurable, there exists a compact K0 ⊂ K such that f |K0 is continuous and Ψ•(K\K0) < ε
2 .

Then Ψ•(T\K0) < ε. By Proposition 25.15, by Lemma 25.11 and by the fact that dΨx∗ = fdux∗

we have

ε > Ψ•(T\K0) = sup
|x∗|≤1

|Ψx∗ |•(T\K0) = sup
|x∗|≤1

|Ψx∗ |(T\K0)

= sup
|x∗|≤1

∫
T\K0

|f |d|ux∗ |

= sup
|x∗|≤1

∫
T
|f − χK0f |d|ux∗ |

since χT\K0
∈ L1(Ψ).

Since χK0f is continuous in K0, χK0f is bounded (as K0 is compact) and as u is prolongable,

by Definition 27.1 χK0f is u-integrable. Then by the complex version of Lemma 3.10 of [T],

f ∈ L1(u).

Now let X be a quasicomplete lcHs. For q ∈ Γ, let Πq : X → Xq ⊂ X̃q. Then Πq is linear

and continuous. If y∗ ∈ Xq
∗, then y∗ ◦ Πq ∈ X∗. As f is weakly u-integrable, f ∈ L1(x∗u) for

each x∗ ∈ X∗. Moreover, by hypothesis for each open Baire set ω ∈ T there exists a vector xω

belonging to X such that

(y∗ ◦Πq)(xω) =
∫

ω
fd(y∗ ◦Πq)u
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for y∗ ∈ X∗q . Hence Πq(
∫
ω fdũ) =

∫
ω fd ˜(Πq ◦ u) = Πq(xω) ∈ X̃q for q ∈ Γ. Hence by the Banach

space case, f ∈ L1(Πq ◦ u) for each q ∈ Γ. Consequently, by the complex version of Proposition

1.28 of [T], f is u-integrable and therefore, by Theorem 25.24,
∫

fdu ∈ X.

By the complex versions of Theorem 1.22 extended to lcHs (see p.77 of [T]) and of Corollary

3.6 of [T] and by 1.12 of [T] the conditions are also necessary.

This completes the proof of the theorem.

Lemma 27.10. Let (θn)∞1 ⊂ K(T )∗ be such that for each ϕ ∈ K(T ),

∞∑
1

|θn(ϕ)| < ∞.

Let u(ϕ) = (θn(ϕ))∞1 for ϕ ∈ K(T ). Then u is a prolongable Radon operator with values in `1(NI).

Let f be a complex function which is θn-integrable for each n ∈ NI such that

∞∑
1

|
∫

ω
fdµn| < ∞

for each open Baire set ω in T , where µn is the complex Radon measure induced by θn in the

sense of Definition 4.3 of [P3]. Then f ∈ L1(u). If s(ϕ) =
∑∞

1

∫
ϕdµn, then s ∈ K(T )∗, f is

s-integrable and ∫
ω

fds =
∞∑
1

∫
ω

fdµn

for each open Baire set ω in T .

Proof. The proof of Lemma 3.14 of [T] holds here for the complex case too. Only change is

that we have to use Corollary 18.5 of [P18] in place of Appendix I, T4 of [T]. The details are left

to the reader.

The following theorem improves the complex version of Theorem 3.13 of [T].

Theorem 27.11. Let u be a prolongable Radon operator on K(T ) with values in a Banach

space X and let H be a norm determining set in X∗. Suppose H has the Orlicz property. Let

ũ be the operator obtained from u on providing X with the topology σ(X, H). Then a complex
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function f on T is u-integrable if and only if f is ũ-integrable (i.e., f is ux∗-integrable for each

x∗ ∈ H) and for each open Baire set ω in T , the integral
∫
ω fdũ belongs to X.

Proof. The proof of Theorem 3.13 of [T] holds here verbatim excepting that we have to apply

Corollary 18.5 of [P18] instead of Appendix I T4 of [T]. The details are left to the reader.

The following theorem improves the complex version of Theorem 3.20 of [T].

Theorem 27.12. Let u be a Radon operator on K(T ) with values in a complete lcHs X.

Let H be a subset of X∗ with the Orlicz property and let the topology τ of X be the same as

the topology of uniform convergence in the equicontinuous subsets of H. Let ũ be the operator

obtained from u on providing X with the topology σ(X, H). Then a complex function f on T is

u-integrable if and only if f is ux∗-integrable for each x∗ ∈ H and for each open Baire set ω in

T ,
∫
ω dũ ∈ X (i.e., there exists xω ∈ X such that x∗(xω) =

∫
ω fd(x∗u) for x∗ ∈ H).

Proof. The proof of Theorem 3.20 holds here verbatim excepting that we have to use Theorem

26.19 in place of Theorem 2.7 bis of [T]. The details are left to the reader.

28. BAIRE VERSIONS OF PROPOSITION 4.8 AND THEOREM 4.9 OF [T]

Using the Baire version of the Diedonné-Grothendieck theorem we give a complex Baire ver-

sion of Proposition 4.8 and Theorem 4.9 of [T] including that of the remark on p. 128 of [T]. For

this we start with the following two lemmas.

Lemma 28.1. Let u be a prolongable operator on K(T ) with values in a Banach space X

and let f ∈ L1(u). Then the operator Ψ : C0(T ) → X given by

Ψ(ϕ) =
∫

ϕfdu for ϕ ∈ C0(T )

is weakly compact.

Proof. By the complex version of Theorem 1.22 of [T], ϕf ∈ L1(u) for ϕ ∈ C0(T ) and hence
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Ψ is well defined. Clearly, Ψ is linear and

|Ψ(ϕ) ≤ ||ϕ||T u•(f)

for ϕ ∈ C0(T ). Hence Ψ is continuous.

Since f ∈ L1(u), by the complex versions of Theorem 1.22 and Corollary 3.6 of [T], χωf ∈
L1(u) for each open Baire set ω in T and thus

xω =
∫

ω
fdu ∈ X. (28.1.1)

Then

x∗(xω) =
∫

ω
fd(x∗u) (28.1.2)

for each open Baire set ω in T .

Let F be the vector space spanned by the characteristic functions of open Baire sets in T

and let it be provided with the supremum norm. Then by (28.1.1), for each g ∈ F there exists

xg ∈ X such that

xg =
∫

gfdu (28.1.3)

so that

x∗(xg) =
∫

gfd(x∗u) (28.1.4)

for x∗ ∈ X∗.

Let Φ(g) = xg for g ∈ F . Then Φ : F → X is linear and

|Φ(g)| = |
∫

gfdu| ≤ ||g|||T u•(f).

Hence Φ is continuous. Therefore, Φ has a unique continuous linear extension Φ̂ on the closure

F̄ in the Banach space of all bounded complex functions on T with the supremum norm. Then

C0(T ) ⊂ F̄ by Claim 4 in the proof of Theorem 22.3 of [P19] and hence let Φ0 = Φ̂|C0(T ). Thus

Φ0 : C0(T ) → X is continuous and linear and hence by Theorem 1 of [P9] its representing measure

η is given by Φ∗∗0 |B(T ). Moreover, by the same theorem, (x∗ ◦ η) ∈ M(T ) for each x∗ ∈ X∗ and

x∗Φ0(ϕ) =
∫

ϕd(x∗ ◦ η) (28.1.5)
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for ϕ ∈ C0(T ) and for x∗ ∈ X∗.

Let ϕ ∈ C0(T ). Then there exists (gn)∞1 ⊂ F such that gn → ϕ uniformly in T so that

Φ0(ϕ) = limn Φ(gn). Then by (28.1.4) we have

x∗Φ0(ϕ) = lim
n

x∗Φ(gn) = lim
n

x∗(xgn) = lim
n

∫
fgnd(x∗u) (28.1.6)

for x∗ ∈ X∗. Since f ∈ L1(u), f ∈ L1(x∗u) for x∗ ∈ X∗ and hence
∫
T |f |d|x

∗u| < ∞ for each

x∗ ∈ X∗. Moreover, by the complex version of Theorem 1.22 of [T], fϕ ∈ L1(u) and hence

fϕ ∈ L1(x∗u) for x∗ ∈ X∗. Since f ∈ L1(u), f ∈ L1(x∗u) for x∗ ∈ X∗ and hence∫
|f |d|x∗u| < ∞. (28.1.7)

Consequently, by (28.1.7) we have

|
∫

fϕd(x∗u)−
∫

fgnd(x∗u)| ≤ |ϕ− gn||T
∫
|f |d|x∗u| → 0

as n →∞ and therefore ∫
fϕd(x∗u) = lim

n

∫
fgnd(x∗u) (28.1.8)

for x∗ ∈ X∗. Then by (28.1.6) and (28.1.8) we have

x∗Φ0(ϕ) =
∫

fϕd(x∗u) for x∗ ∈ X∗. (28.1.9)

Let ω be an open Baire set in T . Then by Theorem 55.A of [H] there exists (ϕn)∞1 ⊂ C0(T )

such that ϕn ↘ χω. Consequently, by LDCT, by (28.1.2), by (28.1.5) and by (28.1.9) we have

(x∗ ◦ η)(ω) =
∫

χωd(x∗ ◦ η) = lim
n

∫
ϕnd(x∗ ◦ η)

= lim
n

x∗Φ0(ϕn) = lim
n

∫
fϕnd(x∗u)

=
∫

χωfd(x∗u) = x∗(xω).

Thus

(x∗ ◦ η)(ω) = x∗(xω) for x∗ ∈ X∗

and for each open Baire set ω in T . Thus η(ω) = xω and hence by Theorem 3(vii) of [P9], Φ0 is

weakly compact.
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On the other hand, by (28.1.9) and by the definition of Ψ (see the statement of Lemma 28.1))

we have

x∗Ψ(ϕ) =
∫

fϕd(x∗u) = x∗Φ0(ϕ)

for ϕ ∈ C0(T ) and for x∗ ∈ X∗. Then by the Hahn-Banach theorem, Ψ = Φ0 and hence Ψ is

weakly compact.

Lemma 28.2. Let u, f,X and Ψ be as in Lemma 28.1 and let MΨ = {A ⊂ T : χA ∈ L1(Ψ)}.
Then:

(i) MΨ is a σ-algebra in T .

(ii) B(T ) ⊂ MΨ.

(iii) If µΨ(A) =
∫
A dΨ, then µΨ(ω) =

∫
ω fdu for each open Baire set ω in T .

(iv) If λ(A) =
∫
A fdu for A ∈ B(T ), then λ is σ-additive on B(T ) and for each x∗ ∈ X∗, x∗λ(·)

is Borel regular.

(v) µΨ(A) = λ(A) for A ∈ B(T ) and consequently, λ is Borel regular.

(vi) For a bounded complex Borel function g on T∫
gdΨ =

∫
gfdu. (28.2.1)

Proof. Since Ψ is weakly compact by Lemma 28.1, (i) and (ii) hold by Theorem 29.4 (see the

next section).

(iii) For ϕ ∈ C0(T ), Ψ(ϕ) =
∫

fϕdu and hence

x∗Ψ(ϕ) =
∫

ϕfd(x∗u) (28.2.1)

for x∗ ∈ X∗. Then by Theorem 55.A of [H] there exists (ϕn)∞1 ⊂ C0(T ) such that ϕn ↘ χω.

Then by Theorem 4.7 (LDCT) of [T] we have

Ψ(ω) =
∫

χωdΨ = lim
n

∫
ϕndΨ (28.2.2)

and hence by (28.2.1) and (28.2.2) and by LDCT for complex measures we have

x∗Ψ(ω) = lim
n

∫
ϕnd(x∗Ψ) = lim

n
(x∗Ψ)(ϕn) = lim

n

∫
ϕnfd(x∗u) =

∫
χωfd(x∗u)
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for x∗ ∈ X∗. Therefore

(x∗Ψ)(ω) =
∫

ω
fd(x∗u) for x∗ ∈ X∗.

Since f ∈ L1(u), we have ∫
ω

fd(x∗u) = x∗(
∫

ω
fdu)

and hence

(x∗Ψ)(ω) = x∗(
∫

ω
fdu) for x∗ ∈ X∗.

Then by the Hahn-Banach theorem and by the definition of µΨ we have

µΨ(ω) =
∫

ω
fdu

for open Baire sets ω in T . Hence (iii) holds.

(iv) As u is prolongable, by the complex version of Corollary 3.6 of [T] χA is u-measurable

for each A ∈ B(T ). As |χAf | ≤ |f | for A ∈ B(T ) and as f ∈ L1(u), by the complex version of

Theorem 1.22 of [T], χAf is u-integrable for each A ∈ B(T ). Let (An)∞1 be a disjoint sequence of

Borel sets in T with A =
⋃∞

1 An. Then
∑n

k=1 χAk
↗ χA and hence (

∑n
1 χAk

)|f | ≤ χA|f | ∈ L1(u)

and (
∑n

1 χAk
)f → χAf in T . Hence by the complex version of Theorem 4.7 of [T]

∞∑
1

∫
χAkfdu =

∞∑
k=1

∫
Ak

fdu =
∫

A
fdu

and hence λ(·) is σ-additive on B(T ). Moreover,

x∗λ(·) =
∫

(·)
fd(x∗u)

is Borel regular on B(T ) by Theorem 23.6 of [P19] (see the beginning of the proof of Theorem

23.6 of [P19]) and hence (iv) holds.

(v) By (iii), λ(ω) = µΨ(ω) for open Baire sets ω in T and hence by the Baire regularity of

λ|B0(T ) and µΨ|B0(T ) we conclude that λ(A) = µΨ(A) for A ∈ B0(T ). For x∗ ∈ X∗, x∗λ(·) =∫
(·) fd(x∗u) is Borel regular and σ-additive on B(T ) by Theorem 23.6 of [P19]. Since µΨ is Borel

regular and σ-additive on B(T ) by Theorem 29.4 (see Section 29), x∗µΨ is Borel regular and

σ-additive on B(T ), and hence by the uniqueness part of Proposition 1 of [DP1],

x∗λ(A) = x∗µΨ(A)
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for A ∈ B(T ) and for x∗ ∈ X∗. Hence by the Hahn-Banach theorem, λ(A) = µΨ(A) for A ∈ B(T ).

Consequently, λ is Borel regular on B(T ).

(vi) By (iv) and (v) ∫
sdµΨ =

∫
sfdu (28.2.3)

for a Borel simple function s. Given a bounded complex Borel function g, there exists (sn)∞1 of

Borel simple functions such that sn → g uniformly in T . Then by the complex version of 1.10 of

[T] we have

|
∫

snfdu−
∫

gfdu| ≤ ||sn − g||T u•(f) → 0 (28.2.4)

as n →∞. Since |
∫

gdΨ−
∫

sndΨ| = |
∫

(g − sn)dΨ| ≤ ||g − sn||T Ψ•(T ) → 0, by (iv) and (v) we

have
∫

gdΨ = limn

∫
sndΨ = limn

∫
sndµΨ = limn

∫
fsndu =

∫
fgdu by (28.2.3) and (28.2.4).

Hence (vi) holds.

Theorem 28.3. Let u be a prolongable Radon operator on K(T ) with values in a Banach

space (resp. a quasicomplete lcHs) X. Let (fn)∞1 be a sequence of u-integrable complex functions

converging u-a.e. to a function f in T . If the sequence
∫
ω fndu converges in τ (the topology of

X) (respectively, converges weakly) in X for all open Baire sets ω in T , then the function f is

u-integrable and
∫
ω fndu converges in τ (resp. weakly) to

∫
ω fdu ∈ X for each open Baire set ω

in T . Moreover, for each bounded complex Borel function g on T ,∫
fngdu →

∫
fgdu in τ in X

(resp. ∫
fngdu →

∫
fgdu weakly in X.)

Proof. Let ω be an open Baire set in T . By hypothesis, there exists a vector xω ∈ X such

that

lim
n

∫
ω

fndu = xω in τ (28.3.1)

(resp.

lim
n

∫
ω

fndu = xω weakly. (28.3.1′))
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In both the cases, by 1.34 of [T]

lim
n

∫
ω

fndux∗ = x∗(xω) (28.3.2)

for x∗ ∈ X∗. On the other hand, by hypothesis and by Theorem 23.6 of [P19] we have

lim
n

∫
ω

fndux∗ =
∫

ω
fdux∗ (28.3.3)

for x∗ ∈ X∗, since ux∗ = x∗u ∈ K(T )∗. Then by (28.3.2) and (28.3.3) we have

x∗(xω) =
∫

ω
fdux∗ (28.3.4)

for each open Baire set ω in T and for each x∗ ∈ X∗. Consequently, by the hypothesis that

fn → f u-a.e. in T so that fn → f ux∗-a.e. in T for x∗ ∈ X∗ and by Theorem 23.6 of [P19] we

have

f ∈ L1(x∗u) (28.3.5)

for x∗ ∈ X∗. Then by (28.3.4) and (28.3.5) and by Theorem 27.9, f is u-integrable in both the

cases of X.

Then for an open Baire set ω in T , by (28.3.4) we have

x∗(
∫

ω
fdu) =

∫
ω

fd(x∗u) =
∫

ω
fdux∗ = x∗(xω)

for each x∗ ∈ X∗. Since
∫
ω fdu ∈ X, by the Hahn-Banach theorem we have∫

ω
fdu = xω

and hence by (28.3.1) (resp. by (28.3.1’))∫
ω

fndu →
∫

ω
fdu in τ (28.3.6)

(resp. ∫
ω

fndu →
∫

ω
fdu weakly.)

Let x∗ ∈ X∗, X a quasicomplete lcHs and g be a bounded u-measurable complex function.

Then g is an x∗u-measurable function. Clearly, θ = x∗u ∈ K(T )∗ and hence by Theorem 23.6 of

[P19] we have

lim
n

∫
gfnd(x∗u) =

∫
gfd(x∗u). (28.3.7)
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On the other hand, by the complex version of Theorem 1.22 of [T], gfn and gf belong to L1(u)

and hence by (28.3.7) we have

lim
n

(x∗
∫

gfndu) = lim
n

∫
gfnd(x∗u) =

∫
gfd(x∗u) = x∗(

∫
gfdu)

for each x∗ ∈ X∗. Hence ∫
gfndu →

∫
gfdu weakly.

To prove the result for the convergence in τ , let Ψn : C0(T ) → X be given by Ψn(ϕ) =
∫

ϕfndu

for ϕ ∈ C0(T ) and let Ψ : C0(T ) → X be given by Ψ(ϕ) =
∫

ϕfdu for ϕ ∈ C0(T ). Then by

Lemma 28.1, Ψn and Ψ are weakly compact. By hypothesis, by Lemma 28.2(iii) and by (28.3.6)we

have ∫
ω

dΨn =
∫

ω
fndu →

∫
ω

fdu =
∫

ω
dΨ in τ. (28.3.8)

Case 1. X is a Banach space

By (28.3.8), by Theorem 26.15 and by Lemma 28.2

lim
n

∫
gdΨn = lim

n

∫
gfndu →

∫
gdΨ =

∫
fgdu

in τ for each bounded complex Borel function g on T .

Case 2. X is a quasicomplete lcHs

For each q ∈ Γ, by Lemma 28.1 and by the continuity of Πq, Πq ◦Ψ and Πq ◦Ψn are weakly

compact. By hypothesis and by the first part of the theorem,
∫
ω fn →

∫
ω fdu in τ for each open

Baire set in T . Then by Lemma 28.2,

Πq(
∫

ω
dΨn) = Πq(

∫
ω

fndu) =
∫

ω
fnd(Πq ◦ u) →

∫
ω

fd(Πq ◦ u) in X̃q.

Hence by the case of Banach spaces, we have

lim
n

∫
gd(Πq ◦Ψn) = lim

n

∫
gfnd(Πq ◦ u) →

∫
gfd(Πq ◦ u) =

∫
gd(Πq ◦Ψ).

Hence

q(
∫

gfndu−
∫

gfdu) = |
∫

gd(Πq ◦Ψn)−
∫

gd(Πq ◦Ψ)|q = |
∫

gdΨn −
∫

gdΨ|q → 0
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for each q ∈ Γ and hence ∫
gfndu →

∫
gfdu in τ.

This completes the proof of the theorem.

Theorem 28.4. Let X be a Banach space with topology τ . Let u be a prolongable Radon

operator on K(T ) with values in X. Let (fn)∞1 be a sequence of u-integrable complex functions

and suppose the sequence (
∫
ω fndu)∞1 converges in τ (resp. converges weakly) in X for each

open Baire set ω in T . Then there exists a function f ∈ L1(u), u-essentially unique, such that∫
ω fndu →

∫
ω fdu in τ (resp. weakly)for each open Baire set ω in T . Moreover, when (

∫
ω fndu)

converges in τ for each open Baire set ω in T , then for each bounded complex Borel function g,∫
fngdu →

∫
fgdu in τ

as well as ∫
fngdu →

∫
fgdu weakly)

in X.

Proof. Let x∗ ∈ X∗. By hypothesis, in both the cases of convergence,
∫
ω fnd(x∗u) converges

in KI for each open Baire set ω in T . Hence by the Baire version of the Dieudonné-Grothendieck

theorem (i.e., Theorem 18.6 of [P18]),

the sequence (fn) converges weakly in L1(ux∗) (28.4.1)

for each x∗ ∈ X∗.

Then by the complex version of Lemma 1 on p. 126 of [T] one can suppose that the fn are

null in the complement of
⋃∞

1 Kp, where (Kp)∞1 ⊂ C. By the complex version of Lemma 2 on

pp. 126-127 of [T], with the sequence (Kp)∞1 we can associate a sequence (x∗i )
∞
1 ⊂ X∗ with the

property mentioned in the lemma. Then by the complex version of Lemma 3 on p. 127 of [T],

there exists a sequence of barycenters gn of the fn given by

gn =
N(n)∑
i=n

α
(n)
i fi, α

(n)
i ≥ 0, and

N(n)∑
i=n

α
(n)
i = 1 (28.4.2)
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such that (gn) converges in mean in L1(x∗i u) and converges (x∗i u)-a.e. in T for each i ∈ NI. Thus,

for each i ∈ NI, there exists Ni ⊂ T such that |x∗i u|•(Ni) = 0 and (gn(t))∞1 is convergent in T\Ni.

(Compare with the proof of Theorem 23.12 of [P19].) Thus, if N =
⋂∞

1 Ni, then (gn(t))∞1 is

convergent in T\N =
⋃∞

1 (T\Ni) and |x∗i u|•(N) = 0 for i ∈ NI. Therefore, by the complex version

of Lemma 2 on pp. 126-127 of [T], gn converges u-a.e. in T . Let f be the u-a.e. limit of the

sequence (gn). As (fn) converges weakly in L1(ux∗) for each x∗ ∈ X∗ by (28.4.1) and as (gn) is

given by (28.4.2), it follows that (gn) also converges weakly in L1(ux∗) for each x∗ ∈ X∗. Then

by Theorem 23.6 of [P19] (taking θ = x∗u ∈ K(T )∗), f ∈ L1(ux∗) for each x∗ ∈ X∗ and

lim
n

∫
gfndux∗ =

∫
gfdux∗ (28.4.3)

for x∗ ∈ X∗ and for a bounded complex Borel function g on T . Thus f is weakly u-integrable

and by (28.4.3) we have

lim
n

∫
ω

fnd(x∗u) =
∫

ω
fd(x∗u) (28.4.4)

for each open Baire set ω in T and for x∗ ∈ X∗. But by hypothesis, in both the cases of

convergence, there exists xω ∈ X such that

lim
n

∫
ω

fnd(x∗u) = x∗(xω) (28.4.5)

for each x∗ ∈ X∗. Thus by (28.4.4) and (28.4.5) we have∫
ω

fd(x∗u) = x∗(xω) (28.4.6)

for x∗ ∈ X∗. Then by Theorem 27.9, f ∈ L1(u) and by (28.4.6) we have

x∗(
∫

ω
fdu) =

∫
ω

fd(x∗u) = x∗(xω) (28.4.7)

for x∗ ∈ X∗. Then by (28.4.5) and (28.4.7),
∫
ω fndu →

∫
ω fdu weakly.

If
∫
ω fndu converges to xω in τ , then

∫
ω fdu = xω by (28.4.7) and by the Hahn-Banach

theorem and hence ∫
ω

fndu →
∫

ω
fdu in τ.

Suppose there exists h ∈ L1(u) such that∫
ω

fndu →
∫

ω
hdu
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in τ (resp. weakly). Then ∫
ω

fndux∗ →
∫

ω
hdux∗

and hence by Theorem 23.6 of [P19], f = h ux∗-a.e. in T for each x∗ ∈ X∗. Then by the complex

version of Proposition 3.7 of [T], f = h u-a.e. in T and hence f is u-essentially unique.

Let Ψn : C0(T ) → X be given by

Ψn(ϕ) =
∫

ϕfndu, ϕ ∈ C0(T ).

Then by Lemma 28.1, Ψn is weakly compact for each n and by hypothesis and by Lemma 28.2(iii),

limn

∫
ω dΨn ∈ X in τ for each open Baire set ω in T . Then by Theorem 26.15 and by Lemma

28.2 there exists a bounded weakly compact operator Ψ on K(T ) with values in X such that

lim
n

∫
gdΨn = lim

n

∫
gfndu =

∫
gdΨ (28.4.8)

in τ for each bounded complex Borel function g on T . Then by the fact that f ∈ L1(u) and g is

bounded, gf ∈ L1(u). Moreover, by (28.4.3) and (28.4.8) we have

lim
n

x∗
∫

gfndu = lim
n

∫
gfndux∗ =

∫
gfdux∗ = x∗(

∫
gfdu) = x∗(

∫
gdΨ)

for x∗ ∈ X∗. Consequently, by the Hahn-Banach theorem∫
gdΨ =

∫
gfdu

and hence by (28.4.8) we have

lim
n

∫
gfndu =

∫
gfdu in τ

for each bounded complex Borel function g. Since gfn and gf are u-integrable, (28.4.3) implies

lim
n

x∗(
∫

gfndu) = lim
n

∫
gfdux∗ =

∫
fgdux∗ = x∗(

∫
gfdu)

and hence ∫
fngdu →

∫
fgdu weakly .

This completes the proof of the theorem.
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29. WEAKLY COMPACT AND PROLONGABLE RADON VECTOR

MEASURES

If u is a bounded Radon operator with values in a quasicomplete lcHs, we define Mu = {A ⊂
T : χA ∈ L1(u)} and µu(A) =

∫
A du for A ∈ Mu. When u is a bounded weakly compact

Radon operator, we show that Mu is a σ-algebra containing B(T ) and µu = mu, where mu is

the representing measure of u in the sense of 18.10 of [P18], which is the Lebesgue completion of

mu|B(T ). In Theorem 29.7 (resp. Theorem 29.8) we give several characterizations of a bounded

weakly compact Radon (resp. a prolongable Radon) operator u. Theorems 29.9 and 29.11 study

the regularity properties of µu when u is a bounded weakly compact or a prolongable Radon

operator, respectively. Then we study the outer measure µ∗u of µu in the sense of [Si] and give

the connection between Mu and µ∗u-measurable sets in Theorem 29.20, where we also show that

Mu = Mµ∗
u

and µ∗u(E) = µu(E) for E ∈ Mu. We introduce the concepts of Lebesgue-Radon

completion and localized Lebesgue-Radon completion and in terms of them we generalize Theo-

rems 4.4 and 4.6 of [P4].

Definition 29.1. Let X be a quasicomplete lcHs and u : K(T ) → X be a Radon operator.

Let Mu = {A ⊂ T : χA ∈ L1(u)} and let µu(A) =
∫
A du for A ∈ Mu. Then µu is called the

Radon vector measure induced by u and Mu is called the domain of µu. µu is called a weakly

compact (resp. prolongable) Radon vector measure if u is a bounded weakly compact (resp. a

prolongable) Radon operator on K(T ).

Theorem 29.2. Let X, u, Mu and µu be as in Definition 29.1. Then Mu is a ring of u-

measurable sets and µu is σ-additive on Mu.

Proof. Since 0 ∈ L1(u), ∅ ∈ Mu. Let q ∈ Γ. For A1, A2 ∈ Mu and K ∈ C, by the

complex version of Proposition 1.21 of [T], and by Theorem 25.14 there exist disjoint sequences

(Ki,n)∞n=1 ⊂ C, i = 1, 2 and sets N1 and N2 with u•q(N1 ∪N2) = 0 such that

K =
∞⋃

n=1

Ki,n ∪Ni

with Ki,n ⊂ K ∩Ai or Ki,n ⊂ K\Ai, i = 1, 2.
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Let Ji = {n : Ki,n ⊂ K ∩Ai} and Ii = {n : Ki,n ⊂ K\Ai}, i = 1, 2. Then

K ∩ (A1\A2) = (
⋃

n∈J1

K1,n ∪ F1)
⋂

(
⋃

n∈I2

K2,n ∪ F2)

and

K\(A1\A2) = (
⋃

n∈I1

K1,n ∪ F3)
⋃

(
⋃

n∈J2

K2,n ∪ F4)

with u•q(Fi) = 0, i = 1, 2, 3, 4. Consequently, A1\A2 is uq-measurable. As χA1\A2
≤ χA1 ∈ L1(u),

by the complex version of Theorem 1.22 of [T] A1\A2 ∈ Mu. Since χA1∪A2 = χA2 + χA1\A2
,

A1 ∪A2 ∈ Mu. Hence Mu is a ring of u-measurable sets.

For x∗ ∈ X∗, x∗u ∈ K(T )∗ and hence by the complex version of Proposition 1.30 of [T],

L1(u) ⊂ L1(x∗u). Then µx∗u is the complex Radon measure induced by x∗u in the sense of

Definition 4.3 of [P3]. Thus

µx∗u(A) = (x∗u)(χA) = x∗µu(A) (29.2.1)

for A ∈ Mu. Let (Ai)∞1 be a disjoint sequence in Mu with A =
⋃∞

1 Ai ∈ Mu. Then by (29.2.1)

we have

x∗µu(A) = µx∗u(A) =
∞∑
1

µx∗u(Ai) =
∞∑
1

x∗µu(Ai)

for each x∗ ∈ X∗, since µx∗u is σ-additive on Mx∗u and since Mu ⊂ Mx∗u. Now by the Orlicz-

Pettis theorem which holds for lcHs by McArthur [McA] we conclude that

µu(A) =
∞∑
1

µu(Ai)

and hence µu is σ-additive on Mu.

Remark 29.3. It is possible that Mu = {∅}. For example, let u be the identity operator

on C0([0, 1)). Then by Example 26.6, C0([0, 1)) = L1(u) and clearly, 0 is the only idempotent

function in C0([0, 1)).

Theorem 29.4. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded weakly

compact Radon operator. Then the following statements hold:
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(i) Mu is a σ-algebra in T .

(ii) B(T ) ⊂ Mu.

(iii) If mu is the representing measure of the continuous extension of u on C0(T ), then µu|B(T ) =

mu and hence µu|B(T ) is B(T )-regular.

(iv) For each A ∈ Mu,

µu(A) = lim
K∈C

µu(A ∩K)

where C is directed by the relation K1 ≤ K2 if K1 ⊂ K2, K1,K2 ∈ C.

Proof. Let q ∈ Γ. Then U0
q = {x∗ ∈ X∗ : |x∗(x)| ≤ 1 for x ∈ Uq} is equicontinuous in X∗. As

u is a weakly compact operator on C0(T ) (see Convention 26.4), by Corollary 9.3.2 of Edwards

[E] and by 18.10 of [P18], u∗(U0
q ) = {u∗x∗ : x∗ ∈ U0

q } = {x∗ ◦ u : x∗ ∈ U0
q } is relatively weakly

compact in M(T ). Let ε > 0. Then by Theorem 4.22.1 of [E] there exists a compact set Kq in T

such that

sup
x∗∈U0

q

|x∗ ◦ u|(T\Kq) < ε (29.4.1)

and by Proposition 1 of [P9], given an open set U in T there exists a compact Cq ⊂ U such that

sup
x∗∈U0

q

|x∗ ◦ u|(U\Cq) < ε. (29.4.2)

(i) By Theorem 29.2, Mu is a ring of u-measurable sets. By (29.4.1) and by Lemma 26.17,

u•q(T\Kq) < ε. By Theorem 50.D of [H] there exists ϕq ∈ K(T ) such that χKq ≤ ϕq ≤ χT so

that u•q(1 − ϕq) ≤ u•q(T\Kq) < ε. As q is arbitrary in Γ, this shows that 1 ∈ L1(u) and hence

T ∈ Mu.

Let (An)∞1 be a disjoint sequence in Mu with A =
⋃∞

1 An. Then
∑n

k=1 χAk
↗ χA ≤ χT ∈

L1(u). Since
∑n

1 χAk
= χSn

1 Ak
∈ L1(u), by the complex version of Theorem 4.7 of [T], χA ∈ L1(u)

and hence A ∈ Mu. Therefore, (i) holds.

(ii) Let U be an open set in T . Then by Lemma 26.17 and by (29.4.2) there exists a compact

Cq in T such that Cq ⊂ U and u•q(U\Cq) < ε. By Urysohn’s lemma there exists ϕq ∈ K(T ) such
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that χCq ≤ ϕq ≤ χU and hence u•q(χU − ϕq) ≤ u•q(U\Cq) < ε. Therefore, U ∈ Mu. As Mu is a

σ-algebra, we conclude that B(T ) ⊂ Mu.

(iii) By 18.10 of [P18], x∗u = u∗x∗ = x∗ ◦mu for x∗ ∈ X∗. Given an open set U in T and an

ε > 0, as in the beginning of the proof choose a compact Kq ⊂ U for which (29.4.2) holds. Then

by Urysohn’s lemma there exists ϕq ∈ K(T ) such that χKq ≤ ϕq ≤ χU so that by (29.4.2) we

have

u•q(χU − ϕq) ≤ u•q(U\Kq) < ε. (29.4.3)

Then

|mu(U)−
∫

T
ϕqdmu|q = sup

x∗∈U0
q

|(x∗(mu(U)−
∫

T
ϕqdmu)|

= sup
x∗∈U0

q

|
∫

T
χUd(x∗u)−

∫
T

ϕqdx∗mu)|

= sup
x∗∈U0

q

|
∫

T
χUd(x∗u)−

∫
T

ϕqd(x∗u)|

= sup
x∗∈U0

q

∫
T
|χU − ϕq|dv(x∗u) (29.4.4)

≤ sup
x∗∈U0

q

|x∗u|(U\Kq)

= u•q(U\Kq) < ε

by Lemma 26.17 and (29.4.3). Consequently, by 18.10 of [P18] we have

|mu(U)− u(ϕq)|q = sup
x∗∈U0

q

|x∗(mu(U)−
∫

T
ϕqdmu)| < ε (29.4.5)

since ϕq is mu-integrable in T . On the other hand,

|µu(U)− u(ϕq)|q = |
∫

χUdu− u(ϕq)|q

= sup
x∗∈U0

q

|
∫

T
χUd(x∗u)− x∗u(ϕq)|

≤ sup
x∗∈U0

q

|
∫

T
|χU − ϕq|dv(x∗u) (29.4.6)

≤ u•q(U\Kq) < ε

by (29.4.4).
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Therefore, by (29.4.5) and (29.4.6) we have

|mu(U)− µu(U)|q < 2ε.

Since ε is arbitrary,

|mu(U)− µu(U)|q = 0.

Now, as q is arbitrary in Γ, mu(U) = µu(U).

If U1, U2 are open sets with U1 ⊂ U2, then

mu(U2\U1) = mu(U2)−mu(U1) = µu(U2)− µu(U1) = µu(U2\U1)

and consequently, µu(E) = mu(E) for E in the ring generated by U , the family of open sets in T .

Let M = {A ∈ B(T ) : µu(A) = mu(A)}. If (En)∞1 is a monotone sequence in M, by the

σ-additivity of µu on B(T ) by Theorem 29.2 and by (ii) above and by the σ-additivity of mu on

B(T ) by Theorem 2 of [P9] as u is weakly compact, we have µu(limn En) = mu(limn En) and

hence M is a monotone class. Then by Theorem 6.B of [H], µ = mu on B(T ). Consequently, by

Theorem 6 of [P9], µu|B(T ) is Borel regular. Hence (iii) holds.

(iv) By (ii), C ⊂ Mu and hence A ∩K ∈ Mu for A ∈ Mu and K ∈ C. Given q ∈ Γ, by the

lcHs complex version of Lemma 1.24 of [T] we have

lim
K∈C

u•q(χA\K) = lim
K∈C

u•q(A\(A ∩K)) = 0.

As q is arbitrary in Γ, this shows that χA∩K → χA in the topology of L1(u) and consequently,∫
χAdu = lim

K∈C

∫
χA∩Kdu.

i.e.,µu(A) = lim
K∈C

µu(A ∩K).

This complete the proof of the theorem.

Definition 29.5. Let X be a quasicomplete lcHs and let u : C0(T ) → X be a continuous

linear mapping. As in 18.10 of [P18], let mu = u∗∗|B(T ), the representing measure of u and
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let m̃u be the Lebesgue-completion of mu with respect to B(T ) and let B̃(T ) be the Lebesgue

completion of B(T ) with respect to mu. In the light of Theorem III.10.17 of [DS], we define

mu(A ∪ N) = mu(A) where A ∈ B(T ) and N ⊂ M ∈ B(T ) with v(mu,B(T ))(M) = 0.(See

Definition III.10.18 of [DS]). Thus we use the symbol mu to denote its Lebesgue completion on

B̃(T ) also.

Theorem 29.6. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded weakly

compact Radon operator and let q ∈ Γ. By Convention 26.4, u : C0(T ) → X is continuous and

let mu be the representing measure of u with m̃u whose Lebesgue completion with respect to

B(T ) is denoted by mu also. By Theorem 6 of [P9], mu|B(T ) is Borel regular. Then:

(i) For M ∈ B(T ), u•q(M) = ||mu||q(M). (Recall uq = Πq ◦ u from Lemma 26.17.)

(ii) For A ∈ B̃(T ), the Lebesgue completion of B(T ) with respect to mu, suppose there exists

M ∈ B(T ) such that A ⊂ M and v(Πq ◦mu,B(T ))(M) = 0. Then u•q(A) = ||mu||q(A) = 0.

(iii) A set A in T is u-integrable if and only if it is mu-integrable and hence B̃(T ) = Mu.

Consequently, for A ∈ Mu, µu(A) = mu(A). (See Definition 29.5.)

(iv) A function f : T → KI is u-measurable if and only if it is mu-measurable.

Proof. (i) Since B(T ) ⊂ Mu by Theorem 29.4(ii), the set M is u-measurable and u-integrable.

Then by the complex version of Theorem 1.11 of [T], M is Πq ◦ u- integrable and hence χM ∈
L1(uq). Let Ψx∗(x + q−1(0)) = x∗(x) for x ∈ X and x∗ ∈ U0

q . Then Ψx∗ is well defined, linear

and continuous and {Ψx∗ : x∗ ∈ U0
q } is a norm determining subset of the closed unit ball of (Xq)∗

by Proposition 10.14 of [P17]. Consequently, by the complex version of 1.13 of [T], by 18.10 of

[P18] and by Lemma 25.11 we have

u•q(M) = u•q(χM ) = sup
x∗∈U0

q

|x∗u|•(χM )

= sup
x∗∈U0

q

|u∗x∗|(χM )

= sup
x∗∈U0

q

|(x∗ ◦mu)|(M)

= ||mu||q(M).

Hence (i) holds.
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(ii) By (i), u•q(M) = 0 implies ||mu||q(M) = 0. As A ⊂ M , u•q(A) ≤ u•q(M) = 0 and

||mu||q(A) ≤ ||mu||q(M) = 0. Hence (ii) holds.

(iii) Suppose A ⊂ T is u-integrable. Then it is u-measurable and hence by the analogue

of Theorem 21.9 of [P19], given a compact K in T and q ∈ Γ, there exists a disjoint sequence

(K(q)
n )∞1 of compacts and a set N contained in K such that K\N =

⋃∞
1 K

(q)
n , u•q(N) = 0 and

K
(q)
n ⊂ K ∩ A or K

(q)
n ⊂ K\A for each n. Then N = K\(K\N) = K\

⋃∞
1 K

(q)
n ∈ B(T ). Conse-

quently, by (i) we have ||mu||q(N) = 0. Then by Theorem 21.9 of [P19] and by the arbitrariness

of q ∈ Γ we conclude that A is Lusin mu-measurble. Consequently, by Theorem 21.5 of [P19], A

is mu-measurable. Since 1 ∈ L1(mu) by Theorem 19.14(b) of [P18], by the domination principle

χA is mu-integrable.

Conversely, let χA be mu-integrable. Then A is mu-measurable. Therefore, by Theorem 21.9

of [P19], given a compact K and q ∈ Γ, there exist a disjoint sequence (K(q)
n )∞1 of compacts and a

set N ⊂ K such that K\N =
⋃∞

1 K
(q)
n with K

(q)
i ⊂ A or K

(q)
i ⊂ (K\A) and with ||mu||q(N) = 0.

Then N ∈ B(T ) and by (i), u•q(N) = 0. Since q is arbitrary in Γ, by the analogue of Theorem 21.9

of [P19], A is u-measurable. Since 1 ∈ L1(u) by Theorem 29.4(i), by the domination principle

χA is u-integrable and hence A ∈ Mu. Consequently, Mu = B̃(T ).

For A ∈ Mu = B̃(T ), µu(A) =
∫

χAdu and hence by 18.10 of [P18] we have

x∗µu(A) =
∫

A
d(x∗u) =

∫
A

d(u∗x∗) =
∫

A
d(x∗ ◦mu) = x∗mu(A)

for x∗ ∈ X∗. As mu(A) and µu(A) belong to X, by the Hahn-Banach theorem µu(A) = mu(A)

for A ∈ Mu. Thus (iii) holds.

(iv) If f is u-measurable, given a compact K and q ∈ Γ, there exist a disjoint sequence

(K(q)
i )∞1 ⊂ C and a set N with u•q(N) = 0 such that K\N =

⋃∞
1 K

(q)
i and with f |

K
(q)
i

continuous

for each i. Since N ∈ B(T ), by (i), ||mu||q(N) = u•q(N) = 0 and hence by Theorem 21.4 of [P19],

f is Lusin mu- measurable. Then by Theorem 21.5 of [P19], f is mu-measurable. Conversely, if f

is mu measurable, then by Theorem 21.5 of [P19], f is Lusin mu-measurable and hence reversing

the argument and using (i), one can easily show that f is u-measurable.

This completes the proof of the theorem.
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The following theorem generalizes Theorem 3.3 of [P4] to bounded weakly compact Radon

operators on K(T ) and improves the first part of Theorem 9.13 of [P13]. Moreover, Theorem 9.13

of [P13] was announced earlier in [P6].

Theorem 29.7. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded Radon

operator. Let Mu and mu be given as in Definitions 29.1 and 29.5 respectively. Then the following

statements are equivalent:

(i) u is a bounded weakly compact Radon operator.

(ii) Mu is a σ-algebra in T and C0 ⊂ Mu.

(iii) B(T ) ⊂ Mu.

(iv) Bc(T ) ⊂ Mu.

(v) B0(T ) ⊂ Mu.

(vi) Every bounded u-measurable complex function f belongs to L1(mu).

(vii) Every bounded complex Borel function f belongs to L1(mu).

(viii) Every bounded complex σ-Borel function f belongs to Li(mu).

(ix) Every bounded complex Baire function f belongs to L1(mu).

(x) Every bounded u-measurable complex function f belongs to L1(u).

(xi) Every bounded complex Borel function f belongs to L1(u).

(xii) Every bounded complex σ-Borel function f belongs to L1(u).

(xiii) Every bounded complex Baire function f belongs to L1(u).

(xiv) For every open set U in T there exists a vector xU ∈ X such that the weak integral∫
U du = xU in the sense that

x∗(xU ) =
∫

U
d(x∗u)

for each x∗ ∈ X∗, where x∗u is treated as a complex Radon measure in T .

(xv) Similar to (xiv) except that the open set U is σ-Borel.
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(xvi) Similar to (xiv) except that the open set U is an open Baire set.

(xvii) Every bounded u-measurable complex function f belongs to L1(µu).

(xviii) Every bounded complex Borel function f belongs to L1(µu).

(xix) Every bounded complex σ-Borel function f belongs to L1(µu).

(xx) Every bounded complex Baire function f belongs to L1(µu).

Proof. By Theorem 29.4, (i)⇒(ii) and (i)⇒(iii)⇒(iv)⇒(v). Obviously, (ii)⇒(v).

(v)⇒(i) Since B0(T ) ⊂ Mu, every open Baire set U is u-integrable and hence there exists a

vector xU ∈ X such that
∫

χUdu = xU . Consequently, the weak integral
∫
U du belongs to X and

therefore, by (vi)⇒(vii) of Theorem 26.10, (i) holds.

Thus (i)⇔(ii)⇔(iii)⇔(iv)⇔(v).

(i)⇒(vi) By the hypothesis (i) and by Theorem 29.6, A ∈ Mu if and only if A mu-integrable

in T . If f is a bounded u-measurable complex function, then by Theorem 29.4(i) χT is u-

integrable and hence by the complex lcHs version of Theorem 1.22 of [T], f ∈ L1(u). Moreover,

by Theorem 29.6(iv) f is mu-measurable and hence, given q ∈ Γ, there exists a set N ∈ B(T )

with ||mu||q(N) = 0 and a sequence (sn)∞1 of B(T )-simple functions such that |sn| ≤ |f | and

sn → fχT\N uniformly in T . Then by the complex lcHs versions of Proposition 1.3 and of 1.10

of [T]

|
∫

sndu−
∫

fdu|q ≤ u•q(|sn − f |) ≤ ||f − sn||T u•q(1) → 0

as n →∞ since u•q(1) < ∞ by Proposition 26.3. Hence∫
fdu = lim

n

∫
sndu (29.7.1)

since q is arbitrary in Γ.

Since Mu is the set of all mu-measurable sets which are mu-integrable in T and as µu(A) =

mu(A) for A ∈ Mu by Theorem 29.6(iii), each sn is mu-integrable in T and as µ(A) = mu(A)

for A ∈ Mu by the said theorem, we have∫
sndu =

∫
T

sndmu. (29.7.2)
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Consequently, by (29.7.1), ∫
fdu = lim

n

∫
T

sndmu (29.7.3)

and hence by (29.7.1), (29.7.2) and (29.7.3) we have∫
T

fdmu = lim
n

∫
T

sndmu = lim
n

∫
sndu =

∫
fdu.

Thus every bounded u-measurable complex function f is u-integrable and mu-integrable in T

and ∫
fdu =

∫
T

fdmu. (29.7.4)

Hence (i)⇒(vi).

As shown in the above, (vi)⇒(x). Obviously, by the complex version of Corollary 2.18 of [T],

(x)⇒(xi)⇒(xii) ⇒(xiii). Clearly, (xi)⇒(xiv) (resp. (xii)⇒(xv), (xiii) ⇒(xvi)) and consequently,

(xiv) (resp. (xv), (xvi)) implies by Theorem 26.10 that u is a weakly compact Radon operator.

Clearly, (vi)⇒(vii)⇒(viii) ⇒(ix) and (ix) implies that
∫
U dmu = xU ∈ X for each open Baire set

U in T . Then by (29.7.4),
∫
U du =

∫
U dmu = xU for each open Baire set U in T and hence by

Theorem 26.10, (ix)⇒(i). Thus (i)⇔(vi)⇔(vii) ⇔(viii)⇔(ix).

By (29.7.4),
∫
U du =

∫
U dmu = xU ∈ X for each open Baire set U in T and hence by Theorem

26.10, (xiii)⇒(i). Hence (i)⇔(x)⇔(xi)⇔(xii)⇔(xiii).

(iii)⇒(xiv)⇒(xv)(obvious)⇒(xvi) obvious and (xvi)⇒(i) by Theorem 26.10. Hence (i)⇔(iii)⇔(xiv)⇔(xv)

⇔(xvi).

Since mu = µu on Mu, (xvii)⇔(vi); (xviii)⇔(vii); (xix)⇔(viii) and (xx)⇔(ix) and hence all

the statements are equivalent.

This complete the proof of the theorem.

The following theorem has been given without proof in Theorem 9.14 of [P13]. It was also

announced earlier in [P6].
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Theorem 29.8. Let X be a quasicomplete lcHs and let u : K(T ) → X be a Radon operator.

Then the following statements are equivalent:

(i) u is prolongable.

(ii) δ(C) ⊂ Mu.

(iii) δ(C0) ⊂ Mu.

(iv) Mu is a δ-ring containing all relatively compact open sets in T .

(v) Mu is a δ-ring containing C.

(vi) Mu is a δ-ring containing C0.

(vii) Every bounded complex Borel function with compact support belongs to L1(u).

(viii) For every compact K in T , there exists xK ∈ X such that µx∗u(K) = x∗(xK) for x∗ ∈ X∗,

where µx∗u is the complex Radon measure induced by x∗u in the sense of Definition 4.3 of

[P3].

(ix) Similar to (viii) for each relatively compact open set U instead of K.

(x) Similar to (viii) with K compact Gδ.

Proof. (i)⇒(ii) Suppose u is prolongable. Let V ∈ V. Then by (i), u : K(V ) → X is a

bounded weakly compact Radon operator and hence by Theorem 29.4, B(V ) ⊂ MuV where uV

is u|K(V ). Since V is arbitrary in V and since δ(C) =
⋃

V ∈V B(V ), by the complex analogue of

Lemma 3.2 of [T] (ii) holds.

(ii)⇒(iii) Obvious.

(i)⇒(iv) Let (An) be a decreasing sequence in Mu with An ↘ A. Since χAn → χA and

χA ≤ χAn for all n, by the complex lcHs analogue of Theorem 4.7 of [T] χA ∈ L1(u) and hence

A ∈ Mu. Since Mu is a ring of sets by Theorem 29.2, Mu is a δ-ring of sets. Since (i)⇒(ii),

V ⊂ Mu and hence (i)⇒(iv).

(iv)⇒(v) If C ∈ C, then by Theorem 50.D of [H] there exists V ∈ V such that C ⊂ V . Then

C = V \(V \C) ∈ Mu by (iv). Hence (iv)⇒(v).
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(v)⇒(vi) Obvious.

(vi)⇒(iii) Obvious.

(i)⇒(vii) Let f be a bounded complex Borel function with supp f = K ∈ C. Let U ∈ V with

K ⊂ U . By (i), u|K(U) is a bounded weakly compact Radon operator and hence by Theorem

29.7(xi), f is u|K(U)-integrable. Then given ε > 0 and q ∈ Γ there exists ϕ ∈ K(U) such that

(u|K(U))•q(|f −ϕ|) < ε. Now by the complex analogue of Lemma 3.2 of [T], ϕ̂ = ϕ and f̂ = f and

hence we have

u•q(|f − ϕ|) = u•q(|f̂ − ϕ̂|) = (uq|K(U))
•(|f − ϕ|) < ε.

Hence f is u-integrable and thus (vii) holds.

(vii)⇒(viii) Let K ∈ C. Then by (vii), χK ∈ L1(u) and hence
∫
K du = xK(say) ∈ X. Then

x∗(xK) = x∗(
∫
K du) =

∫
K d(x∗u) = µx∗u(K).

(vii)⇒(ix) Let U ∈ V. Then by (vii), χU ∈ L1(u) and hence
∫
U du = xU (say) ∈ X. Then

x∗(xU ) = x∗(
∫
U du) =

∫
U d(x∗u) = µx∗u(U).

(vii)⇒(x) The proof is similar to that of (vii)⇒(viii).

(viii)⇒(i) as (iv)⇔(i) of Theorem 19.13 of [P18] and as (x∗ ◦mu) = x∗u.

(ix)⇒(i) as (ii)⇔(i) of Theorem 19.13 of [P18] and as x∗ ◦mu = x∗u.

(x)⇒(i) as (ix)⇔(i) of Theorem 19.13 of [P18] and as x∗ ◦mu = x∗u.

(iii) ⇒(i) By (iii), every K ∈ C0 belongs to Mu and hence is u-integrable. Hence
∫
L du ∈ X.

But
∫
K du = µu(K) = mu(K), and hence mu(K) ∈ X. Then by the equivalence (7) and (1) of

Theorem 19.12 of [P18], u is prolongable and hence (i) holds.

Hence the statements (i)-(x) are equivalent and this completes the proof of the theorem.

Theorem 29.9. Let X be a quasicomplete lcHs and suppose u : K(T ) → X is a bounded
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weakly compact Radon operator. Then:

(i) µu is Mu-regular. That is, given A ∈ Mu and a neighborhood W of 0 in X, there exist

a compact C ⊂ A and an open set U ⊃ A such that µu(F ) ∈ W for all F ∈ Mu with

F ⊂ U\C.

(ii) For A ∈ Mu

µu(A) = lim
K∈C(A)

µu(K) = lim
U∈U(A)

µu(U) = lim
K∈C(A)

mu(K) = lim
U∈U(A)

mu(U)

where C(A) = {K ∈ C : K ⊂ A} is directed by the relation K1 ≤ K2 if K1 ⊂ K2 and

U(A) = {U ∈ U : A ⊂ U} is directed by the relation U1 ≤ U2 if U2 ⊂ U1.

Proof. Let W be a neighborhood of 0 in X and letW0 be a closed balanced neighborhood of

0 in X such that W0 + W0 ⊂ W . Then there exist an ε > 0 and a finite family (qi)n
1 in Γ such

that
n⋂

i=1

{x : qi(x) < 2ε} ⊂ W0. (29.9.1)

Let A ∈ Mu. Then by the complex lcHs version of Lemma 1.24 of [T] there exists K0 ∈ C
such that

u•qi
(A\A ∩K) = u•qi

(χAχT\K) < ε (29.9.2)

for all K ∈ C with K ⊃ K0 and for i = 1, 2, ..., n. By Theorem 29.2,µu is additive on Mu and

by Theorem 29.4, A ∩K ∈ Mu for K ∈ C. Hence by (29.9.2) and by Theorem 29.2 and by the

complex lcHs version of 1.10 of [T] we have

qi(µu(A)− µu(A ∩K)) = qi(µu(A\(A ∩K)) ≤ u•qi
(A\(A ∩K)) < ε (29.9.3)

for i = 1, 2, ..., n and for K ∈ C with K ⊃ K0. On the other hand, as the members of Mu are

u-measurable by Theorem 29.2, there exists a compact Ki ⊂ K0 such that χA|Ki is continuous

and u•qi
(K0\Ki) < ε for i = 1, 2, ..., n. Let J = {k : Kk ⊂ A ∩K0} and C =

⋃
k∈J Kk. If J is

empty, then Ki ⊂ K0\A for all i and in that case, C = ∅. Thus C ∈ C, C ⊂ A ∩K0 and in both

the cases we have

u•qi
((A ∩K0)\C) ≤ u•qi

({(K0 ∩A) ∪ (K0\A)}\
n⋃
1

Kj)

= u•qi
(K0\

n⋃
1

Kj) ≤ u•qi
(K0\Ki) < ε
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for i = 1, 2, ..., n.

Thus there exists C ∈ C with C ⊂ A ∩K0 such that

u•qi
((A ∩K0)\C) < ε (29.9.4)

for i = 1, 2, ..., n. Then by (29.9.3) and (29.9.4) and by the complex lcHs version of 1.10 of [T]

we have

qi(µu(A)− µu(C) ≤ qi(µu(A)− µu(A ∩K0)) + qi(µu(A ∩K0)− µu(C))

≤ ε + qi(µu(A ∩K0)\C)

≤ ε + u•qi
((A ∩K0)\C)

< 2ε

for i = 1, 2, ..., n. Hence µu(A)− µu(C) ∈ W0.

Now let F ⊂ A\C with F ∈ Mu. Then by (29.9.2) and (29.9.4) we have

qi(µu(F )) ≤ u•qi
(F ) ≤ u•qi

(A\C)

= u•qi
({(A ∩K0) ∪ (A\K0)}\C)

≤ u•qi
((A ∩K0)\C) + u•qi

(A\K0)

< 2ε

for i = 1, 2, ..., n. Hence

µu(F ) ∈ W0. (29.9.5)

Since Mu is a σ-algebra by Theorem 29.4(i), A ∈ Mu if and only if A′ ∈ Mu and hence by the

above argument applied to A′ in place of A, there exists a compact K ⊂ A′ such that µu(F ) ∈ W0

for all F ∈ Mu with F ⊂ A′\K. Let U = K ′ = T\K. Then U is open, A ⊂ U and

µu(F ) ∈ W0 (29.9.6)

for all F ∈ Mu with F ⊂ U\A. Thus C ⊂ A ⊂ U , C ∈ C, U ∈ U and for F ∈ Mu with F ⊂ U\C
we have

µu(F ) = µu(F ∩ (U\A)) + µu(F ∩ (A\C))

∈ W0 + W0 ⊂ W



THE BARTLE-DUNFORD-SCHWARTZ INTEGRAL-VI 61

by (29.9.6) and (29.9.5), respectively.

Hence (i) holds.

(ii) Given a neighborhood W of 0 in X, by (i) there exist K0 ∈ C and U0 ∈ U such that

K0 ⊂ A ⊂ U0 and µu(F ) ∈ W for all F ∈ Mu with F ⊂ U0\K0. Let K ∈ C with K0 ⊂ K ⊂ A

and U ∈ U with A ⊂ U ⊂ U0. Such K and U exist by the regularity of µu in Mu. Then

µu(A)− µu(K) = µu(A\K) ∈ W (29.9.7)

as A\K ⊂ A\K0 ⊂ U0\K0 and

µu(U)− µu(A) = µu(U\A) ∈ W (29.9.8)

as U\A ⊂ U0\A ⊂ U0\K0.

Since µu = mu by Theorem 29.6(iii), (ii) holds by (29.9.7) and (29.9.8).

Lemma 29.10. Let X be a quasicomplete lcHs and let u : K(T ) → X be a prolongable Radon

operator. Let U be a relatively compact open set in T . Let v = u|K(U). Then for each compact set

K ⊂ U and E ∈ Mu, E ∩K ∈ Mv. Moreover, given q ∈ Γ and ε > 0, there exist open sets O and

V in T such that E ∩K ⊂ O ⊂ V ⊂ V̄ ⊂ U , {F ⊂ O\(E ∩K) : F ∈ Mu} = {F ⊂ O\(E ∩K) :

F ∈ Mv}, µu(F ) = µv(F ) for such F and u•q(F ) = v•q (F ) ≤ v•q (O\(E∩K)) = u•q(O\(E∩K)) < ε.

Proof. Since K ∈ C and K ⊂ U , by Theorem 50.D of [H] there exists an open set V such

that K ⊂ V ⊂ V̄ ⊂ U . Since E ∈ Mu and since δ(C) ⊂ Mu by Theorem 29.8(ii), E ∩K ∈ Mu.

Claim.For each ϕ ∈ K(T ), ϕχK ∈ L1(v). (29.10.1)

In fact, as v is weakly compact on C0(U), given q ∈ Γ and ε > 0, by Theorem 6 of [P9] there

exists an open set G such that K ⊂ G ⊂ V with

sup
x∗∈U0

q

|x∗ ◦ v|(G\K) <
ε

||ϕ||T
.
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Then by Lemma 26.17 we have v•q (G\K) < ε
||ϕ||T . By Urysohn’s lemma there exists g ∈ K(U)

such that χK ≤ g ≤ χG. Then ϕg ∈ K(U) and

v•q (|ϕχK − ϕg|) ≤ ||ϕ||T v•q (|χK − g|) ≤ ||ϕ||T v•q (G\K) < ε.

This shows that ϕχK ∈ L1(v).

As E ∈ Mu, there exists Ψ ∈ K(T ) such that u•q(|χE − Ψ|) < ε. By the above claim

ΨχK ∈ L1(v) and v•q (|χE∩K −ΨχK |) = v•q (χK(|χE−Ψ|)) = u•q(χK |χE−Ψ|) ≤ u•q(|χE−Ψ|) < ε,

since χK |χE −Ψ| has compact support contained in U so that by the complex version of Lemma

3.2 of [T] applies. Thus E ∩ K ∈ Mv. Moreover, E ∩ K is relatively compact in T and hence

by the complex lcHs version of Lemma 1.19 of [T] and by Theorem 29.8(ii), given q ∈ Γ and

ε > 0, there exists an open set O in T with O ∈ Mv such that E ∩ K ⊂ O ⊂ V ⊂ V̄ ⊂ U

such that v•q (O\(E ∩K)) < ε. Then each F ∈ Mv with F ⊂ O\(E ∩K) has compact support

contained in U and hence by the complex version of Lemma 3.2 of [T] F ∈ Mu, µu(F ) = µv(F )

and u•q(F ) = v•q (F ) ≤ v•q (O\(E ∩K)) < ε.

Conversely, let us suppose F ⊂ O\(E ∩K) and F ∈ Mu. Then given q ∈ Γ and ε > 0, let

ϕ ∈ K(T ) such that u•q(|ϕ− χF |) < ε. Clearly, as F ⊂ O ⊂ V ⊂ V̄ ⊂ U , we have

|ϕχV̄ − χF | = |ϕχV̄ − χV̄ χF | ≤ |ϕ− χF |,

ϕχV̄ ∈ L1(v) by the above claim and by the complex version of Lemma 3.2 of [T] we have

v•q (|χF − ϕχV̄ |) ≤ u•q(|χF − ϕ|) < ε

as |χF − ϕχV̄ | ≤ |χF − ϕ|. Thus χF ∈ L1(v) and hence F ∈ Mv.

Theorem 29.11. Let X be a quasicomplete lcHs and let u : K(T ) → X be a prolongable

Radon operator. Then:

(i) µu is Mu-inner regular in the sense that given E ∈ Mu and a neighborhood W of 0 in X,

there exists C ∈ C such that C ⊂ E and µu(F ) ∈ W for all F ⊂ E\C with F ∈ Mu.

(ii) µu is restrictedly Mu-outer regular in the sense that given E ∈ Mu, K ∈ C and a neighbor-

hood W of 0 in X, there exists a relatively compact open set O in T such that E ∩K ⊂ O

with µu(F ) ∈ W for all F ⊂ O\(E ∩K) with F ∈ Mu.
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(iii) µu|δ(C) is δ(C)-regular.

(iv) For each E ∈ Mu,

µu(E) = lim
K⊂E,K∈C

µu(K) = lim
K∈C

lim
E∩K⊂O,O∈U∩δ(C)

µu(O)

where C is directed by the relation K1 ≤ K2 if K1 ⊂ K2 and U ∩ δ(C) is directed by the

relation O1 ≤ O2 if O2 ⊂ O1.

Proof. Choose a neighborhood W0 of 0 in X such that W0 + W0 ⊂ W . Let (qi)n
1 ⊂ Γ and

ε > 0 such that
⋂n

i=1{x : qi(x) < 2ε} ⊂ W0. Let E ∈ Mu. Then E is u-integrable and hence by

the complex lcHs version of Lemma 1.24 of T there exists K0 ∈ C such that

u•qi
(E\(E ∩K)) < ε (29.11.1)

for K0 ⊂ K ∈ C and for i = 1, 2, ..., n. Since u is prolongable, by Theorem 29.8, Mu is a δ-ring

containing δ(C) and µu is σ-additive on Mu by Theorem 29.2. Consequently, E ∩K ∈ Mu for

K ∈ C and by (29.11.1) we have

|µu(E)− µu(E ∩K)|qi = |µu(E\(E ∩K))|qi ≤ u•qi
(E\(E ∩K)) < ε

for i = 1, 2, ..., n and for K0 ⊂ K ∈ C. Hence

µu(E) = lim
K∈C

µu(E ∩K). (29.11.2)

(i) Since E is u-measurable, there exists a compact Ki ⊂ K0 such that χE |Ki is continuous so

that Ki ⊂ E∩K0 or Ki ⊂ E′∩K0 and u•qi
(K0\Ki) < ε for i = 1, 2, ..., n. Let J = {i : Ki ⊂ E∩K0}

and let C =
⋃

i∈J Ki. If J = ∅, take C = ∅. Then

C ∈ C, C ⊂ K0 ∩ E and u•qi
((E ∩K0)\C) < ε (29.11.3)

for i = 1, 2, ..., n, since

u•qi
((E ∩K0)\E) ≤ u•qi

({(E ∩K0) ∪ (E′ ∩K0)}\
n⋃
1

Ki)

= u•qi
(K0\

n⋃
1

Ki)

≤ u•qi
(K0\Ki)

< ε.
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Then C ⊂ E, C ∈ C and by (29.11.1) and (29.11.3) we have

u•qi
(E\C) ≤ u•qi

(E\(E ∩K0)) + u•qi
((E ∩K0)\C) < 2ε

for i = 1, 2, ..., n. Then for F ∈ Mu with F ⊂ E\C we have

|µu(F )|qi ≤ u•qi
(F ) ≤ u•qi

(E\C) < 2ε

for i = 1, 2, ..., n and hence µu(F ) ∈ W0 ⊂ W . Thus (i) holds.

(ii) Let K ∈ C and let U be a relatively compact open set in T such that K ⊂ U . Then

by Lemma 29.10 there exist open sets O and V such that E ∩ K ⊂ O ⊂ V ⊂ V̄ ⊂ U , {F ⊂
O\(E ∩ K) : F ∈ Mu} = {F ⊂ O\(E ∩ K) : F ∈ Mv}, µu(F ) = µv(F ) for such F and

v•qi
(O\(E ∩K)) = u•qi

(O\(E ∩K)) < ε for i = 1, 2, ..., n where v = u|K(U). This shows that for

all F ∈ Mu with F ⊂ O\(E ∩K),

|µu(F )|qi ≤ u•qi
(O\(E ∩K)) < ε

for i = 1, 2, ..., n and hence µu(F ) ∈ W0 ⊂ W for F ∈ Mu with F ⊂ O\(E∩K). Hence (ii) holds.

(iii) Let ω = µu|δ(C) and let E ∈ δ(C). By (i) there exists C ⊂ E, C ∈ C such that

ω(F ) = µu(F ) ∈ W0

for F ⊂ E\C with F ∈ δ(C).

As E ∈ δ(C), there exist a compact C and a relatively compact open set V in T such that

E ⊂ C ⊂ V . Then E = E∩C and hence by (ii) there exists a relatively compact open set O such

that E ⊂ O and µu(F ) ∈ W0 for all F ∈ Mu with F ⊂ O\E. Thus particularly for all F ∈ δ(C)
with F ⊂ O\E, ω(F ) = µu(F ) ∈ W0. Then C ⊂ E ⊂ O, C ∈ C, O ∈ U ∩ δ(C), and for F ∈ δ(C)
with F ⊂ O\C we have

ω(F ) = µu(F ) = µu(F ∩ (O\E)) + µu(F ∩ (E\C)) ∈ W0 + W0 ⊂ W.

Hence µu|δ(C) is δ(C)-regular.

(iv) Let q ∈ Γ, ε > 0 and K ∈ C. By (ii) there exists O1 ∈ U ∩δ(C) such that K∩E ⊂ O1 and

for all O ∈ U with E ∩K ⊂ O ⊂ O1 we have |µu(F )|q < ε for all F ∈ Mu with F ⊂ (O1\E ∩K).
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Then we have

|µu(E ∩K)− µu(O)|q = |µu(O\(E ∩K))|q < ε

and hence

lim
E∩K⊂O∈U∩δ(C)

µu(O) = µu(E ∩K). (29.11.3)

Then by (29.11.2) and (29.11.3) we have

µu(E) = lim
K∈C

µu(E ∩K) = lim
K∈C

lim
E∩K⊂O∈U∩δ(C)

µu(O). (29.11.4)

Finally, as µu is inner regular in Mu by (i), we have

µu(E) = lim
K⊂E,K∈C

µu(K). (29.11.5)

and hence by (29.11.4) and (29.11.5), (iv) holds.

This completes the proof of the theorem.

Definition 29.12. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded

weakly compact Radon operator with µu as in Definition 29.1. For each open set U in T , by

Theorem 29.9(ii),

µu(U) = lim
K∈C,K⊂U

µu(K). (29.12.1)

Let A ⊂ T and let

µ∗u(A) = lim
A⊂U∈U

µu(U)

whenever the limit exists, where U is directed by the relation U1 ≤ U2 if U2 ⊂ U1.

Theorem 29.13. Let X, u and µ∗u be as in Definition 29.12. Then µ∗u(A) exists in X for

each A ⊂ T .

Proof. µu is σ-additive on Mu by Theorem 29.2 and Mu is a σ-algebra in T by Theorem

29.4(i). Therefore, the range of µu is relatively weakly compact in X by Theorem on Extension

of [K3] (or by Corollary 2 of [P7] ) and hence is bounded in the lcHs topology τ of X. Since
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B(T ) ⊂ Mu by Theorem 29.4(ii) and since µu is σ-additive on Mu, for each increasing sequence

(Kn)∞1 ⊂ C, limn µu(Kn) ∈ X. Moreover, by Theorem 29.9(i), µu is Mu-regular and hence,

given K ∈ C and a neighborhood W of 0 in X, there exists U ∈ U such that K ⊂ U and for

each compact C with K ⊂ C ⊂ U , µu(C) − µu(K) ∈ W . Thus conditions 6.1 of Sion [Si] are

satisfied by T, C,U and µu, excepting that X is a quasicomplete lcHs so that every bounded

closed set in X is complete. Since µu is σ-additive on Mu and since U ⊂ Mu, for every monotone

sequence (Un)∞1 of open sets in T , limn µu(Un) ∈ X. Consequently, by Lemma 2.5 of Sion [Si],

{µu(U)}A⊂U∈U is a Cauchy net in X. Since X is quasicomplete and since the range of µu is

bounded, limA⊂U∈U µu(U) exists in X and hence µ∗u(A) ∈ X for each A ⊂ T .

Theorem 29.14. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded weakly

compact Radon operator. Then a subset A of T is u-integrable if and only if, for each q ∈ Γ and

ε > 0, there exist a compact C and an open set U in T such that C ⊂ A ⊂ U and u•q(U\C) < ε.

Proof. Suppose A is u-integrable. Proceeding as in the proof of Theorem 29.9(i) with q ∈ Γ,

by the complex lcHs analogue of Lemma 1.24 of [T] there exists K0 ∈ C such that

u•q(A\(A ∩K)) = u•q(χAχT\K) <
ε

4
(29.14.1)

for all K ∈ C with K ⊃ K0. Since A is u-measurable, there exists a compact C ⊂ K0 such that

χA|C is continuous and u•q(K0\C) < ε
4 . Then C ⊂ A, C ∈ C and

u•q(A\C) = u•q((A ∩K0)\C) ∪ ((A\K0)\C)

≤ u•q((A ∩K0)\C) + u•q(A\K0)

<
ε

2
.

By a similar argument applied to A′ = T\A ∈ Mu, there exists a compact K ⊂ A′ such

that u•q(A
′\K) < ε

2 . Let U = T\K. Then U is open, A ⊂ U and u•q(U\A) = u•q(A
′\K) < ε

2 .

Consequently, C ⊂ A ⊂ U , C ∈ C, U ∈ U and u•q(U\C) < ε.

Conversely, let us suppose that the conditions are satisfied for each q ∈ Γ and for each ε > 0.

For q ∈ Γ and ε > 0, let C ⊂ A ⊂ U , C ∈ C, U ∈ U with u•q(U\C) < ε. Then by Urysohn’s

lemma, there exists ϕ ∈ K(T ) such that χC ≤ ϕ ≤ χU . Then |χA − ϕ| ≤ χU − χC and hence we

have

u•q(χA − ϕ) ≤ u•q(χU\C) = u•q(U\C) < ε.
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Therefore, χA ∈ L1(u) and hence A ∈ Mu.

Definition 29.15. Let Mµ∗
u

= {E ⊂ T : µ∗u(A) = µ∗u(A ∩ E) + µ∗u(A\E) for all A ⊂ T}.
Members of Mµ∗

u
are called Carathéodory-Sion µ∗u-measurable sets.

Theorem 29.16. Mµ∗
u
⊂ Mu and µ∗u(E) = µu(E) for E ∈ Mµ∗

u
. Consequently, each

E ∈ Mµ∗
u

is u-measurable and u-integrable.

Proof. Since the range of µu is bounded and since X is quasicomplete, Theorem 6.3 of Sion

[Si] holds here and hence B(T ) ⊂ Mµ∗
u
. Let A ∈ Mµ∗

u
, q ∈ Γ and ε > 0. Then by (3) of

Theorem 6.3 of Sion [Si] there exists K ∈ C and U ∈ U such that K ⊂ A ⊂ U and q(µ∗u(F )) < ε
4

for all F ∈ Mµ∗
u

with F ⊂ U\K. As B(T ) ⊂ Mu by Theorem 29.4(ii), by Definition 29.12

and by Theorem 29.9(ii) we have µ∗u(A) = limA⊂U∈U µu(U) = µu(A) for A ∈ B(T ) and hence

q(µu(F )) < ε
4 for all F ∈ B(T ) with F ⊂ U\K. Since U\K is open, by Lemma 26.17 we have

u•q(U\K) = sup
x∗∈U0

q

|x∗ ◦ u|(U\K)

≤ 4 sup
x∗∈U0

q ,F⊂U\K,F∈B(T )

|µx∗u(F )|

= 4 sup
x∗∈U0

q ,F⊂U\K,F∈B(T )

|(x∗µu)(F )|

= 4 sup
F⊂U\K,F∈B(T )

q(µu(F )) < 4
ε

4
= ε

where we use the relation

x∗µu(E) = µx∗u(E) for E ∈ Mu and hence for E ∈Mu (29.16.1)

as mathcalB(T ) ⊂ Mu. In fact, as E ∈ Mu, E ∈ Mx∗u. If f ∈ L1(u), then f ∈ L1(x∗u) and

hence µx∗u(f) =
∫

fd(x∗u) = x∗(
∫

fdu) and hence µx∗u(E) = x∗(
∫
E du) = x∗µu(E) so that

x∗µu(E) = µx∗u(E) for E ∈Mu.

Consequently, by Theorem 29.14, A ∈ Mu and hence Mµ∗
u
⊂ Mu. Then by Theorem 29.9(ii)

it follows that µ∗u(A) = µu(A) for A ∈ Mµ∗
u
. The last part is evident from Definition 29.1.

This completes the proof of the theorem.
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To prove that Mµ∗
u

= Mu, we proceed as below and prove the following lemmas.

Let θ be a positive linear functional on K(T ). For E ⊂ T , let

µ∗θ(E) = inf
χE≤g∈I+

sup{θ(Ψ) : Ψ ≤ g,Ψ ∈ C+
c (T )}.

Then by Rudin [Ru1], µ∗θ is an outer measure on P(T ), the family of all subsets of T . Let

Mµ∗θ
= {E ⊂ T : E is µ∗θ -measurable − that is, µ∗θ(A) = µ∗θ(A ∩ E) + µ∗θ(A\E) for all A ⊂ T}.

Then Mµ∗θ
is a σ-algebra in T and contains B(T ). (See Theorem 2.2 of [P3]).

Lemma 29.17. Let θ ∈ K(T )∗. For A ⊂ T with µ∗|θ|(A) < ∞, let

µ∗θ(A) = {(µ∗
θ+
1
− µ∗

θ−1
) + i(µ∗

θ+
2
− µ∗

θ−2
)}(A)

where θ = Reθ + iImθ,Reθ = θ+
1 − θ−1 , and Imθ = θ+

2 − θ−2 . Let E ∈ Mθ = {E ∈ Mµ∗
θ+
1

∩

Mµ∗
θ−1
∩Mµ∗

θ+
2

∩Mµ∗
θ−2

with µ|θ|(E) < ∞}. Then

µ∗θ(A) = µ∗θ(A ∩ E) + µ∗θ(A\E). (29.17.1)

Proof. Let E ∈ Mθ. Then for A ⊂ T , we have

µ∗
θ+
i
(A) = µ∗

θ+
i
(A ∩ E) + µ∗

θ+
i
(A\E) (29.27.2)

and

µ∗
θ−i

(A) = µ∗
θ−i

(A ∩ E) + µ∗
θ−i

(A\E) (29.17.3)

for i = 1, 2. If µ∗|θ|(A) < ∞, then µ∗
θ+
i

(A) < ∞ and µ∗
θ−i

(A) < ∞ for i = 1, 2 and hence by

(29.17.2) and (29.17.3) and by the definition of µ∗θ(A), (29.17.1) holds.

Lemma 29.18. If θ ∈ K(T )∗ and is bounded, then for A ⊂ T

µ∗θ(A) = lim
A⊂U∈U

µ∗θ(U).

Proof. By Theorem 2.2 of [P3],

µ∗
θ+
i
(A) = inf{µ∗

θ+
i
(U) : A ⊂ U ∈ U}

= lim
A⊂U∈U

µ∗
θ+
i
(U)}
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for i = 1, 2 for A ⊂ T . A similar expression holds for µ∗
θ−i

(A) for i = 1, 2. Then by the definition

of µ∗θ(A) as given in Lemma 29.17, the lemma holds.

Lemma 29.19. Let θ, Mθ, θ1 and θ2 be as in Lemma 29.17 and let µ1 = µθ+
1
, µ2 = µθ−1

, µ3 =

µθ+
2

and µ4 = µθ−2
. For A ⊂ T and E ∈ Mθ,

µ∗j (A ∩ E) = inf
A∩E⊂U∈U

µ∗j (U) = lim
A∩E⊂U∈U

µ∗j (U)

= inf
A⊂U∈U

µ∗j (U ∩ E) = lim
A⊂U∈U

µ∗j (U ∩ E) (29.19.1)

and

µ∗j (A\E) = inf
A\E⊂U∈U

µ∗j (U) = lim
A\E⊂U∈U

µ∗j (U)

= inf
A⊂U∈U

µ∗j (U\E) = lim
A⊂U∈U

µ∗j (U\E) (29.19.2)

for j = 1, 2, 3, 4. Consequently,

µ∗θ(A ∩ E) + µ∗θ(A\E) = lim
A⊂U∈U

µ∗θ(U ∩ E) + lim
A⊂U∈U

µ∗θ(U\E). (29.19.3)

Proof.

µ∗j (A ∩ E) = inf
A∩E⊂U∈U

µ∗j (U) ≥ inf
A⊂U∈U

µ∗j (U ∩ E) ≥ µ∗j (A ∩ E)

and hence

µ∗j (A ∩ E) = inf
A∩E⊂U∈U

µ∗j (U) = lim
A∩E⊂U∈U

µ∗j (U)

= inf
A⊂U∈U

µ∗j (U ∩ E) = lim
A⊂U∈U

µ∗j (U ∩ E)

for j = 1, 2, 3, 4 and hence (29.19.1) holds. Similarly, (29.19.2) holds. Then (29.19.3) holds by

(29.19.1) and (29.19.2).

Theorem 29.20. Let X be a quasicomplete lcHs and let u : K(T ) → X be a bounded weakly

compact Radon operator. Then Mµ∗
u

= Mu and µ∗u(A) = mu(A) = µu(A) for A ∈ Mu.

Proof. In the light of Theorem 29.16 it suffices to show that Mu ⊂ Mµ∗
u
. Let E ∈ Mu. Then

x∗u ∈ K(T )∗ and is bounded. Moreover,

E ∈ Mx∗u for each x∗ ∈ X∗ (29.20.1)
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since E is u-integrable and hence is x∗u-integrable for each x∗ ∈ X∗. Then by Definition 29.12

we have

µ∗u(A) = lim
A⊂U∈U

µu(U) for A ⊂ T. (29.20.2)

Then by (29.20.2) and by (29.16.1) we have

x∗µ∗u(A) = lim
A⊂U∈U

x∗µu(U)

= lim
A⊂U∈U

µx∗u(U)

= lim
A⊂U∈U

µx∗u(U ∩ E) + lim
A⊂U∈U

µx∗u(U\E) (29.20.3)

by (29.20.1) since U ∩ E and U\E belong to Mx∗u. Then by (29.20.3) and by (29.19.3) we have

x∗µ∗u(A) = µ∗x∗u(A ∩ E) + µ∗x∗u(A\E). (29.20.4)

On the other hand, by (29.19.1) and (29.16.1) we have

µ∗x∗u(A ∩ E) = lim
A⊂U∈U

µx∗u(U ∩ E) = lim
A⊂U∈U

x∗µu(U ∩ E) (29.20.4)

since U ∈ B(T ) ⊂ Mu by Theorem 29.4 and since E ∈ Mu by hypothesis.

Similarly,

µ∗x∗u(A\E) = lim
A⊂U∈U

µx∗u(U\E) = lim
A⊂U∈U

x∗µu(U\E) (29.20.5)

and hence by (29.20.3), (29.20.4) and (29.20.5) and by Lemma 29.19 we have

x∗µ∗u(A) = lim
A⊂U∈U

µx∗u(U ∩ E) + lim
A⊂U∈U

µx∗u(U\E)

= lim
A∩E⊂U∈U

µx∗u(U) + lim
A\E⊂U∈U

µx∗u(U)

= x∗µ∗u(A ∩ E) + x∗µ∗u(A\E)

for x∗ ∈ X∗. Therefore, by the Hahn-Banach theorem we have

µ∗u(A) = µ∗u(A ∩ E) + µ∗u(A\E)

for A ⊂ T and hence E ∈ Mµ∗
u
. Then by Theorem 29.16, Mu = Mµ∗

u
. Moreover, µu(E) =

mu(E) = µ∗u(E) for E ∈ Mu by Theorems 29.6 and 29.16.
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This completes the proof of the theorem.

Theorem 29.21. Let X be a quasicomplete lcHs. Let u : K(T ) → X be a bounded weakly

compact Radon operator and let q ∈ Γ. Given A ∈ Mu, there exist a σ-compact set F and a Gδ

set G such that F ⊂ A ⊂ G and u•q(G\F ) = 0. Conversely, given A ⊂ T , suppose for each q ∈ Γ

there exist a σ-compact F and a Gδ G such that F ⊂ A ⊂ G and u•q(G\F ) = 0. Then A ∈ Mu.

Proof. Let q ∈ Γ be given. For ε = 1
n , by Theorem 29.14 there exist a compact Kn and an

open set Un in T such that Kn ⊂ A ⊂ Un with u•q(Un\Kn) < 1
n . Then F =

⋃∞
1 Kn is σ-compact,

G =
⋂∞

1 Un is Gδ and F ⊂ A ⊂ G. Clearly, u•q(G\F ) = 0 since u•q(G\F ) ≤ u•q(Un\Kn) < 1
n for

all n ∈ NI.

Conversely, let A ⊂ T be such that for each q ∈ Γ there exist a σ-compact F and a Gδ

G such that F ⊂ A ⊂ G with u•q(G\F ) = 0. Without loss of generality we shall assume that

F =
⋃

Cn, (Cn)∞1 ⊂ C, Cn ↗ F , G =
⋂∞

1 Un, (Un)∞1 ⊂ U and Un ↘ G. Since Un\Cn ↘ G\F ,

(Un\Cn)∞1 ⊂ Mu and u•q(·) = ||mu||q(·) by Theorem 29.6(i) and since ||mu||q is continuous as

mu is σ-additive, we have

0 = u•q(G\F ) = ||mu||q(G\F ) = lim
n
||mu||q(Un\Cn).

Thus, given ε > 0, there exists n0 such that ||mu||q(Un\Cn) < ε for n ≥ n0. Let U = Un0 and

C = Cn0 . Then u•q(U\C) = ||mu||q(U\C) < ε and hence by Theorem 29.14, A ∈ Mu.

This completes the proof of the theorem.

Definition 29.22. Let X be a quasicomplete lcHs. Let D be a δ-ring containing C and

let µ : D → X be σ-additive. If µ is the restriction of an X-valued weakly compact Radon

vector measure µu, then the Lebesgue-Radon completion D̃ of D with respect to µu is defined

as the family {E ⊂ T : given q ∈ Γ there exist a σ-compactF and a Gδ G such that F ⊂ E ⊂
G with u•q(G\F ) = 0} and the Lebesgue-Radon completion µ̃u of µu with respect to D is said to

exist on D̃ if

µ̃u(E) = lim
K∈C,K⊂E

µ(K)

exists in X for each E ∈ D̃.
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The following theorem generalizes the bounded case of Theorem 4.4 of [P4].

Theorem 29.23. Let X be a quasicomplete lcHs. Let µ : δ(C) → X be σ-additive. Then

µ is the restriction of an X-valued weakly compact Radon vector measure µu if and only if µ is

δ(C)-regular and its range is relatively weakly compact. In that case, u is unique and is called the

bounded weakly compact Radon operator determined by µ. Moreover, Mu = δ̃(C), the Lebesgue-

Radon completion of δ(C) with respect to µu. The Lebsesgue-Radon completion µ̃u of µu with

respect to δ(C) exists on δ̃(C) and coincides with µu.

Proof. Suppose u : K(T ) → X is a bounded weakly compact Radon operator and suppose

µ = µu|δ(C). Then µu is Mu-regular by Theorem 29.9(i) and δ(C) ⊂ Mu by Theorem 29.4(ii).

Let E ∈ δ(C). As µu is Mu-regular, given a neighborhood W of 0 in X, there exist a compact

K ⊂ E and an open set U in T such that U ⊃ E and such that µu(F ) ∈ W for all F ∈ Mu with

F ⊂ U\K. Hence, particularly, µu|δ(C) is δ(C)-regular. Therefore, µ is δ(C)-regular. Since Mu

is a σ-algebra in T by Theorem 29.4(i) and since µu is σ-additive on Mu by Theorem 29.2, the

range of µu and hence that of µ is relatively weakly compact by Theorem on Extension of [K3]

or by Corollary 2 of [P7].

If µ is also equal to µv|δ(C) for another bounded weakly compact Radon operator v on T ,

then by the uniqueness part of Theorem 4.4(i) of [P4], µx∗u = µx∗v on δ(C) and hence x∗u = x∗v

on K(T ) for each x∗ ∈ X∗. Then by the Hahn-Banach theorem, u = v. Therefore, u is unique.

Conversely, let µ be σ-additive and δ(C)-regular on δ(C) with its range relatively weakly

compact. Then by the Theorem on Extension of [K3] or by Corollary 2 of [P7], µ has a unique

σ-additive extension µc on Bc(T ) with values in X. If µ0 = µc|B0(T ), then by Theorem 1 of [DP1]

, µ0 has a unique X-valued Borel (resp. σ-Borel) regular σ-additive extension µ̂ (resp. µ̂c) on

B(T ) (resp. on Bc(T )) and µ̂|Bc(T ) = µ̂c. Since µ̂c and µc are σ-additive and extend µ to Bc(T ),

by the uniqueness part of Proposition 1 of [DP1] x∗µc = x∗µ̂c for x∗ ∈ X∗ and consequently,

by the Hahn-Banach theorem µ̂c = µc on Bc(T ). Therefore, µc is Bc(T )-regular. Thus µ has a

unique Bc(T )-regular σ-additive extension µc on Bc(T ) and µc = µ̂|Bc(T ).
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Let

uf =
∫

T
fdµc, f ∈ C0(T ). (29.23.1)

Then by Theorem 1 of [P7], u is weakly compact and let mu be the representing measure of u in

the sense of 18.10 of [P18]. Then mu has range in X by Theorem 2 of [P9] and by Theorem 1 of

[P9] and by (29.23.1) we have

x∗uf =
∫

T
fd(x∗mu) =

∫
T

fd(x∗µc)

for f ∈ C0(T ) and for x∗ ∈ X∗. Moreover, mu|B(T ) is Borel regular. Then by Theorem 20.12 of

[P19], mu|Bc(T ) is Bc(T )-regular. Consequently. by the uniqueness part of the Riesz representa-

tion theorem (σ-Borel version) we conclude that x∗µc = x∗mu on Bc(T ) for each x∗ ∈ X∗ and

hence by the Hahn-Banach theorem, µc = mu|Bc(T ). Since µc|δ(C) = µ, µ is the restriction of

mu to δ(C). Then by Theorem 29.6(iii), µ is the restriction of µu to δ(C).

Mu = δ̃(C), the Lebesgue-Radon completion of δ(C) with respect to µu by Definition 29.22

and by Theorem 29.21. Then the Lebesgue-Radon completion µ̃u of µu exists on δ̃(C) by Theo-

rem 29.9(ii). Moreover, by the same theorem, µ̃u = µu.

This completes the proof of the theorem.

The following theorem generalizes the bounded case of Theorem 4.6 of [P4].

Theorem 29.24. Let X be a quasicomplete lcHs. Let µ0 : δ(C0) → X be σ-additive with

range relatively weakly compact. Then µ0 admits a unique X-valued δ(C)-regular σ-additive

extension µ : δ(C) → X. Moreover, the following assertions hold:

(i) µ0 is the restriction of a weakly compact Radon vector measure µu and such u is unique.

We say that µ0 determines the bounded weakly compact Radon operator u.

(ii) If µ is as above, then µ0 and µ determine the same bounded weakly compact Radon

operator u (see Theorem 29.23).

(iii) If u is as in (i) and (ii), then

Mu = the Lebesgue-Radon completion δ̃(C)with respect to µu
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and

µu(E) = µ̃u(E) for each E ∈ Mu.

where µ̃u is the Lebesgue-Radon completion of µu with respect to δ(C).

Proof. By Theorem on Extension of [K3] or by Corollary 2 of [P7], by Proposition 1 of

[DP1] and by the Hahn-Banach theorem µ0 has a unique σ-additive X-valued Baire extension

ν : B0(T ) → X and let

uf =
∫

T
fdν, f ∈ C0(T ).

Then u is weakly compact by Theorem 1 of [P7] and hence the Borel restriction of its representing

measure (see 18.10 of [P18]) mu is the restriction of µu to B(T ) by Theorem 29.6(iii). Moreover,

by 18.10 of [P18], Then

x∗uf =
∫

T
fd(x∗ν) =

∫
T

fd(x∗mu) for f ∈ C0(T ) and for x∗ ∈ X∗.

Then by the uniqueness part of the Riesz representation theorem (Baire version) we have x∗ν =

(x∗mu)|B0(T ) for each x∗ ∈ X∗. Consequently, by the Hahn-Banach theorem we have ν =

mu|B0(T ). Since mu = µu by Theorem 29.6(iii), we have ν = µu|B0(T ). Then by Theorem

29.11(iii), µ = µu|δ(C) = mu|δ(C) is σ-additive and δ(C)-regular and extends µ0. If µ1 : δ(C) → X

is σ-additive, δ(C)-regular and extends µ0, then by the uniqueness part of Theorem 4.1(i) of [P4],

x∗µ1 = x∗µ for each x∗ ∈ X∗ and hence by the Hahn-Banach theorem, µ1 = µ. Hence µ0 admits

a unique δ(C)-regular σ-additive extension µ : δ(C) → X.

(i) If there exists another weakly compact operator v : C0(T ) → X such that µv|δ(C0) = µ0,

then by the uniqueness part of Theorem 1 of [DP1] and by the uniqueness of σ-additive extension

of µ0 to B0(T ), µu = µv and hence this implies that x∗µu = x∗µv for x∗ ∈ X∗. Consequently,

by (29.16.1) and by Theorem 29.4 we have µx∗u = µx∗v on B(T ) for each x∗ ∈ X∗. Thus

x∗u(ϕ) = x∗v(ϕ) for ϕ ∈ K(T ) and for x∗ ∈ X∗. Consequently, by the Hahn-Banach theorem,

u = v. Hence u is unique.

(ii) Let ω be the X-valued σ-additive extension of µ to Bc(T ). This exists by hypothesis

and by Corollary 2 of [P7]. Then ω also extends µ0 to Bc(T ). Then uf =
∫
T fdν =

∫
T fdω for

f ∈ C0(T ). Then µ and µ0 determine the same bounded weakly compact Radon operator u.
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Hence (ii) holds.

(iii) By Theorem 29.23

Mu = δ̃(C), the Lebesgue-Radon completion of δ(C) with respect toµu. Hence (iii) holds.

By Theorem 29.9(ii) and by Theorem 29.6(iii),

µu(E) = mu(E) = lim
K∈C(E)

µu(K) = µ̃u(E).

This completes the proof of the theorem.

Theorem 29.25. Let u1 and u2 be prolongable Radon operators on K(T ). If µu1
|δ(C0) =

µu2
|δ(C0), then u1 = u2 so that Mu1 = Mu2 .

Proof. Let U be a relatively compact open Baire set in T . Then by Theorem 29.8(iii),

B0(U) ⊂ δ(C0) ⊂ Mui , i = 1, 2. Then µu1
|B0(U) = µu2

|B0(U) = mU (say). Then mU : B0(U) → X

is σ-additive and the linear transformation ωU : C0(U) → X given by

ωUf =
∫

U
fdmU , f ∈ C0(U)

is weakly compact by Theorem 1 of [P7]. Then for f ∈ C0(U),

ωUf =
∫

U
fdmU =

∫
U

fdµui
|B0(U) =

∫
T

fdµui
|B0(U) = uif for i = 1, 2.

Thus

u1f = u2f, f ∈ Cc(U).

Since each f ∈ K(T ) belongs to Cc(U) for some relatively compact open Baire set U by Theorem

50.D of [H], we conclude that u1 = u2 on K(T ).

This completes the proof of the theorem.

Remark 29.26. One can also use Theorem 4.6(i) of [P4] to prove the above result since

µx∗u1 = µx∗u2 on δ(C0) for each x∗ ∈ X∗.
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The following theorem generalizes Theorem 4.4 of [P4].

Theorem 29.27. Let X be a quasicomplete lcHs. Let µ : δ(C) → X be σ-additive. Then

µ is the restriction of an X-valued prolongable Radon vector measure µu if and only if µ is

δ(C)-regular. In that case, u is unique and u is called the prolongable Radon operator determined

by µ. Moreover, the Radon vector measure µu on Mu is given by

µu(E) = lim
K⊂E,K∈C

µ(K), E ∈ Mu. (29.27.1)

The localized Lebesgue-Radon completion of δ(C) with respect to µ is defined by `(δ̃(C)) = {E ⊂
T : given q ∈ Γ,K ∈ C and ε > 0, there exist C ∈ C and a relatively compact open set U in T such that C ⊂
E ∩K ⊂ U with u•q(U\C) < ε and limK∈C u•q(U\(E ∩K)) = 0}. The localized Lebesgue-Radon

completion µ̂ of µ with respect to δ(C) is said to exist on `(δ̃(C)) if µ̂(E) = limK⊂E,K∈C µ(K)

exists in X for each E ∈ `(δ̃(C)). Then `(δ̃(C)) = Mu and µ̂(E) exists in X for each E ∈ `(δ̃(C))
and µ̂(E) = µu(E) for E ∈ Mu.

Proof. If u is a prolongable Radon operator on K(T ), then by Theorems 29.2, 29.8 and

29.11(iii), δ(C) ⊂ Mu and µ|δ(C) is σ-additive and δ(C)-regular. Conversely, let µ : δ(C) → X be

σ-additive and δ(C)-regular. Let U be a relatively compact open set in T and let mU = µ|B(U).

Let VU : C0(U) → X be given by

VUf =
∫

U
fdmU , f ∈ C0(U).

Then by Theorem 1 of [P7], VU is weakly compact. On the other hand, if uf =
∫
T fdµ for

f ∈ K(T ), then u|K(U) = VU |K(U) is continuous and hence the unique continuous extension of

u|K(U) to C0(U) coincides with VU which is weakly compact. Hence u is prolongable.

Let µ : δ(C) → X be σ-additive and δ(C)-regular and let mU = µ|B(U). Since mU is B(U)-

regular by the hypothesis, by Lemma 18.19 mU is the representing measure of the weakly compact

operator VU and since u|C0(U) = VU , it follows by Theorem 29.4 that µu|B(U) = mU = µ|B(U).

Since U is an arbitrary relatively compact open set in T , it follows that µu|δ(C) = µ. In fact,

given E ∈ δ(C), let U be a relatively compact open set such that E ⊂ U . Then E ∈ B(U) and

hence µu(E) = µ(E).
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The uniqueness of u follows from Theorem 29.25 and thus u is uniquely determined by µ.

Moreover, by Theorem 29.11(iv),

µu(E) = lim
K⊂E,K∈C

µu(K) = lim
K⊂E,K∈C

µ(K), E ∈ Mu (29.27.2)

and hence µu is also determined by µ.

Let R = {E ⊂ T : given K ∈ C, q ∈ Γand ε > 0, there exists C ∈ C and a

relatively compact open set U in T such that C ⊂ E ∩K ⊂ U withu•q(U\C)

< ε and limK∈C u•q(E\E ∩K) = 0 for each q ∈ Γ}.

Let E ∈ Mu. Let K ∈ C, q ∈ Γ and ε > 0. Then by Lemma 29.10 there exists a relatively

compact open set U in T such that E ∩K ⊂ U and u•q(U\(E ∩K)) < ε
2 . Since E ∩K ∈ Mu,

by Theorem 29.11(i) there exists a compact C ⊂ E ∩ K such that u•q((E ∩ K)\C) < ε
2 . Then

C ⊂ E ∩K ⊂ U and u•q(U\C) < ε.

Since χE ∈ L1(u), by the complex lcHs-version of Lemma 1.24 of [T]

lim
K∈C

u•q(χE\K) = lim
K∈C

u•q(E\(E ∩K)) = 0

for each q ∈ Γ and hence Mu ⊂ R.

To prove the reverse inclusion, let E ∈ R. Then, given q ∈ Γ, K ∈ C and ε > 0, there exist

C ∈ C and U ∈ U
⋂

δ(C) such that C ⊂ E∩K ⊂ U with u•q(U\C) < ε. By Urysohn’s lemma there

exists ϕ ∈ K(T ) such that χC ≤ ϕ ≤ χU . Then u•q(|ϕ− χE∩K |) ≤ u•q(χU − χC) = u•q(U\C) < ε.

Thus E ∩ K ∈ Mu for each K ∈ C. Since limK∈C u•q(E\E ∩ K) = 0 by hypothesis, and since

E ∩K ∈ Mu for all K ∈ C and since L1(u) is closed in F0(u), it follows that E ∈ Mu and hence

Mu = R. Thus Mu = `(δ̃(C)), the localized Lebesgue-Radon completion of δ(C). Finally, µ̂ = µu

is immediate from the definition and from (29.27.2).

This completes the proof of the theorem.

The following theorem generalizes Theorem 4.6 of [P4].
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Theorem 29.28. Let X be a quasicomplete lcHs. Let µ0 : δ(C0) → X be σ-additive. Then

µ0 is the restriction of a unique X-valued prolongable Radon vector measure µu and u is called

the prolongable Radon operator determined by µ0. Then µ0 admits a unique δ(C)-regular σ-

additive extension µ : δ(C) → X and µ and µ0 determine the same prolongable Radon operator

u.

Proof. By Theorem of Dinculeanu and Kluvánek [DK], µ0 has a unique σ-additive δ(C)-
regular extension µ : δ(C) → X.

Since each f ∈ K(T ) is µ0-integrable in T ,

uf =
∫

T
fdµ0, f ∈ K(T )

is well defined, linear and has values in X. Moreover, for a relatively compact open set U in T ,

by Theorem 50.D of [H] there exists a relatively compact open Baire set U0 such that U ⊂ U0.

Then for f ∈ Cc(U) and for q ∈ Γ

q(uf) = q(
∫

T
fdµ0) ≤ ||f ||U ||µo||q(U0)

and hence u is a Radon operator. Moreover, the operator

u : C0(U) → X

given by

uf =
∫

U
fdµ0, f ∈ C0(U)

is continuous and is the restriction of

uU : C0(U0) → X

given by

uUf =
∫

U
fdµ0,=

∫
U

fdµ f ∈ C0(U0)

which is weakly compact by Lemma 18.19. Then by the proof of Theorem 29.28, u is prolongable.

Since µ is uniquely determined by µ0 and since µ determines u, µ0 and µ determine u uniquely.

This completes the proof of the theorem.
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30. Lp(u) AS Lp(mu), 1 ≤ p < ∞, u WEAKLY COMPACT AND L1(v) AS L1(mv), v

PROLONGABLE

Let X be a Banach space (resp. a quasicomplete lcHs)and let u : K(T ) → X be a bounded

weakly compact Radon operator. Then by Convention 25.8, u : C0(T ) → X is continuous and

weakly compact. Let mu : B(T ) → X be the representing measure of u in the sense of 18.10 of

Ch. IV. Then mu is σ-additive, its restriction to B(T ) is Borel regular and

u(ϕ) =
∫

T
ϕdmu, ϕ ∈ C0(T )

where the integral is a (BDS)-integral. See Definition 3 and Theorems 2 and 6 of [P9]. Hereafter,

mu will denote the Borel restriction of the representing measure of u unless otherwise stated.

Let u be a bounded weakly compact Radon operator with values in X. In the first part of this

section, we show that f ∈ L1(u) if and only if f ∈ L1((mu) and in that case,
∫

fdu =
∫
T fdmu.

For such u, we also show that Lp(u) is the same as Lp(mu) for 1 ≤ p < ∞.

Let v : K(T ) → X be a prolongable Radon operator, X being a Banach space or a quasi-

complete lcHs. Let mv : δ(C) → X be the representing measure of v (see Definition 19.5 and

Theorem 19.9 of Ch. IV). In the second half of this section, we show that f ∈ L1(v) if and only

if f ∈ L1(mv) and in that case,
∫

fdv =
∫
T fdmv. Thus the questions (Q5) and (Q6) mentioned

in Introduction of Ch. I are answered in the affirmative. See Remark 30.23.

Let g : T → KI be mu-measurable. Then by Theorem 5.3 we have

(mu)•p(g, T ) = sup
|x∗|≤1

(
∫

T
|g|pdv(x∗mu))

1
p (∗)

for 1 ≤ p < ∞.

Definition 30.1. Let u : K(T ) → X be a bounded weakly compact Radon operator. Let

g : T → KI be u-measurable. For 1 ≤ p < ∞, let

u•p(g) = sup
|x∗|≤1

(
∫

T
|g|pd|x∗u|)

1
p (30.1.1)

where |x∗u| is given by (12) on p.55 of [B].
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The following theorem gives the relation between (mu)•p(g, T ) and u•p(g) for 1 ≤ p < ∞.

Theorem 30.2. Let u : K(T ) → X be a bounded weakly compact Radon operator and

let mu be the representing measure of u as in 18.10 of Ch. IV. Then a function g : T → KI is

u-measurable if and only if g is mu-measurable. Moreover, for a u-measurable scalar function g,

u•p(g) = (mu)•p(g, T ) (30.2.1)

for 1 ≤ p < ∞. Also we have

u•p(f + g) ≤ u•p(f) + u•p(g) (30.2.2)

u•p(αf) = |α|u•p(f), α ∈ KI (30.2.3)

and

u•1(fg) ≤ u•p1
(f) · u•p2

(g) (30.2.4)

for u-measurable scalar functions f and g on T if 1 ≤ p1, p2 < ∞ with 1
p1

+ 1
p2

= 1.

Proof. By Theorem 29.6(iv), g is mu-measurable if and only if it is u-measurable.

By (30.1.1) and by 18.10 we have

u•p(g) = sup
|x∗|≤1

(
∫

T
|g|pd|x∗u|)

1
p

= sup
|x∗|≤1

(
∫

T
|g|pd|u∗x∗|)

1
p

= sup
|x∗|≤1

(
∫

T
|g|pd|x∗ ◦mu|)

1
p

= sup
|x∗|≤1

(
∫

T
|g|pdv(x∗ ◦mu))

1
p

by Notation 4.4, Theorem 4.7(vi) and Theorem 4.11 of [P3] and by Theorem 3.3 of [P4] where

v(x∗ ◦mu) = v(x∗ ◦mu,B(T )) on B(T ). Hence

u•p(g) = (mu)•p(g, T ).
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Now by (30.2.1) and by Theorem 5.13 we have

u•p(f + g) = (mu)•p(f + g, T )

≤ (mu)•p(f, T ) + (mu)•p(g, T )

= u•p(f) + u•p(g)

and

u•p(αf) = |α|u•p(|f |)

for 1 ≤ p < ∞ and for α ∈ KI whenever f, g : T → KI are u-measurable. Moreover, if 1 ≤ p1, p2 < ∞
with 1

p1
+ 1

p2
= 1, then by Theorem 5.13 and by (30.2.1) we have

u•1(fg) = (mu)•1(fg, T )

≤ (mu)•p1
(f, T ) · (mu)•p2

(g, T )

= u•p1
(f) · u•p2

(g).

This completes the proof of the theorem.

Definition 30.3. Let X be a Banach space and let 1 ≤ p < ∞. Let u : K(T ) → X be a

bounded weakly compact Radon operator. Let F0
p (u) = {f : T → KI, fu-measurable and u•(|f |p) <

∞}. Let Ip(u) = {f : T → KI, f u-measurable and |f |p ∈ L1(u)}. Let

I(u) = {f : T → KI, fu-measurable and u-integrable}.

Theorem 30.4. Under the hypothesis of Definition 30.3, I1(u) = I(u).

Proof. If f ∈ I(u), then f ∈ L1(u). Thus, given ε > 0, there exists ϕ ∈ K(T ) such that

u•(|f−ϕ|) < ε. Since u•(|f |−|ϕ|) ≤ u•(|f−ϕ|) < ε, |f | ∈ L1(u) and hence f ∈ I1(u). Conversely,

if f ∈ I1(u), then f is u-measurable and |f | is u-integrable. Then by the complex analogue of

Theorem 1.22 of [T], f is u-integrable. Hence I1(u) = I(u).
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Definition 30.5. Let X be a Banach space, u : K(T ) → X be a bounded weakly compact

Radon operator and 1 ≤ p < ∞. Let Lp(u) = {f ∈ Ip(u) : u•(|f |p) < ∞}.

Theorem 30.6. Let X, u and p be as in Definition 30.5. Then Lp(u) = Ip(u) ⊂ F0
p (u).

Proof. If f ∈ Ip(u), then f is u-measurable and |f |p ∈ L1(u). Then by the complex analogue

of Definition 1.6 and by that of Lemma 1.5 of [T], u•(|f |p) < ∞.

Theorem 30.7. Let X be a Banach space and u : K(T ) → X be a bounded weakly compact

Radon operator. Then a function f : T → KI is u-integrable if and only if f is mu-integrable in T

and in that case ∫
fdu =

∫
T

fdmu.

Moreover, for f ∈ L1(u), u•1(f) = (mu)•1(f).

Proof. Let ϕ ∈ Cc(T ). Then by the proof of Lemma 18.19, ϕ is mu-integrable in T . Then by

18.10 we have

x∗u(ϕ) =
∫

T
ϕd(x∗u) =

∫
T

ϕd(u∗x∗) =
∫

T
ϕd(x∗ ◦mu) = x∗(

∫
T

ϕdmu)

for x∗ ∈ X∗. Hence by the Hahn-Banach theorem

u(ϕ) =
∫

ϕdu =
∫

T
ϕdmu (30.7.1)

for ϕ ∈ C0(T ).

Let f be u-integrable. Then there exists (ϕn)∞1 ⊂ Cc(T ) such that u•(|f − ϕn|) → 0 as

n →∞ and hence by the complex analogue of 1.10 of [T] we have

|
∫

fdu− u(ϕn)| = |
∫

(f − ϕn)du| ≤ u•(|f − ϕn|) → 0

as n →∞ and hence ∫
fdu = lim

n
u(ϕn) = lim

n

∫
ϕndu. (30.7.2)
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Then by Proposition 25.10, by Lemma 25.11 and by 18.10 we have

u•(|f − ϕn|) = sup
|x∗|≤1

|ux∗ |•(|f − ϕn|)

= sup
|x∗|≤1

|ux∗ |(|f − ϕn|)(by 25.11)

= sup
|x∗|≤1

|x∗u|(|f − ϕn|)

= sup
|x∗|≤1

|u∗x∗|(|f − ϕn|)

= sup
|x∗≤1

∫
|f − ϕn|d|x∗ ◦mu|

= sup
|x∗|≤1

∫
|f − ϕn|dv(x∗ ◦mu) (∗)

by Notation 4.4 and by Theorems 4.7(vi) and 4.11 of [P3] and by Theorem 3.3 of [P4] where

v(x∗ ◦mu) = v(x∗ ◦mu,B(T )).

Therefore, by (*) we have

u•(|f − ϕn|) = sup
|x∗|≤1

∫
T
|f − ϕn|dv(x∗ ◦mu) = (mu)•1(f − ϕn, T ). (30.7.3)

As u•(|f − ϕn|) → 0, by (30.7.3) we have (mu)•1(f − ϕn, T ) → 0. Consequently, by Theorem

20.10, f ∈ L1(mu). Moreover, by (30.7.1), (30.7.3), (5.3.1) and (30.7.2) we have∫
T

fdmu = lim
n

∫
T

ϕndmu = lim
n

∫
ϕndu =

∫
fdu.

Thus f is mu-integrable in T if f is u-integrable and∫
fdu =

∫
T

fdmu. (30.7.4)

Conversely, let f be mu-integrable in T . Then by Theorem 20.10 there exists (ϕn)∞1 ⊂ Cc(T )

such that (mu)•1(f − ϕn, T ) → 0 so that by (5.3.1) we have∫
T

fdmu = lim
n

∫
T

ϕndmu.

But by (30.7.1) we have ∫
T

ϕndmu =
∫

ϕndu

and hence ∫
fdmu = lim

n

∫
ϕndu. (30.7.5)
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As (mu)•1(f −ϕn, T ) = u•(|f −ϕn|) by (30.2.1), u•(|f −ϕn|) → 0 and hence f ∈ L1(u) by the

complex version of Definition 1.6 of [T]. Then by the complex analogue of 1.10 of [T] we have

|
∫

fdu−
∫

ϕndu| ≤ u•(|f − ϕn)|) → 0

as n →∞ and hence by (30.7.1) and (30.7.5) we have∫
fdu = lim

n

∫
ϕndu = lim

n

∫
T

ϕndmu =
∫

T
fdmu.

Thus L1(u) = L1(mu) and for f ∈ L1(u),∫
fdu =

∫
T

fdmu

whenever u is a bounded weakly compact Radon operator on K(T ) with values in a Banach space

X. Moreover, for f ∈ L1(u), u•1(f) = (mu)•1(f, T ) by (30.2.1).

This completes the proof of the theorem.

Theorem 30.8. Let X, u and p be as in Definition 30.5. Then Lp(u) is a seminormed space.

Proof. Let f, g ∈ Lp(u) and α be a scalar. Then |f |p, |g|p ∈ L1(u). Since |f + g|p ≤
2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p), since |f + g|p is u-measurable and since |f |p + |g|p ∈ L1(u) by

the complex version of Theorem 1.22 of [T], |f + g|p ∈ L1(u) and hence f + g ∈ Lp(u). Clearly,

|αf |p ∈ L1(u) for α ∈ KI and hence Lp(u) is a vector space over KI. Moreover, by (30.2.2) and

(30.2.3) and by Theorem 30.6, Lp(u) is a seminormed space.

Theorem 30.9. Let X, u and p be as in Definition 30.5. Then Lp(u) = Lp(mu) and hence

is complete for 1 ≤ p < ∞.

Proof. By Definition 30.5 and Theorem 30.6, Lp(u) = Ip(u) for 1 ≤ p < ∞. Moreover, by

Theorem 30.2, for f ∈ Lp(u),

u•p(f) = (mu)•p(f, T ). (30.9.1)

Then by Theorems 30.6, 30.7 and 7.5, f ∈ Lp(u) if and only if f ∈ Lp(mu). Consequently, by

(30.9.1) and by Theorem 6.8 of Ch. II, Lp(u) is complete.
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This completes the proof of the theorem.

Definition 30.10. Let X be a quasicomplete lcHs and u : K(T ) → X be a bounded weakly

compact Radon operator. A u-measurable function f : T → KI is said to be u-integrable in T if

it is uq = Πq ◦ u-integrable in T with values in X̃q (considering uq : K(T ) → Xq ⊂ X̃q) for each

q ∈ Γ (see Definition 25.18). In that case, using Notation 10.16 of Ch. III, we define∫
fdu = lim

←−

∫
fduq.

Definition 30.11. Let X be a quasicomplete lcHs and u : K(T ) → X be a bounded weakly

compact Radon operator. Let 1 ≤ p < ∞. For q ∈ Γ and g : T → KI u-measurable, let

(uq)•p(g) = sup
x∗∈U0

q

(
∫

T
|g|pdv(x∗u))

1
p

where U0
q = {x∗ ∈ X∗ : |x∗(x)| ≤ 1 for x ∈ Uq}.

Theorem 30.12. Under the hypothesis of Definition 30.11,

(uq)•p(g) = ((mu)q)•p(g, T ).

Proof. By Proposition 10.14(ii)(b) and by the definition of Ψx∗ as given in Proposition

10.14(ii)(a) of Ch. III, {Ψx∗ : x∗ ∈ U0
q } is a norm determining subset of the closed unit ball of

(Xq)∗ and for x∗ ∈ U0
q , x∗(Πq ◦u) = Ψx∗uq = x∗uq = x∗u by (ii)(a) of the said proposition. Then

by Lemma 5.2(ii) of Ch. II and by (30.2.1) we have

(Ψx∗uq)•p(g) = (
∫

T
|g|pdv(Ψx∗uq))

1
p = (

∫
T
|g|pdv(x∗ ◦mu))

1
p

and hence

(uq)•p(g) = sup
x∗∈U0

q

(Ψx∗uq)•p(g) = sup
x∗∈U0

q

(
∫

T
|g|pdv(x∗ ◦mu))

1
p = ((mu)q)•p(g, T )

by Theorem 13.2 of Ch. III.

Theorem 30.13. Let X be a quasicomplete lcHs and u : K(T ) → X be a bounded weakly

compact Radon operator. Let f : T → KI be u-measurable. If f is u-integrable, then
∫

fdu ∈ X.
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Proof. By Theorem 30.12, (uq)•1(g) = ((mu)q)•1(g, T ). If f is uq-integrable, then given ε > 0,

there exists ϕ ∈ Cc(T ) such that u•q(|ϕ−f |) < ε. Then by Theorem 30.12, ((mu)q)•1(f−ϕ, T ) < ε

and hence there exists xq ∈ X̃q such that
∫

fduq =
∫
T fdmq = xq for each q ∈ Γ. Thus∫

fdu = lim
←−

∫
fduq = lim

←−
xq = lim

←−

∫
fdmq ∈ X

by Definition 12.1 and Theorem 12.3 of Ch. III. Hence the theorem holds.

Remark 30.14 By using the complex version of Lemma 2.21 of [T] and Theorem 25.24, one

can give an alternative proof of the above theorem.

Definition 30.15. Let X be a quasicomplete lcHs and u : K(T ) → X be a bounded weakly

compact Radon operator. Let 1 ≤ p < ∞. Let F0
p = {f : T → KI, fu-measurable and (uq)•p(f) <

∞ for each q ∈ Γ}. Then we define Lp(u) = {f ∈ F0
p (u) and |f |pu-integrable (with values in X)}.

Using Theorem 30.12 and adapting the proof of Theorem 15.3(i) of Ch. III one can prove the

following theorem. The details are left to the reader.

Theorem 30.16. Let X be a quasicomplete lcHs, u : K(T ) → X be a bounded weakly

compact Radon operator and 1 ≤ p < ∞. Let f
(q)
n , n ∈ NI, be uq-measurable scalar functions on T

for q ∈ Γ. Let K(q) be a finite constant such that |f (q)
n | ≤ K(q) uq-a.e. in T . If f

(q)
n → f uq-a.e. in

T where f is a scalar function on T , then f, f
(q)
n , n ∈ NI belong to Lp(uq) and limn(uq)•p(f

(q)
n −f) =

0 for q ∈ Γ. Consequently, f ∈ Lp(u). When p = 1, f is u-integrable and

lim
n
|q(

∫
fdu)− |

∫
f (q)

n duq|q| = 0.

Lemma 30.17. Let X be a Banach space and let u : K(T ) → X be a prolongable Radon

operator with mu as its representing measure (see Theorem 19.9 of Ch. IV). For a relatively

compact open set ω in T , let v = u|K(ω). If f ∈ L1(u), then fχω ∈ L1(v). If mv = mu|B(ω), then

fχω ∈ L1(mv) and ∫
fχωdv =

∫
fχωdu =

∫
fχωdmv =

∫
fχωdmu.

Proof. By hypothesis, f is u-integrable. Since u is prolongable and ω is a relatively compact

open set in T , v = u|K(ω) is a bounded weakly compact Radon operator. Since f ∈ L1(u), given
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ε > 0, there exists ϕ ∈ K(T ) such that u•(|f−ϕ|) < ε. Since |ϕχω| ≤ |ϕ| ∈ L1(v), by the complex

version of Theorem 1.22 of [T] the function ϕχω ∈ L1(v). Moreover, in the notation of Lemma

27.3 we have f̂χω = fχω and ϕ̂χω = ϕχω and hence by Lemma 27.3(ii)

v•(|fχω − ϕχω|) = u•(|f̂χω − ϕ̂χω|) = u•(|fχω − ϕχω|) ≤ u•(|f − ϕ|) < ε

and hence fχω ∈ L1(v) by the complex version of the argument given in the last lines on p. 67

of [T] since ϕχω ∈ L1(v).

Since v = u|K(ω), mv = mu|B(ω). Since v is a bounded weakly compact Radon operator, and

since fχω ∈ L1(v), by Theorem 30.7 we have fχω ∈ L1(mv) and∫
fχωdv =

∫
fχωdu =

∫
fχωdmv =

∫
fχωdmu.

Hence the lemma holds.

Lemma 30.18. Let f : T → KI and let u : K(T ) → X be a prolongable Radon operator

where X is a Banach space. Then f is u-integrable if and only if f is mu-integrable in T .

Proof. Let f be u-integrable. Then by Theorem 27.9, f is x∗u-integrable in T for each

x∗ ∈ X∗ and for each open Baire set ω in T there exists xω ∈ X such that

x∗(xω) =
∫

ω
fd(x∗u)

for x∗ ∈ X∗. By 18.10 of Ch. IV, x∗u = u∗∗x∗ = x∗ ◦ mv since v = u|C0(ω) : C0(ω) → X is

weakly compact. Hence

x∗(xω) =
∫

ω
fd(x∗ ◦mv) (30.18.1)

for x∗ ∈ X∗. Let H = {x∗ ∈ X∗ : |x∗| ≤ 1}. Then H is a norm determining set for X and by the

Orlicz-Pettis theorem, H has the Orlicz property. Hence by (30.18.1), by the arbitrariness of the

open Baire set ω in T and by Theorem 22.4 of Ch. V, f is mu-integrable.

Conversely, let f be mu-integrable in T . Then clearly f is x∗◦mu-integrable in T for x∗ ∈ X∗.

Moreover, by 18.10 of Ch. IV, x∗ ◦mu = x∗u|C0(ω) and hence f is x∗u-integrable in T for each

x∗ ∈ X∗. As observed above, H is a norm determining set for X with the Orlicz property. Then
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by Theorem 22.4 of Ch. V, for each open Baire set U in T , there exists a vector xU ∈ X such

that

x∗(xU ) =
∫

fd(x∗ ◦mu) =
∫

fd(x∗u)

for x∗ ∈ X∗. Consequently, by Theorem 27.9 f is u-integrable. Hence the lemma holds.

Theorem 30.19. Let X be a Banach space and let v : K(T ) → X be a prolongable Radon

operator. If f ∈ L1(v), then f ∈ L1(mv) and∫
fdv =

∫
T

fdmv.

Conversely, if f ∈ L1(mv), then f ∈ L1(v) and∫
T

fdmv =
∫

fdv.

Proof. Let f : T → KI be v-integrable. Then f is x∗v-integrable for each x∗ ∈ X∗ and

hence N(f) is σ-bounded. Let (Kn)∞1 ⊂ C such that N(f) ⊂
⋃∞

1 Kn. Then by Theorem 50.D

of [H], there exist relatively compact open sets (ωn)∞1 in T such that Kn ⊂ ωn, n ∈ NI. Then

N(f) ⊂
⋃∞

1 ωn. Let Un =
⋃n

k=1 ωk. Then Un ↗ and Un is relatively compact and open in T for

each n. Moreover, fχUn → f pointwise in T . As |fχUn | ≤ |f | ∈ L1(v), by the complex analogue

of Theorems 1.22 and 4.7 of [T] we have∫
fdv = lim

n

∫
fχUndv. (30.19.1)

Let vn = v|K(Un). As Un, n ∈ NI, are relatively compact open sets in T , by the hypothesis

on v, vn, n ∈ NI, are bounded weakly compact Radon operators on K(Un) and by Lemma 30.17,

fχUn ∈ L1(vn)), fχUn ∈ L1(mvn) and∫
fχUndvn =

∫
fχUndv =

∫
fχUndmvn =

∫
fχUndmv.

Then by (30.19.1), by Lemma 30.18 and by LDCT given by Theorem 3.7 and Remark 4.3 of Ch.

I we have ∫
fdv = lim

n

∫
fχUndv = lim

n

∫
fχUndmv =

∫
fdmv.

Conversely, let f ∈ L1(mv). Then clearly N(f) is σ-bounded and hence there exists a sequence

of (ωn)∞1 of relatively compact open sets in T such that N(f) ⊂
⋃∞

1 ωn. Take Un = ∪n
k=1ωk. Then
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fχUn → f pointwise in T . Then by Theorem 3.5(vii) and Remark 4.3 of Ch. I, fχUn ∈ L1(mv)

for each n. Then by LDCT given by Theorem 3.7 and Remark 4.3 of Ch. I we have∫
fdmv = lim

n

∫
fχUndmv. (30.19.2)

Let vn = v|K(Un). Then by Lemma 30.17 we have∫
fχUndvn =

∫
fχUnd(mvn)

and

lim
n

∫
fχUndv = lim

n

∫
fχUnd(mvn) = lim

n

∫
fχUndmv =

∫
T

fdmv (30.19.3)

by (30.19.2).

Since (fχUn)∞1 ⊂ L1(v) and fχUn → f pointwise in T and since f is v-integrable by hypoth-

esis, by Theorem 4.7 of [T] we have ∫
fdv = lim

n

∫
fχUndv.

Then by (30.19.3) we conclude that ∫
fdv =

∫
T

fdmv.

This completes the proof of the theorem.

Definition 30.20. Let X be a quasicomplete lcHs and v : K(T ) → X be a prolongable

Radon operator. A v-measurable scalar function is said to be v-integrable if it is vq = Πq ◦ v-

integrable with values in X̃q (considering vq : K(T ) → Xq ⊂ X̃q) for each q ∈ Γ. In that case,

using Notation 10.16 of Ch. III, we define∫
fdv = lim

←−

∫
fdvq.

Theorem 30.21. Let X be a quasicomplete lcHs and v : K(T ) → X be a prolongable Radon

operator. Let f : T → KI be v-measurable. If f is v-integrable, then
∫

fdv ∈ X.

Proof. This follows from Definition 30.20, the complex version of Lemma 2.21 of [T] and

Theorem 25.24.
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Theorem 30.22. Let X be a quasicomplete lcHs and v : K(T ) → X be a prolongable Radon

operator. If f ∈ L1(v), then f ∈ L1(mv) and∫
fdv =

∫
fdmv.

Conversely, if f ∈ L1(mv), then f ∈ L1(v) and∫
fdmv =

∫
fdv.

Proof. This is immediate from Definitions 12.1 (of Ch. III) and 30.20 and from Theorem 30.19.

Remark 30.23. By Theorems 30.7 and 30.21, the questions (Q5) and (Q6) mentioned in In-

troduction of Ch. I are answered in the affirmative.

Remark 30.24. It is not known whether the results analogous to Theorems 30.9 and 30.12

hold for prolongable Radon operators on K(T ).
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