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Abstract

We define an illumination operator which is in some way related with two operators defined

by Martini & Wenzel. Here we study properties of the new operator, establish relations

between the existing ones and we obtain results that connect them.
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Resumen

Definimos aquí un operador de iluminación que, en algún sentido, se vincula con dos

operadores utilizados por Martini y Wenzel. Presentamos propiedades del nuevo operador a

la vez que establecemos relaciones con los anteriores.
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1 Basic definitions and notations.

Unless otherwise stated, all the points and sets considered here are included in Rn the real

n-dimensional euclidian space.

The open segment joining two different points x and y is (x, y), while the substitution of one

or both parentheses by square ones indicates the adjunction of the corresponding endpoints. The

interior, closure, boundary, and complement of a set K are denoted by: intK, clK, bdK and KC

respectively. The join of the sets A and B is the set J (A,B) =
⋃

{[a , b] a ∈ A , b ∈ B}
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In particular, J ({x},K) is simply denoted J(x,K). If K is a convex set it holds that

J (x,K) = conv ({x} ∪ K), where convK indicates the convex hull of K. The affine hull generated

by the set A is aff(A). We symbolize [x, y > the closed ray issuing from x and going through y.

A convex component of S is a maximal convex subset of S. The mirador (convex kernel) of

S is the set mir S of all the points x ∈ S that verifies [x ; y] ⊂ S for all y ∈ S. S is convex

if mir S = S, and S is starshaped if mir S is not empty. If K is a nonconvex set, the convex

deficiency of K is the set D(K) = convK\K. A body is a set having non empty interior.

The family of all subsets of E is denoted by P(E). Martini and Wenzel defined ([3]) for

every K ⊂ Rn and its complement E = KC , the visibility operator σ
K

: P(E) −→ P(E) by

σ
K

(A) = A∪{b ∈ E −A : ∃a ∈ A such that [a, b]∩K = ∅ and [a, b > ∩K 6= ∅}. If A = {x}, the

set σ
K

({x}) is simply denoted σ
K

(x).

2 Introduction.

Many authors have studied Visibility form different points of view. One of the lines more

studied considers, as the basic definition, that a point x ∈ S sees -via S- other point y ∈ S if

and only if [x, y] ⊂ S. Notice that the definition forces the points to lie both in the set where the

visibility is stated. Martini and Wenzel in [5] refer to “visibility” in this sense but in [4] they work

with this notion in another way. We describe their approach in what follows. They take some set

K and state that a point x ∈ KC sees y ∈ bdK if [x, y]∩K = {y}. For a closed set K, the points

involved do not lie in the same set. Of course this idea is close to the one of illumination, an area

in which Martini and Wenzel have been working, and where we focus in this paper.

The visibility operator defined by Martini and Wenzel in [3] was used to characterize convex

sets by means of studying properties of it in terms of set theory. Their main result states that a

compact set K, such that its complement is connected, is convex if and only if σ
K

is a closure

operator. A closure operator verifies to be increasing, monotone and idempotent. In a recent work

([4]) they have also defined two other operators σ0 and σ̂. The first one preserves the definition

of σ
K

with the difference that the space E is the complement of the interior of K instead of the

complement of K. The different sets σ0(A) contain points in the boundary of K and this fact

allows the authors to relate the operator with the idea of illuminating boundary points of K from
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outside it. Analogously, the other operator σ̂ is defined from P(Rn\intK) → P(Rn\intK) and

its definition allows the authors to work with visibility in the sense considered by them.

Following these ideas, we define here an illumination operator which is related with σ
K

but

tries to focus only on the boundary points illuminated from the external set. We study it in terms

of set theory and we also analyze properties of it in terms of Visibility Theory.

We begin extending to non convex sets the definition of illumination presented by Boltyanski

(see [1]) for convex sets.

Definition 1 Let K be a closed body and E = KC . A point y ∈ bdK is illuminated by x ∈ E if

[x; y) ∩ K = ∅ and [x; y > ∩ intK 6= ∅.

We define an illumination operator ilK : P(E) −→ P(cl(E)). If A ⊂ E then ilK(A) consists

of all those points in bdK which can be illuminated from at least some point of A, i.e.:

Definition 2 Let K be a subset in Rn and E = KC . The illumination operator ilK : P(E) −→

P(cl(E)) verifies that if A ⊂ E then ilK(A) is the set

ilK(A) = {y ∈ bdK : there exists some x ∈ A such that [x; y) ∩ K = ∅ and [x; y > ∩

intK 6= ∅}

In the case that A = {x}, we denote ilK(x) = ilK({x}).

The relation between σ
K

, ilK(A) and σ0 is clear: for every set A ⊂ E, it holds that σ
K

(A) ∪

ilK(A) = σ0(A).

3 Results.

The first two items of the next result show two analogous descriptions of visibility and illu-

mination operators. The third states the monotony of the illumination operator.

Proposition 3 Let K be a subset in Rn and E = KC . If A ⊂ E then

1. σ
K

(A) =
⋃

a∈A

σ
K

(a)
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2. If K is closed and int(K) 6= ∅, then ilK(A) =
⋃

a∈A

ilK(a)

3. If A ⊂ B ⊂ E then ilK(A) ⊆ ilK(B).

Proof. Since the two first proofs are similar, we include here the second one.

A certain point y ∈ ilK(A) if and only if there exists a ∈ A such that y ∈ ilK(a). This is

equivalent to state y ∈
⋃

a∈A

ilK(a).

The third item is immediate from the first one.

Remark 4 The converse of the monotony does not hold as this example shows. K = {(x, y) ∈

R2 : 4 ≤ x ≤ 6;−5 ≤ y ≤ 5}, A = {(x, y) ∈ R2 : x = 2, −1 ≤ y ≤ 1}, B = {(x, y) ∈ R2 : x =

1;−2 ≤ y ≤ 2}

Proposition 5 Let K be a closed convex body, E = KC, y ∈ bdK and x ∈ E. If (x; y) ⊂

int(σ
K

(x)) then y ∈ ilK(x).

Proof. We prove that the segment [x, y) does not meet K and that the closed ray [x, y >

meets the interior of K.

For the first one, recall that by the choice of x, x /∈ K and (x, y) ⊂ int(σ
K

(x)) ⊂ σ
K

(x) ⊂ KC .

To prove the second assertion, suppose that [x, y > ∩intK = ∅. Let us consider z ∈ (x; y) ⊂

int(σ
K

(x)) and B, a ball with center x, included in σ
K

(x). By our assumption and the fact that

y ∈ bdK, we can take H a support hyperplane of K through y such that (x, y) ⊂ H. We denote

H+ the closed half-space that contains K and H− its complementary half-space.

If t ∈ B ∩ H− then (x, t) ⊂ H− and thus [x, t > ∩K = ∅ which contradicts that t ∈ σ
K

(x).

Thus [x, y > ∩intK 6= ∅.

Remark 6 In the previous proposition, the condition of convexity of K cannot be removed. To

see this, consider K = {(x, y) ∈ R2 : x2 + y2 ≤ 1} ∪ {(x, y) ∈ R2 : y = 0 , 1 ≤ x ≤ 3}. Taking the

points x = (0,−3) ∈ R2 and y = (2, 0) ∈ K we obtain that (x; y) ⊂ int(σ
K

(x)) but y /∈ ilK(x).

Proposition 7 Let K be a closed set, intK 6= ∅ and x ∈ E = KC , then it holds that ilK(x) ⊂

ilK(σK(x)).

Proof. Using the fact that {x} ⊂ σK(x), it is immediate by item 3 of the proposition 3.

We explore here under what conditions the equality holds.
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Proposition 8 If K is a closed convex body and x ∈ E = KC , then, ilK(σK(x)) ⊂ ilK(x).

Proof. Consider y ∈ ilK(σK(x)), then there exists z ∈ σK(x) such that y ∈ ilK(z). Let us

suppose that [x; y) ∩ K 6= ∅, then we can take w ∈ [x; y) ∩ K. Since z ∈ σ
K

(x), it holds that

[x; z] ∩ K = ∅ and [x; z > ∩K 6= ∅. In this situation, if t ∈ [x; z > ∩K then (z; y) ∩ (w; t) 6= ∅.

This fact provides a contradiction because [w; t] ⊂ K and (z; y) ⊂ KC . Hence [x; y)∩K = ∅. On

the other hand, since z ∈ σ
K

(x), there exists p ∈ [x; z > ∩K. It is clear that p 6= z. Furthermore,

since y ∈ ilK(z), we can pick w ∈ [z; y > ∩intK 6= ∅, then there exists u ∈ (w; p) ⊂ intK such

that y ∈ (x;u), then [x; y > meets intK because this ray meets u.

Corollary 9 Let K ⊂ Rn be a closed convex body, then

1. If x ∈ E = KC , ilK(x) = ilK(σK(x)).

2. If A ⊂ E = KC , ilK(A) = ilK(σK(A)).

Proof. The first item is a trivial consequence of the two previous propositions.

To prove the second notice that by proposition 3.2 ilK(A) =
⋃

a∈A

ilK(a)

and
⋃

a∈A

ilK(a) =
⋃

a∈A

ilK(σK(a)) because K is convex

⋃

a∈A

ilK(σK(a)) = ilK

(

⋃

a∈A

σK(a)

)

by proposition 3.2

ilK

(

⋃

a∈A

σK(a)

)

= ilK(σK(A)) by proposition 3.1

Finally we get ilK(A) = ilK(σK(A)).

Proposition 10 Let K be a convex body and x ∈ E = KC . If B is a convex body and B ⊂ σK(x)

then:

1. σB(x) ⊂ σK(x).

2. σK(B) ⊂ σK(x).

Proof.

1. Let y ∈ σB(x), we can pick z ∈ [x; y > ∩B. By hypothesis this point z lies in σ
K

(x) and

therefore [x; z] ∩ K = ∅ and [x; z > ∩K 6= ∅. It is clear that both rays [x; y > and [x; z >

coincide, then [x; y] ∩ K = ∅ and the thesis follows.
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2. Let y ∈ σK(B).

If y ∈ B we have nothing to prove because B ⊂ σK(x).

If y /∈ B there exists b ∈ B such that [b; y]∩K = ∅ and [b; y > ∩K 6= ∅. As b ∈ B ⊂ σK(x)

results [x; b] ∩ K = ∅ and [x; b > ∩K 6= ∅. Then there exist x1 ∈ [x; b > ∩K and

y1 ∈ [b; y > ∩K. There exists z ∈ [x1; y1] such that y ∈ [x; z]. As K is convex, this point

z belongs to K. Then [x; y > ∩K 6= ∅. On the other hand, suppose that there exists

t ∈ [x; y] ∩ K. Thus [t; z] ⊂ K and this is absurd because y ∈ [t; z] but y /∈ K.

Proposition 11 Let K be a convex body, A ⊂ E = KC and B ⊂ E such that σ
K

(A) ⊆ σ
K

(B).

Then ilK(A) ⊆ ilK(B).

Proof. Corollary 9.2 and Proposition 3.3.

Remark 12 The converse does not hold, as this example shows.

K = {(x, y) ∈ R2 : 4 ≤ x ≤ 6;−5 ≤ y ≤ 5}, A = {(x, y) ∈ R2 : x = 2, −1 ≤ y ≤ 1},

B = {(x, y) ∈ R2 : x = 1;−2 ≤ y ≤ 2}. Then ilK(A) = ilK(B) but σ
K

(A) * σ
K

(B).

The next proposition is related with Prop. 2.3. of [5] in the sense that both states starshaped-

ness of sets related, in some sense, with σK(A). In Martini‘s work, the mirador of K ∪ σK(A) is

K (in the case that K is convex and non empty), while in this work we study the possibilities of

A to be the mirador of σK(A).

Proposition 13 Let K ⊂ Rn a closed set and x ∈ E = KC .The following properties hold:

1. If intK 6= ∅ and y ∈ ilK(x) then [x; y) ⊂ σ
K

(x).

2. The set σ
K

(x) is starshaped and x ∈ mir(σ
K

(x)).

Proof.

1. Let z ∈ [x; y). The result is immediate because [x; z) ⊂ [x; y), and y ∈ ilK(x).

2. Let z ∈ σ
K

(x) and y ∈ [x; z]. the inclusion of the segments [x; y] ⊂ [x; z] implies that

y ∈ σ
K

(x), thus x sees z via σ
K

(x).
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Remark 14 This second result cannot be extended to any set A instead of {x}. Even assuming

the convexity of A and K is it not enough to make this statement valid. Consider, for example,

K = conv{(0, 0), (2, 1), (2,−1)} and A = {(x, y) ∈ R2 : x = −2;−4 ≤ y ≤ 4}. In this case A is

not included in mir(σ
K

(A)). Recall that mir(σ
K

(A)) = conv{(0, 0), (−2, 1), (−2,−1)}).

Proposition 15 Let K ⊂ Rn be a closed set and x ∈ E = KC. If y ∈ int(σ
K

(x)) then there

exists ε > 0 such that J(x;B(ε; y)) ⊂ σ
K

(x).

Proof. If y ∈ int(σ
K

(x)) then there exists ε > 0 such that B(y; ε) ⊂ σ
K

(x). From the

previous proposition x ∈ mir(σ
K

(x)) implies that J(x;B(y; ε)) ⊂ σ
K

(x).

The following theorem is connected with one of the well known results by Boltyanski about

illumination by sources (see [1]). The authors assert that the smaller number of sources needed

to illuminate a convex compact body in Rn is n + 1. We explore here the position of the sources

to be able to illuminate such a set. The result is a necessary condition, but not sufficient, for a

set A to be able to illuminate a convex compact body.

Theorem 16 Let K be a compact convex body and A ⊂ E = KC . If ilK(A) = bdK then

aff(A) = Rn.

Proof. Suppose that aff(A)  Rn. Therefore there exists an hyperplane H such that

aff(A) ⊂ H. Let H1 be the support hyperplane of K parallel to H. We denote H+

1
the half-space

which verifies A ⊂ H+

1
and K ⊂ H+

1
. It is clear that there exists a point x ∈ H1∩K = H1∩ bdK.

We assert that such point of the set is not illuminated by any point of A. To prove this we take

any a ∈ A. Then the open half-line with origin in x and going in the same direction of [a, x > does

not meet K, then such x ∈ bdK is not illuminated by A which is an absurd. Thus aff(A) = Rn.

Remark 17 The previous theorem cannot be extend to an unbounded convex body as the example

shows. A = {(−1; 0), (1; 0)} and K = {(x, y) ∈ R2 : −1 < x < 1; y < 1

x2−1
} then bdK is

illuminated by A but aff(A) = {(x, y) ∈ R2 : y = 0} 6= R2.

Lemma 18 Let K ⊂ Rn be a compact convex set and K0 a connected component of the convex

deficiency D(K). If K0 ⊂ int(convK) and x ∈ K0 then σK(x) ⊂ K0.
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Proof. Let p ∈ σK(x). We can take a point y ∈ [x, p > ∩K. As x ∈ K0 and y ∈ K ⊂ convK

then [x, y] ⊂ convK and therefore [x, p] ⊂ convK. Thus [x, p] ⊂ D(K) and p ∈ K0.

The following theorem is a characterization of convex sets in terms of σK .

Theorem 19 For a compact body K, the following statements are equivalent:

(i) K is a convex set

(ii) If x ∈ KC then σK(x) ∩ convK = ∅.

Proof. (i)⇒(ii) it is immediate because if x ∈ KC then σK(x) ∩ convK = σK(x) ∩ K which

is empty by the definition of σK(x).

(ii)⇒(i) Let us suppose that K is not a convex set. Then, there exists a connected component

K0 of the convex deficiency D(K). We split the prove in two cases:

a) K0 ⊂ int(convK).

Let us take any x ∈ K0. In this case x ∈ convK and always x ∈ σK(x) by definition of

σK(x), then σK(x) ∩ convK 6= ∅.

b) K0 6⊂ int(convK).

In this case there exists x ∈ K0 such that x /∈ int(convK) and therefore x ∈ bd(convK).

The fact that x ∈ K0 and K is compact implies that x /∈ bdK. Then x ∈ bdK0 and therefore

bdK0 * bdK. Thus there exist points a, b ∈ convK that verify [a, b] ⊂ bd(convK) ([2]). Let

us take x0 ∈ (a, b) and let H be a support hyperplane of convK through x0. We call H+

and H− to the half-spaces determined by H where K ⊂ H+. Let us consider t ∈ intK and

let L be the line through x0 and t. Any point y ∈ L∩H− verifies that σK(y)∩ convK 6= ∅.

To prove this, notice that x0 ∈ convK (by the choice of x0). Furthermore [y, x0] ∩ K = ∅

(because [y, x0) ⊂ H− and x0 ∈ H \ K) and [y, x0 > ∩K 6= ∅ (because t ∈ [y, x0 > ∩K).

Hence this point y ∈ KC verifies σK(y) ∩ convK 6= ∅ and the thesis follows.
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