Revista Notas de Matemática Vol.5(2), No. 278, 2009, pp.20-28 http://www.saber.ula.ve/notasdematematica/ Comisión de Publicaciones Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes

Almost preenvelopes of commutative rings

Carlos Parra, Rafael Parra y Juan Rada

Abstract

We study almost \mathcal{F} -preenvelopes in the category of rings, for a significative class \mathcal{F} of commutative rings. We completely identify those rings which have an almost \mathcal{F} -preenvelope when \mathcal{F} is the class of fields, semisimple rings, integer domains and local rings. We show that rings with Krull dimension zero have (almost) \mathcal{V} -preenvelopes, where \mathcal{V} is the class of von Neumann regular rings.

key words. Almost preenvelopes, semiprimitive rings, local rings, von Neumann regular rings.AMS(MOS) subject classifications. 13C05; 16S10; 18B99.

1 Introduction

Enochs [4] introduced the concept of envelope and cover with respect to an arbitrary class of objects in a given category. More precisely, let \mathcal{C} be a category and \mathcal{F} a class of objects in \mathcal{C} . A \mathcal{F} -preenvelope of an object M in \mathcal{C} is a morphism $f: M \longrightarrow F$, where $F \in \mathcal{F}$, such that for every morphism $g: M \longrightarrow F'$, where $F' \in \mathcal{F}$, there exists a morphism $h: F \longrightarrow F'$ such that hf = g. Furthermore, if each morphism $k: F \longrightarrow F$ such that kf = f is an isomorphism, then f is called a \mathcal{F} -envelope of M. The concepts of \mathcal{F} -precover and \mathcal{F} -cover are defined dually. This definition includes as particular cases the classical concepts of injective envelope and projective cover of a module, setting \mathcal{F} the class of injective modules or projective modules, respectively, in the category \mathcal{C} of modules.

Recently, Parra and Saorín [6] initiated the study of \mathcal{F} -(pre) envelopes in the category \mathcal{C} of rings, when \mathcal{F} is a significative class of commutative rings. They identify those rings for which there exists a \mathcal{F} -(pre) envelope when \mathcal{F} is the class of fields, semisimple commutative rings and integer domains. Also, they study the more complicated case of \mathcal{F} -(pre) envelopes when \mathcal{F} is the class of commutative [3] and [5]), we study the more general situation of *almost* \mathcal{F} -(pre) envelopes in the category \mathcal{C} of rings.

We first show that every \mathcal{F} -(pre) envelope is an *almost* \mathcal{F} -(pre) envelope of a ring, but the converse does not hold (Remark 2.4 and Example 2.5). However, when \mathcal{F} is the class of integer domains or \mathcal{F} is contained in the class *SRings* of semiprimitive rings, the two concepts are equivalent (Proposition 3.1 and Theorem 4.3). A particular case of semiprimitive rings is the class \mathcal{V} of von Neumann regular rings. Although we were not able to identify the rings that have a \mathcal{V} -preenvelope, we show in Corollary 3.5 that if K-dim(R) = 0 then R has an almost \mathcal{V} -preenvelope. Finally, we identify in Theorem 5.1 those rings which have an (almost) \mathcal{L} -preenvelope, where \mathcal{L} is the class of local rings.

2 Almost preenvelopes of commutative rings

Let R be a (possibly non-commutative) ring and C a class of rings. Motivated by [5] we extend the concept of C-preenvelope of a ring R in this section. We begin by introducing the concept of superfluous ideal of a ring. We assume that all ideals are two-sided ideals.

Definition 2.1 Let R be a ring and I an ideal of R. I is a superfluous ideal of R, denoted by $I \ll R$, if for every ideal K of R

$$I + K = R \Longrightarrow K = R$$

A ring epimorphism $f : R \longrightarrow S$ is superfluous if $Ker(f) \ll R$.

Example 2.2 Let J(R) denote the Jacobson radical of R. If K is an ideal of R and J(R) + K = R then 1 = a + b, where $a \in J(R)$ and $b \in K$. Hence $b = 1 - a \in K$ is invertible which implies K = R. In other words $J(R) \ll R$. Hence for every ideal I of R

$$I \subseteq J(R) \Rightarrow I \ll R$$

When R is commutative the converse also holds. In fact, let $a \in I$ and $r \in R$. Then Ra + R(1-ar) = R. Since $Ra \subseteq I$, I + R(1-ar) = R which implies R(1-ar) = R. Hence 1 - ar is invertible for every $r \in R$ and so $a \in J(R)$.

Definition 2.3 Let \mathcal{H} be a class of rings and R a ring. A homomorphism $\varphi : R \longrightarrow H$, where $H \in \mathcal{H}$, is an almost \mathcal{H} -preenvelope of R if for every homomorphism $\psi : R \longrightarrow H'$, where $H' \in \mathcal{H}$, there exists a superfluous epimorphism $\theta : H' \longrightarrow H''$, where $H'' \in \mathcal{H}$, and a homomorphism

 $\alpha: H \longrightarrow H''$ such that $\theta \psi = \alpha \varphi$.

R	$\stackrel{\varphi}{\longrightarrow}$	Η
$^{\psi}\downarrow$		\downarrow^{α}
H'	$\xrightarrow{\theta}$	H''

 φ is called an almost \mathcal{H} -envelope of R if each endomorphism f of H such that $f\varphi = \varphi$ is an automorphism.

Remark 2.4 If $\varphi : R \longrightarrow H$ is a \mathcal{H} -preenvelope of R then φ is an almost \mathcal{H} -preenvelope of R. In fact, if $\psi : R \longrightarrow H'$ is a homomorphism, where $H' \in \mathcal{H}$, then there exists $\alpha : H \longrightarrow H'$ such that $\psi = \alpha \varphi$. Then $1\psi = \alpha \varphi$ where $1 : H' \longrightarrow H'$ is the identity which is clearly a superfluous epimorphism.

Example 2.5 Let \mathcal{N} be the class of Noetherian commutative rings. We will show an example of an almost \mathcal{N} -preenvelope of a ring R which is not a \mathcal{N} -preenvelope of R. By [6, Example 5.3 (2)], there exists a non-Noetherian ring R and an ideal I of R such that $I \subseteq Nil(R)$, R/I is a Noetherian ring and $p: R \longrightarrow R/I$ is not a \mathcal{N} -preenvelope of R. However, $p: R \longrightarrow R/I$ is an almost \mathcal{N} -preenvelope of R. To see this, let $f: R \longrightarrow N$ be a homomorphism, where N is a Noetherian ring. Then clearly N/f(I)N is a Noetherian ring, and since $I \subseteq Nil(R)$ then

$$f(I) N \subseteq Nil(N) N \subseteq Nil(N) \subseteq J(N)$$

which implies that the projection $\pi: N \longrightarrow N/f(I) N$ is a superfluous epimorphism. Finally we have the commutative diagram

$$\begin{array}{cccc} R & \stackrel{p}{\longrightarrow} & R/I \\ f_{\downarrow} & & \hat{f}_{\downarrow} \\ N & \stackrel{\pi}{\longrightarrow} & N/f(I)N \end{array}$$

where $\widehat{f}: N \longrightarrow N/f(I) N$ is defined by $\widehat{f}(x+I) = f(x) + f(I) N$, for every $x \in R$.

We are specially interested in studying almost \mathcal{H} -preenvelopes of rings when $\mathcal{H} \subseteq CRings$, the category of commutative rings. Our next result shows that we can restrict to almost \mathcal{H} preenvelopes of commutative rings. By R_{com} we denote the quotient of the ring R by the ideal generated by the differences ab - ba, where $a, b \in R$. It is easy to see that the canonical epimorphism $\pi : R \longrightarrow R_{com}$ is a CRings-preenvelope of R. **Proposition 2.6** Let R be a ring and \mathcal{H} a class of rings such that $\mathcal{H} \subseteq \mathcal{C}$ Rings. R has an almost \mathcal{H} -preenvelope if and only if R_{com} has an almost \mathcal{H} -preenvelope.

Proof. Let $\varphi : R \longrightarrow H$ be an almost \mathcal{H} -preenvelope of R. Since H is a commutative ring there exists a homomorphism $\delta : R_{com} \longrightarrow H$ such that tal que $\delta \pi = \varphi$, where $\pi : R \longrightarrow R_{com}$ is the canoncial epimorphism. We will show that $\delta : R_{com} \longrightarrow H$ is an almost \mathcal{H} -preenvelope of R_{com} . In fact, let $\psi : R_{com} \longrightarrow H'$ a homomorphism, where $H' \in \mathcal{H}$. Since φ is an almost \mathcal{H} -preenvelope of R there exists a superfluous epimorphism $\theta : H' \longrightarrow H''$, where $H'' \in \mathcal{H}$, and a homomorphism $\alpha : H \longrightarrow H''$ such that $\alpha \varphi = \theta \psi \pi$. Hence $\alpha \delta \pi = \alpha \varphi = \theta \psi \pi$ and since π is an epimorphism, $\alpha \delta = \theta \psi$ and we are done.

Conversely, assume that $\psi : R_{com} \longrightarrow H'$ is an almost \mathcal{H} -preenvelope of R_{com} . We will see that the composition $R \xrightarrow{\pi} R_{com} \xrightarrow{\psi} H'$ is an almost \mathcal{H} -preenvelope of R. In fact, let $\varphi : R \longrightarrow H$ a homomorphism where $H \in \mathcal{H}$. Since $R \xrightarrow{\pi} R_{com}$ is a *CRings*-preenvelope of R, there exist $\delta : R_{com} \longrightarrow H$ such that $\varphi = \delta \pi$. On the oher hand, since ψ is an almost \mathcal{H} -preenvelope of R_{com} , there exists a superfluous epimorphism $\theta : H \longrightarrow H''$, where $H'' \in \mathcal{H}$, and a homomorphism $\alpha : H' \longrightarrow H''$ such that $\alpha \psi = \theta \delta$. Consequently,

$$\alpha\psi\pi = \theta\delta\pi = \theta\varphi$$

which implies that $\psi \pi$ is an almost \mathcal{H} -preenvelope of R.

3 Almost preenvelopes in semiprimitive rings

We denote by *SRings* the class of semiprimitive rings. In other words, $H \in SRings$ if and only if J(H) = 0.

Proposition 3.1 Let R be a ring and \mathcal{H} a class of rings such that $\mathcal{H} \subseteq$ SRings. R has an almost \mathcal{H} -preenvelope if, and only if, R has a \mathcal{H} -preenvelope.

Proof. Assume that $\varphi : R \longrightarrow H$ is an almost \mathcal{H} -preenvelope of R and $\psi : R \longrightarrow H'$ a homomorphism where $H' \in \mathcal{H}$. Then there exists a superfluous epimorphism $\theta : H' \longrightarrow H''$, where $H'' \in \mathcal{H}$, and a homomorphism $\alpha : H \longrightarrow H''$ such that $\alpha \varphi = \theta \psi$. Since $Ker\theta \ll H'$, it follows from Example 2.2 that $Ker\theta \subseteq J(H') = 0$ and so θ is an isomorphism. Thus $\theta^{-1}\alpha \varphi = \psi$ which implies that $\varphi : R \longrightarrow H$ is a \mathcal{H} -preenvelope of R. The converse is Remark 2.4.

We next apply Proposition 3.1 to several particular classes of semiprimitive rings. We denote the Krull dimension of the ring R by K-dim(R). **Corollary 3.2** Let R be a ring, \mathcal{F} the class of fields, \mathcal{S} the class of semisimple commutative rings and \mathcal{V} the class of regular von Neumann commutative rings.

- R has an almost F-(pre) envelope if, and only if, R has a F-(pre) envelope if, and only if, R is local and K-dim(R) = 0. In this case, the projection π : R → R/m is the F-envelope where m is the maximal ideal of R.
- 2. *R* has an almost S-(pre) envelope if, and only if, *R* has a S-(pre) envelope if, and only if, Spec(R) is finite. In this case, the canonical map $R \longrightarrow \prod_{\mathfrak{p} \in Spec(R)} k(\mathfrak{p})$ is the *S*-envelope, where $k(\mathfrak{p})$ is the quotient field of R/\mathfrak{p} for every $\mathfrak{p} \in Spec(R)$.
- 3. R has an almost \mathcal{V} -(pre) envelope if, and only if, R has a \mathcal{V} -(pre)envelope.

Proof. This is an immediate consequence of Proposition 3.1 and [6, Theorem 2.2].

Although we do not know which rings exactly have \mathcal{V} -preenvelopes, in our next results we show that every ring R such that K-dim(R) = 0 has a \mathcal{V} -preenvelope. Recall that a ring N is von Neumann regular if, and only if, K-dim(N) = 0 and Nil(N) = 0.

Lemma 3.3 Let R be a commutative ring. If $f : R \longrightarrow N$ is a ring homomorphism, where $N \in \mathcal{V}$, then $Nil(R) \subseteq Ker(f)$. Furthermore, if f is a \mathcal{V} -preenvelope of R then Nil(R) = Ker(f).

Proof. If $x \in Nil(R)$ then there exists a positive integer n such that $x^n = 0$. Hence,

$$0 = f(0) = f(x^{n}) = [f(x)]^{n}$$

and so f(x) is a nilpotent element of N. Since $N \in \mathcal{V}$, then Nil(N) = 0 and so $x \in Ker(f)$.

Now assume that f is a \mathcal{V} -preenvelope of R and let \mathfrak{p} be a prime ideal of R. Consider the inclusion $i : R/\mathfrak{p} \longrightarrow k(\mathfrak{p})$ and the canonical epimorphism $\pi : R \longrightarrow R/\mathfrak{p}$. Since $k(\mathfrak{p}) \in \mathcal{V}$ and f is a \mathcal{V} -preenvelope of R, there exists a homomorphism $\varphi : N \longrightarrow k(\mathfrak{p})$ such that $\varphi f = i\pi$.Consequently,

$$0 = \varphi f \left(Kerf \right) = i\pi \left(Kerf \right)$$

Since *i* is a monomorphism, $\pi(Kerf) = 0$ which implies $Kerf \subseteq Ker\pi = \mathfrak{p}$. Thus, $Kerf \subseteq \bigcap_{\mathfrak{p} \in Spec(R)} \mathfrak{p} = Nil(R)$.

We next show that the existence of \mathcal{V} -preenvelopes for a ring reduces to the existence of \mathcal{V} -preenvelopes for reduced rings. Recall that a ring R is reduced if Nil(R) = 0.

Theorem 3.4 Let R be a commutative ring. R has a \mathcal{V} -preenvelope if, and only if, R/Nil(R) has a \mathcal{V} -preenvelope.

Proof. Assume that $f : R \longrightarrow N$ is a \mathcal{V} -preenvelope of R. By Lemma 3.3, Nil(R) = Ker(f). Hence $g : R/Nil(R) \longrightarrow N$ given by $g(\overline{x}) = f(x)$, where $x \in R$, is a well defined monomorphism. We will show that g is a \mathcal{V} -preenvelope of R/Nil(R). Assume that $h : R/Nil(R) \longrightarrow N'$ is a homomorphism, where $N' \in \mathcal{V}$. Since f is a \mathcal{V} -preenvelope of R, there exists a homomorphism $\varphi : N \longrightarrow N'$ such that $\varphi f = h\pi$, where $\pi : R \longrightarrow R/Nil(R)$ is the canonical epimorphism. Further, it is clear that $g\pi = f$. Hence

$$h\pi = \varphi f = \varphi g\pi$$

and since π is a epimorphism, $h = \varphi g$.

Conversely, suppose that $f: R/Nil(R) \longrightarrow N$ is a \mathcal{V} -preenvelope of R/Nil(R). We will show that the composition

$$R \xrightarrow{\pi} R/Nil(R) \xrightarrow{f} N$$

is a \mathcal{V} -preenvelope of R. In fact, let $g : R \longrightarrow N'$ be a homomorphism, where $N' \in \mathcal{V}$. By Lemma 3.3, $Nil(R) \subseteq Ker(g)$. Then we can define the homomorphism $\overline{g} : R/Nil(R) \longrightarrow N'$ by $\overline{g}(\overline{u}) = g(u)$, for every $u \in R$. Note that $\overline{g}\pi = g$. Since f is a \mathcal{V} -preenvelope of R/Nil(R), there exists a homomorphism $\varphi : N \longrightarrow N'$ such that $\varphi f = \overline{g}$. Consequently,

$$\varphi f\pi = \overline{g}\pi = g$$

which shows that $f\pi$ is a \mathcal{V} -preenvelope of R.

Corollary 3.5 If R is a commutative ring such that K-dim(R) = 0 then R has a \mathcal{V} -preenvelope.

Proof. Since K-dim(R/Nil(R)) = K-dim(R) = 0 and R/Nil(R) is a reduced ring, then $R/Nil(R) \in \mathcal{V}$. Consequently, the identity $i : R/Nil(R) \longrightarrow R/Nil(R)$ is a \mathcal{V} -preenvelope of R/Nil(R). By Theorem 3.4, R has a \mathcal{V} -preenvelope.

4 Almost preenvelopes in integer domains

In this section \mathcal{D} will denote the class of integer domains.

Proposition 4.1 Let R be a commutative ring. If $\varphi : R \longrightarrow D$ is an almost \mathcal{D} -preenvelope of R then $Ker\varphi = Nil(R)$.

Proof. Let \mathfrak{p} be a prime ideal of R and $R/\mathfrak{p} \stackrel{i}{\longrightarrow} k(\mathfrak{p})$ the inclusion. If $R \stackrel{\pi}{\longrightarrow} R/\mathfrak{p}$ is the canonical epimorphism then since $\varphi : R \longrightarrow D$ is an almost \mathcal{D} -preenvelope of R and $k(\mathfrak{p}) \in \mathcal{D}$, there exists a superfluous epimorphism $\theta : k(\mathfrak{p}) \longrightarrow D'$, where $D' \in \mathcal{D}$, and $\delta : D \longrightarrow D'$ a homomorphism such that $\theta i \pi = \delta \varphi$. Since $k(\mathfrak{p})$ is a field, $Ker\theta = \{0\}$ or $Ker\theta = k(\mathfrak{p})$. But the second possibility cannot occur because $Ker\theta \ll k(\mathfrak{p})$. Thus $Ker\theta = \{0\}$ and θ is an isomorphism. In particular, $i\pi = \theta^{-1}\delta\varphi$. Therefore, $i\pi (Ker\varphi) = 0$ and since i is a monomorphism, $\pi (Ker\varphi) = 0$ so that $Ker\varphi \subseteq Ker\pi = \mathfrak{p}$. This shows that $Ker\varphi \subseteq \bigcap_{\mathfrak{p} \in Spec(R)} \mathfrak{p} = Nil(R)$.

Now we show that $Nil(R) \subseteq Ker\varphi$. Let $x \in Nil(R)$, then there exists $n \in \mathbb{N}$ such that $x^n = 0$. Hence

$$[\varphi(x)]^n = \varphi(x^n) = \varphi(0) = 0$$

and since D is an integer domain, $\varphi(x) = 0$ and so $x \in Ker\varphi$. In conclusion, $Ker\varphi = Nil(R)$.

Proposition 4.2 Let R be a commutative reduced ring. R has an almost D-preenvelope if and only if R is an integer domain.

Proof. Assume that $\varphi : R \longrightarrow D$ is an almost \mathcal{D} -preenvelope of R. By Proposition 4.1, $Ker\varphi = Nil(R) = \{0\}$. Hence φ is a monomorphism. Consequently, $R \cong \varphi(R) \subseteq D$ is an integer domain.

It was shown in [6, Proposition 2.4] that a ring R has a \mathcal{D} -(pre)envelope if, and only if, Nil(R) is a prime ideal of R. As we can see in our next result, this is equivalent to the existence of an almost \mathcal{D} -preenvelope of R.

Theorem 4.3 Let R be a commutative ring. R has an almost \mathcal{D} -preenvelope if, and only if, R has a \mathcal{D} -preenvelope if, and only if, Nil(R) is a prime ideal. In that case, the projection $p: R \longrightarrow R/Nil(R)$ is the \mathcal{D} -envelope.

Proof. We only need to show that if $\varphi : R \longrightarrow D$ is an almost \mathcal{D} -preenvelope of R then Nil(R) is a prime ideal of R. By Proposition 4.1, $Ker\varphi = Nil(R)$. If $a, b \in R$ satisfy $ab \in Ker\varphi$ then $0 = \varphi(ab) = \varphi(a)\varphi(b)$. Since D is an integer domain, $a \in Ker\varphi$ or $b \in Ker\varphi$. Consequently, $Ker\varphi = Nil(R)$ is a prime ideal of R.

5 Almost preenvelopes in local rings

In this section \mathcal{L} denotes the class of local rings.

Theorem 5.1 Let R be a commutative ring. The following conditions are equivalent:

- 1. R has a \mathcal{L} -(pre) envelope;
- 2. R has an almost \mathcal{L} -preenvelope;
- 3. R is local.

Proof. $1. \Rightarrow 2$. This is a consequence of Remark 2.4.

2. \Rightarrow 3. Let $\varphi : R \longrightarrow L$ be an almost \mathcal{L} -preenvelope of R and \mathfrak{m} the unique maximal ideal of L. Then $\mathfrak{p} = \varphi^{-1}(\mathfrak{m})$ is a prime ideal of R. On the other hand, $J(L) = \{x \in L : x \text{ is not invertible}\}$ since L is a local ring. Thus, if $s \in R \setminus \mathfrak{p}$ then $\varphi(s) \notin \mathfrak{m} = J(L)$ and so $\varphi(s)$ is invertible. It follows from the universal property of localization that there exists a unique homomorphism $h : R_{\mathfrak{p}} \longrightarrow L$ such that $\varphi = hf$, where $f : R \longrightarrow R_{\mathfrak{p}}$ is the canonical homomorphism. We will show that $f : R \longrightarrow R_{\mathfrak{p}}$ is an almost \mathcal{L} -preenvelope of R. In fact, let $\alpha : R \longrightarrow L'$ be a homomorphism, where $L' \in \mathcal{L}$. Then, since φ is an almost \mathcal{L} -preenvelope of R, there exists a superfluous epimorphism $\theta : L' \longrightarrow L''$, where $L'' \in \mathcal{L}$, and a homomorphism $\delta : L \longrightarrow L''$ such that $\theta \alpha = \delta \varphi$. Consequently

$$\delta hf = \delta \varphi = \theta \alpha$$

which implies that $f: R \longrightarrow R_p$ is an almost \mathcal{L} -preenvelope of R.

Now let \mathfrak{p}' be a prime ideal of R and consider the canonical homomorphism $f': R \longrightarrow R_{\mathfrak{p}'}$. Then there exists a superfluous epimorphism $\alpha_1: R_{\mathfrak{p}'} \longrightarrow L_1$, where $L_1 \in \mathcal{L}$ and a homomorphism $\delta_1: R_{\mathfrak{p}} \longrightarrow L_1$ such that $\delta_1 f = \alpha_1 f'$. Let $s \in R \setminus \mathfrak{p}$. Then f(s) is invertible and so $\alpha_1 f'(s) = \delta_1 f(s)$ is also invertible. Therefore, there exists $b \in L_1$ such that $\alpha_1 f'(s) b = 1$. Since α_1 is an epimorphism, there exists $a \in R_{\mathfrak{p}'}$ such that $b = \alpha_1(a)$ and so

$$\alpha_1\left(f'\left(s\right)a\right) = 1 = \alpha_1\left(1\right)$$

It follows that $1 - f'(s) a \in Ker(\alpha_1) \subseteq J(R_{\mathfrak{p}'})$. Since $R_{\mathfrak{p}'}$ is local, f'(s) a = 1 - (1 - f'(s)a) is invertible, consequently, $f'(s) = \frac{s}{1}$ is invertible in $R_{\mathfrak{p}'}$. Assume that $\frac{s}{1}\frac{u}{v} = 1$, where $u \in R$ and $v \in R \setminus \mathfrak{p}'$. Then there exists $s' \in R \setminus \mathfrak{p}'$ such that s'(us - v) = 0. Since $s' \in R \setminus \mathfrak{p}'$ and $v \in R \setminus \mathfrak{p}'$ we deduce that $s'us = s'v \in R \setminus \mathfrak{p}'$ and so $s \in R \setminus \mathfrak{p}'$. We have shown in this way that $\mathfrak{p}' \subseteq \mathfrak{p}$. Since \mathfrak{p}' eas an arbitrary prime ideal of R, we conclude that \mathfrak{p} is the unique maximal ideal of R, and so Ris a local ring.

 $3. \Rightarrow 1$. The identity $i: R \longrightarrow R$ is a \mathcal{L} -preenvelope of R.

References

- F. Anderson and K. Fuller, Rings and Categories of Modules. New York: Springer-Verlag. 1974.
- [2] M. Atiyah and I. Macdonald, Introducción al Álgebra Conmutativa. Editorial Reverté. 1973.
- [3] L. Bican and B. Torrecillas, Almost precovers. Comm Algebra, 2002, 30: 477 487.
- [4] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math., 1981, 39, 189
 209.
- [5] M. Lixin, D. Nanqing and T. Wenting, On almost precovers and almost preenvelopes, Acta Mathematica Scientia 2006, 26B (3): 395-400.
- [6] R. Parra and M. Saorín, Envelopes of commutative rings, arXiv:0906.4357v1 [math.AC].

CARLOS PARRA

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes Mérida 5101 - A, Venezuela e-mail: carlosparra@ula.ve

RAFAEL PARRA

Departamento de Cálculo, Escuela Básica, Facultad de Ingeniería Universidad de Los Andes Mérida 5101 - A, Venezuela e-mail: rafaelparra@ula.ve

JUAN RADA

Departamento de Matemáticas Universidad Simón Bolívar Caracas 1080 - A, Venezuela e-mail: juanrada@usb.ve