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Abstract

Improvement operators is a family of belief change opesdtuat is a generalization of usual iterated
belief revision operators. The idea is to relax the successaty, so the new information is not nec-
essarily believed after the improvement, but to ensureithatausibility has increased in the epistemic
state. In this paper we explore this large family by definiegesal different subclasses. In particular, as
minimal change is a hallmark of belief change, we study wheattze operators that produce the minimal
change among several subclasses.

1 Introduction

Belief change is a key task for any any rational agent. Modelhe evolution of the beliefs of one agent
when he receives new pieces of information is the aim of bedidision. The predominant approach for
modeling belief revision was proposed by Alchourrén, Gafdes and Makinson and is known as the AGM

belief revision framework [1, 6, 10].

This approach has been extended in order to cope with itkleief revision. The main approach for
iterated belief revision was proposed by Darwiche and HBafkee also [2, 9] for more recent develop-
ments and [16] for an overview of the different operatorsje@f the main step for adressing the iteration
of the revision process was to abandon logical belief badsasa(ise of their lack of expressive power, see

e.g. [8]) for epistemic states.

In [13] a generalization of iterated belief revision operat called improvement operators, has been
proposed. The idea is to define operators on epistemic stetebave a less drastic behavior than iterated
belief revision operators. One of the major requirementedielh revision operators is the so-called success
postulate, that imposes that the new pieces of informatiostive believed after the change. This is clearly
required for a lot of scenarios. But there are also some calsese we would like to take the information
into account in a more cautious way. So with improvement afpes the plausibility of the new piece of
information is increased, but it not necessarily believiédrahe change. They are other works on belief
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revision operators that do not satisfy the success postulat are called non-prioritized revisions (see for
instance [7] for an overview). But none of these works defughdgncrease of the plausibility of the new
information as done by improvement operators.

One major hallmark of belief change is the principle of mialrdhange. For belief revision this means
that we do not want to allownychange in the beliefs of the agent in order to allow the aoiditif the new
piece of information, we want to havar@nimalchange where the only changes are the ones really required
to allow the addition. The aim of this minimal change reqguieait is to keep as much as possible of the old
beliefs of the agent.

In this paper we explore the operators that perform a minichahge among several subclasses of
improvement operators.

The rest of the paper is organized as follows: we give thempiedries in the first section. The second
section is devoted to the introduction of improvement ojgesa The third section is devoted to the introduc-
tion of subclasses of improvement operators. The fourtiaemtroduce our criterion of minimality. The
three next sections study different class of soft improvanoperators. The last section is the conclusion.

2 Preliminaries

We consider a propositional languagedefined from a finite set of propositional variab®sand the
standard connectives. LEt denote the set of consistent formulaelof

An interpretationw is a total function fron to {0, 1}. The set of all interpretations is denoted An
interpretationw is a model of a formula € L if and only if it makes it true in the usual truth functional
way. [[«]] denotes the set of models of the formulai.e.,[a] = {w € W | w | a}. When{w,..,w,} is
a set of models we denote by, . ., aformula such thafp.,, . w,|| = {wi,..,ws}.

We will use epistemic states to represent the beliefs of gleataas usual in iterated belief revision [5].
An epistemic stat@ represents the current beliefs of the agent, but also additconditional information
guiding the revision process (usually represented by apter on interpretations, a set of conditionals, a
sequence of formulae, etc). L&tdenote the set of all epistemic states. A projection funcBo. £ — L*
associates to each epistemic sté&te consistent formuld (), that represents the current beliefs of the
agent in the epistemic stafe

For simplicity purpose we will only consider in this papemststent epistemic states and consistent
new information. Thus, we consider change operators agifursc> mapping an epistemic state and a
consistent formula into a new epistemic stag,in symbols,o : £ x £* — £. The image of a paif?, «)
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undero will be denoted by o a.

We adopt the following notations:

e U o" o defined as: ¥ ol o = VYoqu
Votlag = (Po"a)oa

o Uxa=VWo"a, wheren is the first integer such th& (¥ o” «) - a.

Note thatx is undefined if there is na such thatB(¥ o™ «) F «, but for all operators considered
in this work, the associated operatewill be total, that is for any paif, « there will existn such that
B(¥ o™ a) F « (see postulat@l)) below.

Finally, let< be a a total pre-order, i.e a reflexive € x), transitive (z <y Ay < z) — = < z) and
total (x < y vV y < z) relation overV. Then the corresponding strict relatienis defined asx < y iff
x < y andy £ x, and the corresponding equivalence relatiors defined ag ~ y iff x < y andy < z.
We denotew < w’ whenw < w’ and there is nav” such thatw < w” < w’. And we notew<tw’ when
w < w' andw £ w'. We also use the notationin(4, <) = {w € A | fuw’ € Aw' < w}. The set of total
pre-orders will be noted P.

When a setV is equipped with a total pre-ordet, then this set can be splitted in different levels, that
gives the ordered sequence of its equivalence cladses (S, ... S,). SoVz,y € S; z ~ y. We say in
that case that andy are at the same level of the pre-order. Andec S; Vy € S ¢ < j impliesz < y. We
say in this case that is in a lower level thary. We extend straightforwardly these definitions to compare
subsets of equivalence classes, i.difZ S; and B C S; then we say thatl is in a lower level than3 if

1< 7.
3 Improvement operators

We recall in this section the definition of improvement opers
Definition 1 An operatoro is said to be a weak improvement operator if it satisfies @1()@):

(11) There exists: such thatB(¥ o" a) F «

(12) f B(T) At/ L, thenB(T a) = B(V) A a

(13) If ak L, thenB(Voa) ¥ L

(14) For any positive integen if o; = ; forall i < nthenB(¥Yoaj;o0---oay,)=B(VoBio---0f,)
(15) B(Txa)ABE BT (aAp))

(16) If B(U xa) NS/ L, thenB(U x (aAp))F BT xa)Ap
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Postulates (12-16) are very close to postulates (R2-R6kahlUbelief revision operators [1, 10, 5]. The
important difference lies in postulate (I11) that is wealk&tithe usual success postulate (R1). So postulates
(12-16) hold for sequences of weak improvements only (wasiter revision they require only one step).

Definition 2 A weak improvement operator is said to be an improvementeif it satisfies (17) to (19).

(17) f a+ pthenB((¥ o p) xa) = B(¥ xa)
(18) If a —pthenB((¥opu)*a) = B(¥ )
(19) If B(V xa) tf —~pthenB((¥ o p) xa) -

These postulates correspond to the postulates for iteratésion [5, 9, 2]. Postulates (17) and (I8)
correspond to postulates (C1) and (C2) of [5], and post{l@)ecorrespond to postulate (P) of [9, 2]. As
for the basic postulates, the difference lies in the fadtttiay hold only for sequences of improvements.

Let us now recall the corresponding representation thenifd®]. Let us first define strong faithful

assignements.

Definition 3 A function¥ — <y that maps each epistemic stabeto a total pre-order on interpretations
<y is said to be astrong faithful assignmerntand only if:

1. fw = B(¥) andw’ = B(V), thenw ~y v’
2. fw = B(¥) andw’ (£ B(V), thenw <g v’

3. For any positive integen if a; = 3; for anyi < n then<goa,o...00n= <WoBio--08s

So now we can state the representation theorem for weak veprent operators:

Theorem 1 A change operatos is a weak improvement operator if and only if there existsansj faithful
assignment that maps each epistemic sfate a total pre-order on interpretations.y such that

[B(Y * )]} = min([a], <v) (1)

Let us now give the representation theorem for improvempataiors:

Definition 4 Leto be a weak improvement operator add— <y its corresponding strong faithful assign-
ment. The assignment will be called a gradual assignmenheifotoperties S1, S2 and S3 are satisfied

For coherence reasons we change the names of the classesatbopwith respect to [13], where “Improvement operétors
was the class of operators satisfying (11-111).
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(SDIf w,w’ € [[a] thenw <g W' & w <yoq W
(S2)If w,w' € [~a] thenw <y W' & w <goq W’
(S3)If w € [af,w' € [-a] thenw <y w' = W <gon W

Theorem 2 A change operatos is an improvement operator if and only if there exists a gaddssignment
such that
[B(¥ * @)] = min([[o], <w)

This theorem is a direct consequence of the theorem of [1&8hwbmoving (110) and (111) from the
set of postulates and the corresponding conditions (S4f$®)dfrom the assignment.

4 Belief Revision

In order to show that improvement operators are a genetializaf iterated belief revision operators con-

sider the following usual “success” postulate:

(R1) B(Toa)F a

Note that this postulate is the one that makes a distincteawden usual belief revision operators and
non-prioritized revision operators. Note also that (R1g marticular case of (11) where= 1.

Proposition 1 If o is a weak improvement operator (i.e. it satisfies (I11-16pttbatisfies (R1), thenitis a
AGM/DP revision operator (i.e. it satisfies (R1-R6) of [5]).

Proposition 2 If o is an improvement operator (i.e. it satisfies (11-19)) thatisfies (R1), then it is an
admissible revision operator (i.e. it satisfies (R1-R6) &nil-C4) of [5] and property (P) of [2, 9]).

5 Soft Improvement

As shown in the last section usual iterated belief revisiparators are a special case of weak improvement
operators. This is a well known subclass. But the family oakvenprovement operators is much larger
than that, and we want to explore further some of its subetas8elief revision operators are the weak
improvement operators that produces the biggest chandesiegistemic state. We investigate here the
opposite of the weak improvement operators spectrum, perabors of soft improvement, that produce
the smallest change. We propose some subclasses of softviempent operators by providing additional
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postulates and the corresponding representation theorenuswe study the minimal change operators of
these subclasses.

So we are interested in soft improvement operators definiesvbe

Definition 5 An improvement operator is said to be a soft improvementatpeif it satisfies the following
postulate

(110) If B(V *a) F —puthenB((¥ o p) x ) I

This postulate says that a formulahat is currently rejected by the agent, can not be direcitepted
by a soft improvement. The only admissible change of stattisait the formula can become undetermined.
Then another step of soft improvement will be required to entlle formula accepted by the agent. This
motivates the name “soft” improvement.

We can give a representation theorem for soft improvemegrtadprs:

Definition 6 Leto be a weak improvement operator afd— <y its corresponding strong faithful assign-
ment. The assignment will be called a soft gradual assignih#énms gradual assignment and the following
property holds

(SHIf w € [af,w' € [-a] thenw' <y w = W' <goq w

Theorem 3 A change operatob is a soft improvement operator if and only if there exists f gmdual
assignment such that
[B(¥ % a)]] = min([of, <v)

Again, this theorem is a direct consequence of the theordBdivhen removing (111) from the set of
postulates and the corresponding condition (S5) from tineliions of the assignment.

There are many operators in the class of soft improvemesithtve quite different behaviors.

So we will try to identify some specific behaviors for soft impement operators, and to study what
are the minimal change operators in each of these classes.

There is one important difference between soft improverngstators : some of them can be defined
locally, by looking only at the information of similar plabgity, while some of them are defined globally,
i.e. they require to look at the whole epistemic state. Wkthad locality property , and we express it on
the soft gradual assignment:
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Definition 7 A soft gradual assignment isodularif: let N, = {w"” | w” ~g¢ w}, let Ryon € {<, =, 0?}
andRy € {<, <, ~}:

(S9)w'Ryoqw = f(w' Ryw, Ny, @)

So this modularity property states that the plausibilitation between two interpretations after the im-
provement is a function of (i.e. the only information reguirare) the relation between the two interpreta-
tions before the improvement, the set of interpretatioas dhe equivalent to the less plausible interpretation
before the improvement, and of course the new piece of irdtom.

Intuitively this property expresses the fact that to know/¢hange of plausibility of interpretations at a
given level after the improvement by a formula it is enouglotik at this level and the immediately lower
one.

One can state another property that identify an importdfgrénce on the behavior of soft improvement
operators:
Definition 8 A soft gradual assignment issystematic enhancemait

(Sself w = -, w' | aandw <y w', thenw yoq w’

This property states that (the plausibility of) every maodliethe new piece of information is system-
atically improved. That means that if a model of the negatibn was just a little more plausible before
the improvement than a model @f then it is no longer the case after the improvement (the hadde will
be at least as plausible as the model of the negation).

So we will identify three different classes of soft improvemhoperators:

Systematic Soft Improvement (SSl)operators that correspond to systematic enhancemenhassigs.
Modular Soft Improvement (MSI) operators that correspond to modular soft gradual assigrsme

Soft Improvement (S1) operators that correspond to soft gradual assignments.

In the following sections we will define minimal change optera for each of these classes. But we
have to define first what is our minimality criterion. Thath® tobject of the next Section.

2’ By oo w means that the relationship betweeandw’ is not determined by the functighfor w’ Ryoaw. So this relationship
will be defined byw Ry.w’ since the pre-order is a complete one.
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6 Minimality

One major objective of belief change theories is to defingaipes that produces minimal change in the
beliefs of the agent. This is a natural requirement becaebef® are valuable, so we want to keep as much
as possible the old beliefs of the agent (no unnecessargtfong), and because we want the agent to be
rational by not adding exotic beliefs (no unjustified aduii

For improvement operators, as the representation theoi@esshat each operator corresponds to a
gradual assignment (and if we consider this representaisothe canonical one), we can consider these
operators as transitions between total pre-orders. Incdse there is a natural measure of change: the
Kemeny distance [11] between the old pre-order (the preradsociated to the old epistemic state) and the
new one.

Definition 9 The Kemeny Distance is the functidp : 7P x 7P — N defined as: giver;, <, two
total pre-ordersd (<1, <9) is the cardinal of the symmetrical difference of the preeosdi.e. the number
of elements irK; which are not in<, plus the number of elements ity which are not in<;. In symbols
we have

dr(<1,<9) = <1 A <o

Definition 10 Leto; andos be two improvement operators. We say thaproduces less change thanif
for any epistemic stat& and any formulau:

dr (S, <worpn) < dr(Sw, <woop)

So this definition means that an operator produces less elthag another one if on all possible im-
provements the first one produces less change (with resp&eimeny distance) than the second one.

Example 1 SupposeV = {w1,ws,ws,ws}. Consider two improvement operatars ando,. Let ¥ be an
epistemic state wherey is his respective pre-order given by the gradual assignriss the figure below).
Let . be a formula such thelu] = {ws,ws}. Suppose that the pre-ordefSy,, , and <., are the results
of the improvement ofF by the new informatiom with respect the operators; and o, respectively.

Wye——t3e— —wye—tig®  ——tw3e——
e  —Wie e e

<v Sworp Swoa It is not hard to see thadx (<w, <wo,,) = 3
and thatdx (<w, <wo,,) = 2. S0 on this example, produces less change than (but to conclude that,
produces less change than this has to be checked for all cases).
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7 Systematic Soft Improvement

Before giving the postulate that characterize this belmav@need some notations.

Definition 11 Leto be a change operator satisfying (11). Lt and ¥ be two formulae and an epistemic
state respectively. We say thatis below 3 with respect to¥, giveno, denoteda <y, 3 (or simply
a <y [ if there is no ambiguity about) if and only ifa ¥ L, ¥ L, B(V xa) - B(¥ x (a VvV 3)) and
B(V ) i/ B(¥ *(aV f)).

The pair(a, 3) is W-consecutive, denoted <y, 3 (or simplya <<y /3 if there is no ambiguity about
o) if and only ifa <y [ and there is no formulg such that <g v <y 5.

So now, let us introduce an additional postulate in orderh@aracterize operators of systematic soft

improvement:

(111) If B(¥Y x ) F ~panda <y a A pthenB((¥ o pu) * o) I —p

And we can state a corresponding representation theorem:

Theorem 4 A change operatop is a systematic soft improvement operator if and only if éhexists a
systematic enhancement such that

[B(V* )]} = min([a], <v)

This is approximatively the main Theorem in [13]. The onljfetience is that condition (Sse) is used
in the assignement instead of condition (S5) in [13]:

(SH)If w € [[af, w' €[[—a] thenw <y w = w <goq '

Clearly (Sse) and (S5) are equivalent in the presence of{Bd-S4) conditions.

As explained in [13], there is only one operator of systematift improvement (once the pre-order
associated to the initial epistemic state is fixed). We véill this operator one-improvement, and note.it

The fact that this is the only operator of this class impliaightforwardly that it is the one that
produces the minimal change.

So condition (Sse) can be considered as very strong, sidedinies a class of soft improvement opera-
tors that contains only one operator. But, first we considat {Sse) is very sensible, so it is interesting to
study its consequences. And secondly recall that the cfagsak improvement operators is wider than soft
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improvement operators, and (Sse) can also prove valualnless¢cdminate operators in other classes. For
instance we can remark that it allows to discriminate bebefsion operators, since Boutilier's natural re-
vision [3] and Darwiche and Pearloperator [5] do not satisfy (Sse), while Nayak’s lexicodriapoperator
[15, 12] does.

8 Modular Soft Improvement

Modular soft improvement are operators that can be defirgdlyp by looking at beliefs of similar plausi-
bility.

(H1) If B(Y*a)F ~p,a Kg aAp and=35(6 F ~panda <y ), thenB((¥ o p) x o) i/ =

This postulate means that when the revision (i.e. sequdnogoovements until success) lbyimplies
the negation ofu, if u is just a little less plausible than its negation giverthen an improvement by will
be enough to remove its negation from the beliefs of the agéwie that this postulate is weaker than (111).

(H2) If B(Y x ) F =, « Ky a A pand3G(6 F —panda <y [), thenB((V o pu) o) F —p

This postulate is very close from (H1), and deals with theecakere the revision (i.e. sequence of
improvements until success) layimplies the negation of;, but x» and—u are both a little less plausible
than—u, then an improvement by will not be enough to remove its negation from the beliefshefagent.

Definition 12 A soft improvement operator which satisfies (H1) and (H2)allbed a half improvement

operator.

We can also define these operators semantically:

Definition 13 Let o be a soft improvement operator andd — <y its corresponding soft gradual assign-
ment. The assignment will be called a half gradual assigrrifidime following properties (SH1) and (SH2)

are satisfied:

(SHY) Ifw € [[u], o € [~p],w’ <y wandPw” € [-u] such thats” ~y w, then,w <yo, W'

(SH2) lfw € [[u], " € [-p], v’ <y wand3w” € [-pu] such thaty” ~y w then,w’ <y, w.
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Note that both (SH1) and (SH2) use to conclude<an,,, only information on the new formula, the old
relation <g between the two interpretations, and the interpretatibas was at the same level of This
means that the half-gradual assignement is a modular @ssegrt.

We can now state the representation theorem:

Theorem 5 A change operator is a half improvement operator if and only if there exists # gaadual
assignment such that
[B(¥ * @)] = min([[o], <w)
In fact, just as for one-improvement we can prove that:
Proposition 3 Once the pre-order associated to the first epistemic stafixasl, there is a unique half-

improvement operator. Let us natethis operator.

Unlike one-improvement, the sole operator in the class stesgatic softimprovement, half-improvement
is not the only operator in the class of modular soft improgatn

But we can show that half-improvement is a particular madsidt improvement operator. In fact, we
can show that half-improvement produces less changes ti&mgprovement:

Proposition 4 Let ¥ be an epistemic state (a total preorder). Then for all foranu)

dr (v, <wop) < dr(Zw, <wop)

That is, the operatop produces less changes than the operator

More generally, we have the following result:

Proposition 5 Half-improvement operator is the modular soft improvemirait produces the smallest
change (i.e. it produces less change than any other modofairsprovement operator).

9 Looking for the Best Soft Improvement

Now we move to the general class of soft improvement opesatdhe fact of not satisfying modularity
allows to define much more different operators. This allolgs & define an interesting soft improvement
operator producing the smallest change under certain tonsli

In order to simplify the presentation of the postulates vimifuce the following definition:

Definition 14 p is separated inl iff V3(B(¥ x 5) b por B(V * 3) F —p).
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This definition of separation of a formula in an epistemitestaeans that any revision (and improve-
ment) of this epistemic state will always give epistemit¢esahat are informed about this formula (i.e. the
formula or its negation can be inferred).

Definition 15 A soft improvement operator which satisfies the following pestulates is called a best

improvement operator

(B1) If pis separated inV, B(V x o) b —panda <y a A p, thenB((¥ o p) xa)  —p

(B2) If pis not separated ilv and B(V x ) - =, thenB((V o p) x ) b —p

Postulate (B1) is close to postulates (H1) and (111), bublit$ only when the formula is separated in
the epistemic state.

Postulate (B2) states that, when the formula is not seghnatde epistemic state (which is the general
case), the change is the same one than with (H2).

We can give a semantical counterpart to these postulates.

Definition 16 1 is s-separated incy iff fwy € [u]],ws € [—4] S.t.w1 >~y wo

Definition 17 Let o be a soft improvement operator andd — <y its corresponding soft gradual assign-
ment. The assignment will be called a best gradual assighihire following properties

(SB1) If pis s-separated iy, w € [u], w' € [-u]] andw’ <y w thenw <y, W'

(SB2) If uis not s-separated iy, w € [u]],w’ € [~u] andw’ <y w thenw’ <go, w.

The following lemma will be useful in the proofs:

Lemma 1 Leto be a weak improvement operator. Thearis separated inV iff 1 is s-separated ircy.

Let us give now the corresponding representation theorem.

Theorem 6 A change operatos is a best improvement operator if and only if there exists & geadual
assignment such that
[B(¥ * @)] = min([[o], <w)
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And, as for one-improvement and half-improvement, we cawghat there is only one best-improvement
operator:

Proposition 6 Once the pre-order associated to the first epistemic stafixésl, there is a unique best-
improvement operator. We notethis operator.

These uniqueness results are important since few changatogzeare axiomatically define (usual char-
acterizations in belief revision defined families of opera}.

Let us now turn to the minimality issue.

Proposition 7 Let ¥ be an epistemic state (a total preorder). Then for all foranu)

dr (v, <wepu) < dr(Sw, <wop)

That is, the operatos; produces less changes than the operator

As a corollary from the previous propositions we have thifahg result:

Proposition 8 Among the operators, ¢ and ¢ the operatore is the operator that produces minimal
change.

It is easy to figure out soft-improvement operators that pced less change than best-improvement. In
fact the soft-improvement operator that produces the sstathange is the one that increases the plausibility
of only one level of models of the new formula (this level i2 iandomly chosen, but is the one which
produces the less change for the Kemeny distance). It seamsshiat defining this minimal change operator
is not of great interest, since this operator will not havdemrcmeaning from a logical point of view. It
is of no use to look at absolute minimization if it costs toonp#ogical properties (recall that Boutilier's
natural revision operator [3], although achieving the miali change for a belief revision operator, make it
at a price of bad logical properties [5]).

So, amongst improvement operators that do not add arbittaviges in the choice of the models of the

new information to be improved, best-improvement is thethiag¢ produces the smallest change:

Proposition 9 Best-improvement operator is the soft improvement opesstsfying (B1) that produces
the smallest change.

Example 1 shows that in some caseproduces strictly less changes thaifo, wase ando; wase).
The following example will shows that in some cagegroduces strictly less changes than
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Example 2 SupposéV = {wi,ws,ws,ws}. Consider the improvement operatossand . Let U be an
epistemic state whergy is his respective pre-order given by the gradual assignnisee the figure be-
low). Let bew a formula such thafiu:]] = {ws,w4}. The pre-orders<y,, and <y, are the results of the
improvement of by the new informatiom. with respect the operators and ¢ respectively.

—— g
140 (WoB. £ 2‘ ¢ li.
DY@ ge— ————3e— —W3e——
E’]. 1111. 1111.
<y S‘IIGB# Sq’@#

It is not hard to see thalx (<v, <vgu) = 1 and thatdx (<, <wop) = 2.

IMPROVEMENT

WEAK IMPROVEMENT \

ITERATED REVISION
(R1-R6) (C1-C4) (P)

MODULAR SOFT IMPROVEMENT

SYSTEMATIC

SOFT
IMPROVEMENT

Z

Figure 1: A map of weak improvement operators

10 Example

We provide some examples of improvements in this sectiomyrder to illustrate the behavior (and the
differences) of one-improvement, half-improvement anstdimprovement.

Figure 2 shows how three epistemic states, whose assopiatentders are y, , <y,, <y,, are changed
through the three soft-improvement operators studied eénptievious sections (one-improvementhalf-
improvement,, and best-improvement).

Interpretations are not represented on the figures, wegpstsent the “levels” where the interpretation
are located. Orange lines represent the new formusm models of this formula are located on these orange
levels. Black lines represent the levels with models.of
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Figure 2: Examples of Soft Improvements

In the <y, case, the three operators lead to the same result. This¢aseevhere is separated iv3.

The <y, case shows a situation where every model of the new formusgaequivalent to a model of
its negation. In this case half-improvement and best-ivgment give the same result, that produces less
change than the result obtained with one-improvement. &altnge is smaller. Remark that to obtain the
same result as one-improvement it will just require anoitieeation, i.e.<y,c.=<wv,cuou=<V.eubdpu-

The <y, case is the most interesting. It is a more usual case, andutssthe difference of behaviors
of the three operators. It clearly shows that in the geneaaé dest-improvement produces less change
than half-improvement, that produces less change thamopevement. To explain intuitively the change
obtained by the three operators: one-improvement inctbagaausibility of each model of the new formula
by moving it to the first (w.r.t its current position) lowewnkd of models of its negation. Half-improvement
increase the plausibility of each model, but only by a “Ha¥fel” (i.e. if the model of the new formula was
equivalent to a model of its negation then now it is strictlgreplausible, but not as plausible as the lower
models of the negation. And if the model of the new formula waisequivalent to a model of its negation,
then now it is moved to the first lower level of models of theatemn). For Best-improvement, as there are
some models of the new formula that was equivalent to modis olegation, then only these models have
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their plausibility improved (from a “half-level”).

11 Conclusion and Related Work

In this paper we have started the investigation of soft im@neent operators. Soft improvement operators
are a subclass of weak improvement operators, just as bbelision operators are. See figure 1 for a map
of weak improvement subclasses. We defined two subclassedtamprovement operators: modular soft
improvement operators and systematic soft improvementatgrs. For each of this class we provide a
prototypal operator, that we characterize logically amdwhbich we provide a representation theorem. We
also study these operators with respect to minimal changenwhis minimality is computed using the
Kemeny distance between the pre-orders obtained throwgastfignments.

Ideas close to the ones behind the definition of the one-imgonent operator already appeared in some
works such as [4, 17, 14], but there was no logical charaetion in all these works. As far as we know
there is no work mentioning ideas close to half-improvenueritest-improvement.
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