Revista Notas de Matemática
Vol.5(2), No. 283, 2009, pp.61-65
http://www.saber.ula.ve/notasdematematica
Comisión de Publicaciones
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes

On the complexity of the family of compact subsets of \mathbb{Q}

Raúl Naulin and Carlos Uzcátegui Aylwin

Resumen

Mostramos que $K(\mathbb{Q})$, la familia de subconjuntos compactos de \mathbb{Q} , es Π_1^1 -completa en el cubo de Cantor $2^{\mathbb{Q}}$.

Palabras claves: Conjuntos coanalíticos completos, Teorema de Hurewicz, Teoría descriptiva de conjuntos.

Abstract

We show that $K(\mathbb{Q})$, the collection of compact subsets of \mathbb{Q} , is a Π_1^1 -complete subset of the Cantor cube $2^{\mathbb{Q}}$.

key words. Complete coanalytic sets, Hurewicz's theorem, descriptive set theory.

AMS(MOS) subject classifications. Primary 54H05, 04A15. Secondary 54A10

1 Introduction and preliminaries

In this note we will show that $K(\mathbb{Q})$, the collection of compact subsets of the rationals, is a complete coanalytic subset of cantor cube $2^{\mathbb{Q}}$. This result is a variation of a classical theorem of Hurewicz saying that $K(\mathbb{Q})$ is a complete coanalytic subset of $K(\mathbb{R})$ with the Vietoris topology (see [1, 3]). The more general problem, where instead of \mathbb{Q} we consider any countable topological space, was studied in [2].

Since both $K(\mathbb{R})$ and $2^{\mathbb{Q}}$ are perfect Polish spaces, it is a classical result that they are Borel isomorphic, so there is $f:K(\mathbb{R})\to 2^{\mathbb{Q}}$ a Borel isomorphism [1, Theorem 15.6]. Our result would be a trivial consequence of this fact if one can find such f that leaves $K(\mathbb{Q})$ invariant, that is to say, such that $L\in K(\mathbb{Q})$ iff $f(L)\in K(\mathbb{Q})$. Since, in that case, by Hurewicz's theorem $K(\mathbb{Q})$ is a complete coanalytic subset of $K(\mathbb{R})$ and therefore so is the image of $K(\mathbb{Q})$ under f. We do not know if such f exists.

Now we fix some terminology and state some basic facts.

Let X be a Polish space and $A \subseteq X$. We say that A is Π_1^1 -complete if A is Π_1^1 and for all Polish space Y and all Π_1^1 subset $B \subseteq Y$ there is Borel function $f: Y \to X$ such that $f^{-1}(A) = B$.

Let X and Y be Polish spaces and $A \subseteq X$ and $B \subseteq Y$. We say that A is **Borel reducible** to B if there is a Borel function $f: X \to Y$ such that $f^{-1}(B) = A$. The following proposition is easy to show.

Proposition 1.1 Let X, Y be polish spaces and $A \subseteq X$ and $B \subseteq Y$. If B is Π_1^1 , A is Π_1^1 -complete and A is Borel reducible to B, then B is Π_1^1 -complete.

Let $\omega^{<\omega}$ be the collection of all finite sequence of natural number. We denote by $s \prec t$ if t extends s, clearly \prec is a partial order on $\omega^{<\omega}$. We denote by $s \cap t$ the concatenation of the sequences s and t. By $s \cap k$ we denote the sequence $s \cap \langle k \rangle$. A tree over $\mathbb N$ is a collection of finite sequences closed under initial segments, i.e., if $s \in T$ and $t \prec s$, then $t \in T$. Let Tree be the collection of all trees over $\mathbb N$. The body of a tree T is the collection [T] of all $\alpha \in \mathbb N^{\mathbb N}$ such that $\alpha \upharpoonright n \in T$ for all $n \in \mathbb N$. Such α is called an infinite branch of T. A tree is well founded if $[T] = \emptyset$. Let WF be the collection of all well founded trees over $\mathbb N$. We regards trees as elements of the polish space $2^{\omega^{<\omega}}$. Then Tree is a closed subset of $2^{\omega^{<\omega}}$. Moreover, WF is the prototypical Π_1^1 -complete set [1, Theorem 27.1]. We will use a variation of this collection. Let $Tree_2$ be the collection of all binary trees. We say that $\alpha \in 2^{\mathbb N}$ has infinite many ones, if $\{n \in \mathbb N : \alpha(n) = 1\}$ is infinite. Let N be the set of all $\alpha \in 2^{\mathbb N}$ with infinite many ones. Let WF_2 be the collection of all binary trees T such that $[T] \cap N = \emptyset$. Notice that, by Konig lemma, $T \in Tree_2$ is infinite iff $[T] \neq \emptyset$. However, as we show in proposition 2.1, WF_2 is Π_1^1 -complete.

The order of Kleene-Brouwer over $\omega^{<\omega}$, denoted by \prec_{KB} , is defined as follows: Let $s = (s_0, s_1, \ldots, s_{n-1})$ and $t = (t_0, t_1, \ldots, t_{m-1})$ in $\omega^{<\omega}$. Then $s \prec_{KB} t$, if

- (i) $t \prec s$ (s extends t), or
- (ii) There is $i < \min\{m, n\}$ such that $s_j = t_j$ for all j < i and $s_i < t_i$

We put $s \leq_{KB} t$ if $s \prec_{KB} t$ o s = t. An interesting fact about \prec_{KB} is that a tree T over \mathbb{N} is well founded iff \prec_{KB} is a well order over T (see [1, 3]). The interval determined by two sequences s, t is denoted by $(s, t)_{KB}$. The order topology associated to \prec_{KB} will be denoted by τ_{KB} .

It is well known that every countable metric space without isolated points is homeomorphic

to the rationals (see for instance [1, pag. 40]). In particular, this is the case of $(\omega^{<\omega}, \tau_{KB})$, and thus will work with the space $(\omega^{<\omega}, \tau_{KB})$ instead of \mathbb{Q} . We state this result for later reference.

Lemma 1.2 $(\omega^{<\omega}, \tau_{KB})$ is homeomorphic to \mathbb{Q} .

2 $K(\mathbb{Q})$ is Π_1^1 -complete in $2^{\mathbb{Q}}$

The following result is known (see [1, Exercise 27.3]) but we include its proof for the sake of completeness.

Proposition 2.1 WF_2 is Π_1^1 -complete in $2^{2^{<\mathbb{N}}}$.

Proof: Let us first check that WF_2 is Π_1^1 .

It is well known that the collection of well founded trees WF is Π_1^1 -complete [1, Theorem 27.1]. By proposition 1.1, it suffices to show that WF is Borel reducible to WF_2 .

We denote $00\cdots 0$, k times, by 0^k . Let us consider the function $\varphi:\mathbb{N}^{<\mathbb{N}}\to 2^{<\mathbb{N}}$ given by

$$\varphi(n_0, n_1, \dots, n_m) = 0^{n_0} 10^{n_1} 1 \cdots 0^{n_m}.$$

and let $\Phi: Tree \to Tree_2$ given by

$$\Phi(T) = \{ s \in 2^{\leq \mathbb{N}} : (\exists t \in T) (s \leq \varphi(t)) \}$$

Then Φ is a Borel map. Let us check that $\Phi^{-1}(WF_2) = WF$.

- (i) Suppose T is not a well founded tree and let $\alpha \in [T]$. Then $\varphi(\alpha \upharpoonright n) \in \Phi(T)$ for all $n \in \mathbb{N}$ and $\varphi(\alpha \upharpoonright n)$ has n ones. Thus $\varphi(\alpha)$ is a branch of $\Phi(T)$ with infinite many ones.
- (ii) Suppose now that $\Phi(T) \notin WF_2$ and let β be a branch of $\Phi(T)$ with infinite many ones. Suppose $s^1 \prec \beta$, then $s = \varphi(t)$ for some $t \in T$. From this it follows easily that T has an infinite branch.

Lemma 2.2 (i) $\inf\{s^1^0^n t_n : n \in \mathbb{N}\} = s^0 \text{ for any } s, t_n \in 2^{\mathbb{N}}.$

(ii) If $\alpha \in 2^{\mathbb{N}}$ has infinite many ones, then $\{\alpha \upharpoonright n : n \in \mathbb{N}\}$ has no infimun. Let $(n_k)_k$ be an increasing sequence of integer and $t_k \in 2^{<\mathbb{N}}$. Then $0^{n_k} t_k$ has no infimun.

- (iii) If $T \in WF_2$, then there is no a strictly \prec_{KB} -increasing sequence in T.
- (iv) Let $T \in WF_2$ and $(s_i)_i$ a strictly \prec_{KB} -decreasing sequence in T. Then $(1\hat{\ }s_i)_i$ either converges to $\langle 0 \rangle$ or to a sequence of the form $1\hat{\ }t\hat{\ }0$ for some $t \in T$.

Proof: (i) and (ii) are easy and left to the reader. To see (iii) let (s_i) be a strictly \prec_{KB} -increasing sequence of elements of T. We can assume that the length of s_i is strictly increasing. By passing to a subsequence if necessary, from the definition of \prec_{KB} we get sequences u_i, v_i such that $s_i = u_i \hat{\ } 1 \hat{\ } v_i, u_{i+1} \hat{\ } 0 \prec s_i$ and $u_i \hat{\ } 1 \prec u_{i+1}$. From this it follows that $\bigcup_i u_i \hat{\ } 1$ is a branch of [T] with infinite many ones.

- (iv) Suppose $(s_i)_i$ is a strictly \prec_{KB} -decreasing sequence in T with $T \in WF_2$. Then it follows from the definition of \prec_{KB} that there is a subsequence $(s_{i_k})_k$ such that one of the following holds:
- (a) $s_{i_{k+1}} \prec s_{i_k}$ for all k and therefore $\alpha = \bigcup_k s_{i_k}$ is eventually equal to cero. If α is equal to cero, then $(1^{\hat{}}s_i)_i$ converges to $\langle 0 \rangle$. Otherwise, there is $t \in T$ such that $t^{\hat{}}1^{\hat{}}0^n \prec \alpha$ for all n and thus $(1^{\hat{}}s_i)_i$ converges to $1^{\hat{}}t^{\hat{}}0$.
- (b) there are $t, u_k \in 2^{<\mathbb{N}}$ such that $s_{i_k} = t^{\hat{}} 1^{\hat{}} 0^{n_k} u_k$ where $(n_k)_k$ is strictly increasing. In this case, it follows from part (i) that $(s_i)_i$ converges to $t^{\hat{}} 0$ for some $t \in T$.

Theorem 2.3 $K(\mathbb{Q})$ is Π_1^1 -complete in $2^{\mathbb{Q}}$

Proof: Let us first check that $K(\mathbb{Q})$ is coanalytic. By lemma 1.2, we can work in $(\omega^{<\omega}, \tau_{KB})$.

Let $\psi: Tree_2 \to 2^{2^{<\mathbb{N}}}$ given by

$$\psi(T) = \{1 \hat{s} : s \in T\} \cup \{1 \hat{s} \hat{0} : s \hat{1} \in T\} \cup \{\langle 0 \rangle\}.$$

We will show that ψ is a continuous reduction from WF_2 into $K(\mathbb{Q})$. That is to say, $T \in WF_2$ iff $\psi(T)$ is compact as a subset of $(2^{<\mathbb{N}}, \tau_{KB})$.

It is easy to check that ψ is continuous. Suppose $T \notin WF_2$ and let $\alpha \in [T]$ be a sequence with infinite many ones. Then, from lemma 2.2 we know that $\{1^{\hat{}}\langle \alpha \upharpoonright n \rangle : n \in \mathbb{N}\}$ is a decreasing sequence in $\psi(T)$ without infimum.

Conversely, suppose $T \in WF_2$ and let $(t_i)_i$ be a strictly \prec_{KB} -monotone sequence in $\psi(T)$. We will show that $(t_i)_i$ converges in $\psi(T)$. There are two cases to consider.

(i) Suppose $t_i = 1 \hat{s}_i$ with $s_i \in T$ for all i. Then, $(s_i)_i$ is also strictly \prec_{KB} -monotone. Since

 $T \in WF_2$, by lemma 2.2 we conclude that $(s_i)_i$ is strictly \prec_{KB} -decreasing and moreover $(t_i)_i$ converges either to $\langle 0 \rangle$ or converges to $1^{\hat{}}t^{\hat{}}0$ for some $t \in T$.

(ii) Suppose $t_i = 1^s_i^0$ with $s_i^1 \in T$ for all i. Moreover, we can assume that $s_i^0 \notin T$ for all i, otherwise we are in case (i). It is clear that $(s_i^0)_i$ is strictly \prec_{KB} -monotone. Since $s_i \in T$ and $s_i^0 \notin T$, then s_i^0 and s_{i+1}^0 are not \prec -comparable. From this it follows that $(s_i)_i$ is strictly \prec_{KB} -monotone. Therefore $(s_i)_i$ converges to a sequence t^0 for some $t \in T$. Then it is easy to check that t_i converges to 1^t_0 .

Thus by proposition 2.1 and theorem 1.1 we conclude that $K(\mathbb{Q})$ is Π_1^1 -complete.

Notice that the tree $\{0^n : n \in \mathbb{N}\}$ is not τ_{KB} -compact, as it has no accumulation point. This fact and the following lemma explain why we have defined the function ψ as we did in the proof of the previous theorem

Lemma 2.4 Let T be a binary tree. Then

$$\alpha(T) = T \cup \{s^0 : s^1 \in T\}$$

is τ_{KB} -closed. In particular, $2^{\leq \mathbb{N}}$ is τ_{KB} -closed.

Proof: Let $O = \omega^{<\omega} \setminus \alpha(T)$. We will show that O is open. Let $u \in O$. In particular, $u \neq \emptyset$ and $u \notin T$.

Case 1: Suppose $u = v^0$. Thus $v^1 \notin T$. Then $u \in (v^0, v^1)_{KB} \subseteq O$.

Case 2: Suppose $u = v^k$ for some $k \ge 1$. Thus $u \notin T$. Then $u \in (v^k^0, v)_{KB} \subseteq O$.

References

- [1] A. S. Kechris. Classical Descriptive Set Theory. Springer-Verlag, 1994.
- [2] R. Naulin. Complejidad de la familia de los compactos de un espacio métrico numerable. Tesis de maestría. Departamento de Matemáticas. Facultad de Ciencias. Universidad de Los Andes, Mérida (Venezuela), 2009.
- [3] S. M. Srivastava. A Course on Borel Sets. GTM 180. Springer, 1998.

CARLOS UZCÁTEGUI AYLWIN

Departamento de Matemáticas, Facultad de Ciencias Universidad de Los Andes Mérida 5101, Venezuela e-mail: uzca@ula.ve

RAÚL NAULIN

Departamento de Matemáticas, Facultad de Ciencias Universidad de Los Andes Mérida 5101, Venezuela e-mail: rnaulin@ula.ve