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Resumen

Mostramos que K(Q), la familia de subconjuntos compactos de Q, es Π1

1
-completa en el

cubo de Cantor 2Q.
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Abstract

We show that K(Q), the collection of compact subsets of Q, is a Π1

1
-complete subset of

the Cantor cube 2Q.
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1 Introduction and preliminaries

In this note we will show that K(Q), the collection of compact subsets of the rationals, is a

complete coanalytic subset of cantor cube 2Q. This result is a variation of a classical theorem of

Hurewicz saying that K(Q) is a complete coanalytic subset of K(R) with the Vietoris topology

(see [1, 3]). The more general problem, where instead of Q we consider any countable topological

space, was studied in [2].

Since both K(R) and 2Q are perfect Polish spaces, it is a classical result that they are Borel

isomorphic, so there is f : K(R) → 2Q a Borel isomorphism [1, Theorem 15.6]. Our result would

be a trivial consequence of this fact if one can find such f that leaves K(Q) invariant, that is to

say, such that L ∈ K(Q) iff f(L) ∈ K(Q). Since, in that case, by Hurewicz’s theorem K(Q) is a

complete coanalytic subset of K(R) and therefore so is the image of K(Q) under f . We do not

know if such f exists.
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Now we fix some terminology and state some basic facts.

Let X be a Polish space and A ⊆ X. We say that A is Π1
1-complete if A is Π1

1 and for all

Polish space Y and all Π1
1 subset B ⊆ Y there is Borel function f : Y → X such that f−1(A) = B.

Let X and Y be Polish spaces and A ⊆ X and B ⊆ Y . We say that A is Borel reducible

to B if there is a Borel function f : X → Y such that f−1(B) = A. The following proposition is

easy to show.

Proposition 1.1 Let X, Y be polish spaces and A ⊆ X and B ⊆ Y . If B is Π1
1, A is Π1

1-complete

and A is Borel reducible to B, then B is Π1
1-complete.

Let ω<ω be the collection of all finite sequence of natural number. We denote by s ≺ t if

t extends s, clearly ≺ is a partial order on ω<ω. We denote by ŝt the concatenation of the

sequences s and t. By ŝk we denote the sequence ŝ〈k〉. A tree over N is a collection of finite

sequences closed under initial segments, i.e., if s ∈ T and t ≺ s, then t ∈ T . Let Tree be the

collection of all trees over N. The body of a tree T is the collection [T ] of all α ∈ NN such that

α ↾ n ∈ T for all n ∈ N. Such α is called an infinite branch of T . A tree is well founded if [T ] = ∅.

Let WF be the collection of all well founded trees over N. We regards trees as elements of the

polish space 2ω<ω

. Then Tree is a closed subset of 2ω<ω

. Moreover, WF is the prototypical

Π1
1-complete set [1, Theorem 27.1]. We will use a variation of this collection. Let Tree2 be the

collection of all binary trees. We say that α ∈ 2N has infinite many ones, if {n ∈ N : α(n) = 1}

is infinite. Let N be the set of all α ∈ 2N with infinite many ones. Let WF2 be the collection of

all binary trees T such that [T ] ∩N = ∅. Notice that, by Konig lemma, T ∈ Tree2 is infinite iff

[T ] 6= ∅. However, as we show in proposition 2.1, WF2 is Π1
1-complete.

The order of Kleene-Brouwer over ω<ω, denoted by ≺KB, is defined as follows: Let s =

(s0, s1, . . . , sn−1) and t = (t0, t1, . . . , tm−1) in ω<ω. Then s ≺KB t, if

(i) t ≺ s (s extends t), or

(ii) There is i < min{m,n} such that sj = tj for all j < i and si < ti

We put s �KB t if s ≺KB t o s = t. An interesting fact about ≺KB is that a tree T over N is

well founded iff ≺KB is a well order over T (see [1, 3]). The interval determined by two sequences

s, t is denoted by (s, t)KB . The order topology associated to ≺KB will be denoted by τKB.

It is well known that every countable metric space without isolated points is homeomorphic
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to the rationals (see for instance [1, pag. 40]). In particular, this is the case of (ω<ω, τKB), and

thus will work with the space (ω<ω, τKB) instead of Q. We state this result for later reference.

Lemma 1.2 (ω<ω, τKB) is homeomorphic to Q.

2 K(Q) is Π1
1-complete in 2Q

The following result is known (see [1, Exercise 27.3]) but we include its proof for the sake of

completeness.

Proposition 2.1 WF2 is Π1
1-complete in 22<N

.

Proof: Let us first check that WF2 is Π1
1.

It is well known that the collection of well founded trees WF is Π1
1-complete [1, Theorem

27.1]. By proposition 1.1, it suffices to show that WF is Borel reducible to WF2.

We denote 00 · · · 0, k times, by 0k. Let us consider the function ϕ : N<N → 2<N given by

ϕ(n0, n1, . . . , nm) = 0n010n11 · · · 0nm .

and let Φ : Tree→ Tree2 given by

Φ(T ) = {s ∈ 2<N : (∃t ∈ T )( s � ϕ(t))}

Then Φ is a Borel map. Let us check that Φ−1(WF2) = WF .

(i) Suppose T is not a well founded tree and let α ∈ [T ]. Then ϕ(α ↾ n) ∈ Φ(T ) for all n ∈ N

and ϕ(α ↾ n) has n ones. Thus ϕ(α) is a branch of Φ(T ) with infinite many ones.

(ii) Suppose now that Φ(T ) 6∈ WF2 and let β be a branch of Φ(T ) with infinite many ones.

Suppose ŝ1 ≺ β, then s = ϕ(t) for some t ∈ T . From this it follows easily that T has an

infinite branch.

�

Lemma 2.2 (i) inf{ŝ1̂0n̂tn : n ∈ N} = ŝ0 for any s, tn ∈ 2<N.

(ii) If α ∈ 2N has infinite many ones, then {α ↾ n : n ∈ N} has no infimun.

Let (nk)k be an increasing sequence of integer and tk ∈ 2<N. Then 0nk̂tk has no infimun.
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(iii) If T ∈WF2, then there is no a strictly ≺KB-increasing sequence in T .

(iv) Let T ∈ WF2 and (si)i a strictly ≺KB-decreasing sequence in T . Then (1̂si)i either con-

verges to 〈0〉 or to a sequence of the form 1̂t̂0 for some t ∈ T .

Proof: (i) and (ii) are easy and left to the reader. To see (iii) let (si) be a strictly ≺KB-increasing

sequence of elements of T . We can assume that the length of si is strictly increasing. By

passing to a subsequence if necessary, from the definition of ≺KB we get sequences ui, vi such

that si = uî1̂vi, ui+1̂0 ≺ si and uî1 ≺ ui+1. From this it follows that
⋃

i uî1 is a branch of

[T ] with infinite many ones.

(iv) Suppose (si)i is a strictly ≺KB-decreasing sequence in T with T ∈WF2. Then it follows

from the definition of ≺KB that there is a subsequence (sik)k such that one of the following holds:

(a) sik+1
≺ sik for all k and therefore α =

⋃
k sik is eventually equal to cero. If α is equal to

cero, then (1̂si)i converges to 〈0〉. Otherwise, there is t ∈ T such that t̂1̂0n ≺ α for all n and

thus (1̂si)i converges to 1̂t̂0.

(b) there are t, uk ∈ 2<N such that sik = t̂1̂0nk̂uk where (nk)k is strictly increasing. In

this case, it follows from part (i) that (si)i converges to t̂0 for some t ∈ T .

�

Theorem 2.3 K(Q) is Π1
1-complete in 2Q

Proof: Let us first check that K(Q) is coanalytic. By lemma 1.2, we can work in (ω<ω, τKB).

Let ψ : Tree2 → 22<N

given by

ψ(T ) = {1̂s : s ∈ T} ∪ {1̂ŝ0 : ŝ1 ∈ T} ∪ {〈0〉}.

We will show that ψ is a continuous reduction from WF2 into K(Q). That is to say, T ∈ WF2

iff ψ(T ) is compact as a subset of (2<N, τKB).

It is easy to check that ψ is continuous. Suppose T 6∈ WF2 and let α ∈ [T ] be a sequence

with infinite many ones. Then, from lemma 2.2 we know that {1̂〈α ↾ n〉 : n ∈ N} is a decreasing

sequence in ψ(T ) without infimun.

Conversely, suppose T ∈ WF2 and let (ti)i be a strictly ≺KB-monotone sequence in ψ(T ).

We will show that (ti)i converges in ψ(T ). There are two cases to consider.

(i) Suppose ti = 1̂si with si ∈ T for all i. Then, (si)i is also strictly ≺KB-monotone. Since
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T ∈ WF2, by lemma 2.2 we conclude that (si)i is strictly ≺KB-decreasing and moreover

(ti)i converges either to 〈0〉 or converges to 1̂t̂0 for some t ∈ T .

(ii) Suppose ti = 1̂sî0 with sî1 ∈ T for all i. Moreover, we can assume that sî0 6∈ T for

all i, otherwise we are in case (i). It is clear that (sî0)i is strictly ≺KB-monotone. Since

si ∈ T and sî0 6∈ T , then sî0 and si+1̂0 are not ≺-comparable. From this it follows that

(si)i is strictly ≺KB-monotone. Therefore (si)i converges to a sequence t̂0 for some t ∈ T .

Then it is easy to check that ti converges to 1̂t̂0.

Thus by proposition 2.1 and theorem 1.1 we conclude that K(Q) is Π1
1-complete.

�

Notice that the tree {0n : n ∈ N} is not τKB-compact, as it has no accumulation point. This

fact and the following lemma explain why we have defined the function ψ as we did in the proof

of the previous theorem

Lemma 2.4 Let T be a binary tree. Then

α(T ) = T ∪ {ŝ0 : ŝ1 ∈ T}

is τKB-closed. In particular, 2<N is τKB-closed.

Proof: Let O = ω<ω \ α(T ). We will show that O is open. Let u ∈ O. In particular, u 6= ∅ and

u 6∈ T .

Case 1: Suppose u = v̂0. Thus v̂1 6∈ T . Then u ∈ (v̂0̂0, v̂1)KB ⊆ O.

Case 2: Suppose u = v̂k for some k ≥ 1. Thus u 6∈ T . Then u ∈ (v̂k̂0, v)KB ⊆ O.

�
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