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Abstract

In this work by a semiring we mean a commutative semiring with nonzero identity and
we study the prime spectrum of a semiring with its Zariski topology.

We prove that this space is spectral and we characterize when it belong to one of the
following classes: irreducible, supercompact (in the lattice-theoretic sense given in [7]), con-
nected, nested, zero-dimensional, regular, normal, T1/4, T1/2 and T3/4. We describe the
regular, kerneled, isolated and open-regular points of this space and we show that it is always
either supercompact or weak R0 (in the sense of [17]). In our treatment we introduce the
absolutely (prime-) irreducible ideals of a semiring which are the versions for semirings of
the ideals studied by Picavet ([23]) and Gilmer ([9]), and the isolated points of the prime
spectrum of a semiring are the absolutely prime-irreducible minimal prime ideals.
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1 Introduction

We present a systematic study of the prime spectrum of a semiring with nonzero identity from

an (affine) classical view point, following the ideas of Zariski, as a unified approach to the cases

of commutative rings ([4]) and bounded distributive lattices ([6]). We show some of the basic

properties of the topological space (Spec(R), tZ), called the prime spectrum of R, where Spec(R)

is the family of prime ideals of a semiring R and tZ is the Zariski topology on Spec(R). We

characterize when Spec(R) satisfies one of the following properties: irreducible, supercompact

(in the lattice-theoretic sense of [7]), connected, nested, zero-dimensional, regular and normal, as

well as when this satisfies the separation axioms T2, T1, T1/2, T1/4, T3/4, R1, R0, weak R0 (in

the sense of [3]) and weak R0 (in the sense of [17], and that we call R*
0).
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In section 1 we give some terminology and basic results. In section 2 we study the prime

spectrum (Spec(R), tZ) of a semiring R which we denote by Spec(R) only. In general, Spec(R)

is a spectral space (Theorem 3.1) and it is irreducible if and only if R has a unique minimal

prime ideal (Corollary 3.2). Also, Spec(R) is a supercompact space if and only if R is a local

semiring (Theorem 3.2), we describe the clopen subsets of Spec(R) (Lemma 3.1) and we use this

result to characterize the connectedness of this space (Corollary 3.3). Again, we characterize

when Spec(R) is a nested space (Theorem 3.3), and for this space the following conditions are

equivalent: T1, T2, every prime ideal is maximal, R0, weak R0 (in the sense of [3]) and R1

(Theorem 3.4). In section 3 we show the regular points of Spec(R) (Theorem 4.1) and in this

space, every regular point is closed and every non weak η-redundant maximal ideal of R is a

regular point of Spec(R) (Corollary 4.1). Also, Spec(R) is a regular space if and only if every

prime ideal of R is maximal (Corollary 4.2), and it is a normal space if and only if R is a Gelfand

semiring (Corollary 4.3 and Theorem 4.2). This last characterization generalizes a well-known

result for commutative rings (Theorem 2.1 in [19]). In section 4 we describe the kerneled, isolated

and open-regular points of Spec(R) (Lemma 5.1 and Theorems 5.1-5.2) and we apply these results

to characterize when it is a T1/4, T1/2 and T3/4-space, respectively (Corollaries 5.1-5.2 and 5.6).

Thus, Spec(R) is a discrete space if and only if every prime ideal of R is both absolutely prime-

irreducible and minimal prime (Corollary 5.3). Finally, every prime ideal of a semiring is either

weak η-redundant or absolutely prime-irreducible (Lemma 5.2), we characterize when a minimal

prime ideal is absolutely prime-irreducible, and when a prime ideal is an isolated point of the

prime spectrum (Corollary 5.4).

2 Terminology and basic results

In this work N := {0, 1, 2, . . . } denotes the set of natural numbers, |X| is the cardinal of a set X

and ℘(X) is the power-set of X. For every nonempty subset F of ℘(X), F ∩ denotes the family

formed by all the intersections of sets in F . By a space we mean a topological space, (X, τ) always

denote a space and τ∗ is the family of τ -closed sets. For every subset Y of X, we denote by τ(Y )

and Y
τ the family of τ -open neighborhoods of Y and the τ -closure of Y , respectively. Also,

Ŷ τ :=
⋂

τ(Y ) is the τ -kernel of Y , and if Y = Ŷ τ then Y is called τ -kerneled ([18]). Further,

τ(x) := τ({x}), x τ := {x} τ
and x̂ τ := {̂x} τ

for every x ∈ X.

A semiring (commutative with nonzero identity) is an algebra (R, +, ·, 0, 1) where R is a set

with 0, 1 ∈ R, and + and · are binary operations on R called sum and multiplication, respectively,
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which satisfies the following conditions:

(S1) (R, +, 0) and (R, ·, 1) are commutative monoids with 1 6= 0.

(S2) The multiplication distributes with the sum, this is, ∀ a, b, c ∈ R, a (b + c) = a b + a c.

(S3) 0 is multiplicatively absorbing, this is, ∀ a ∈ R, a 0 = 0.

Every ring (commutative with nonzero identity) is a semiring and there is two distinct ways of

consider a bounded distributive lattice as a semiring, namely: taking the sum and multiplication,

respectively, as the join and meet in the lattice, or taking the sum and multiplication, respectively,

as the meet and join in the lattice. As is usual, we denote a semiring (R, +, ·, 0, 1) by R, and the

multiplication a ·b by ab. The notions of (proper) ideal, prime ideal and (minimal prime) maximal

ideal of a semiring R are defined as in commutative rings ([4]). We denote by Id(R) and Spec(R),

respectively, the sets of ideals and prime ideals of R, and we set I ≤ R for indicate that I is an

ideal of R. As in rings, every proper ideal is contained in a maximal ideal, every maximal ideal

is prime and every prime ideal contains a minimal prime ([10]). By a local semiring we mean a

semiring with a unique maximal ideal, and for every ideal I of R, we denote by η(I) the prime

radical of I, this is, the intersection of the prime ideals of R containing I. It is well known that

η(I) = {a ∈ R : an ∈ I for somen ∈ N} and if I = η(I) then I is semiprime. Thus, the improper

ideal R is semiprime (the empty intersection of prime ideals),

the ideal η(0)

is the prime radical of R and if η(0) = (0) then R is semiprime. We denote by U(R) the set of

invertible elements of R and if a ∈ R then Ra := {ra : r ∈ R} is the principal ideal of R generated

by a, and η(a) := η(Ra). Also, for every ideal I of R, the set (I : a) := {r ∈ R : ra ∈ I} is an

ideal of R and in particular, (0 : a) := {r ∈ R : ra = 0} is the annihilator of a.

See [10] for more details about the semiring theory and their applications, and for the lattice

theory see [6].

3 Prime spectrum of a semiring

For every ideal I of a semiring R, we denote by (I)0 := {P ∈ Spec(R) : I ⊆ P} and D0(I) :=

Spec(R)\(I)0. Also, (x)0 := ({x})0 and D0(x) := D0({x}) for every x ∈ R. Then,

the family {(I)0 : I ≤ R} satisfies the axioms of closed sets for a topology tZ on Spec(R),

called the Zariski topology, and the space (Spec(R), tZ) is the prime spectrum of R. If P ∈ Spec(R)
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then P
tZ = (P )0 and thus, {P} is tZ-closed if and only if P is a maximal ideal.

Further, in general, the complete lattice Spec(R)∩ of semiprime ideals of R is isomorphic to

the dual of the lattice t∗Z , via I 7→ (I)0, where the meet in t∗Z is the intersection and the join of

a family {(Ij)0}j∈J in t∗Z is (
⋂

j∈J Ij)0. Hence, Spec(R)∩ is a distributive complete lattice.

A space (X, τ) is spectral if it is a compact T0-space such that the compact open subsets of

X form a base of τ which is closed under finite intersections, and it is a sober space, this is, the

non-empty irreducible τ -closed subsets of X are of the form x τ , for some (unique) x ∈ X. Also,

a τ -closed subset F of X is irreducible if whenever F ⊆ F1 ∪ F2 with Fi ∈ τ∗, we have either

F ⊆ F1 or F ⊆ F2. It is well-known that a space is spectral if and only if it is homeomorphic to

the prime spectrum of a commutative (semiprime) ring, which we call the Hochster’s Theorem

([14]). Moreover, in [22] is pointed out that the prime spectrum of a topology is spectral. We see

that, in general, the prime spectrum of a semiring is a spectral space. In Proposition 7.20 of [10]

it is proved that the prime spectrum of a semiring (non necessarily commutative) is a compact

T0-space.

Theorem 3.1 Let R be a semiring. Then, Spec(R) is a spectral space.

Proof. Let X = Spec(R) and I = Rx1 + · · · + Rxn a finitely generated (f.g.) ideal of R.

We see that D0(I) is compact and thus, X = D0(R) and D0(a) with a ∈ R, are too. In

fact, if D0(I) ⊆ ⋃
s∈S D0(s) for some S ⊆ R and RS is the ideal of R generated by S, then

(RS)0 =
⋂

s∈S(s)0 ⊆ (I)0 and thus, I ⊆ η(RS) and there exists m ≥ 1 integer such that every

xm
i ∈ RS. Hence, every xm

i =
∑ki

j=1 aijsij where ki ∈ N, aij ∈ R and sij ∈ S. It follows that

D0(I) ⊆ ⋃
i,j D0(sij) and the family {D0(I) : I is a f.g. ideal of R} is a base of tZ (since this

contains the base {D0(a) : a ∈ R}) formed by compact open sets and it is closed under finite

intersections, since if I, J are f.g. ideals of R then by the commutativity of R, the product IJ

is also a f.g. ideal of R such that D0(I) ∩ D0(J) = D0(IJ). Finally, we see that X is a sober

space. Let P be a prime ideal of R and let I, J be ideals of R such that (P )0 ⊆ (I)0 ∪ (J)0.

Then, (P )0 ⊆ (IJ)0 and IJ ⊆ P and thus, I ⊆ P or J ⊆ P . Hence, (P )0 ⊆ (I)0 or (P )0 ⊆ (J)0.

Conversely, suppose Q is a semiprime ideal of R such that (Q)0 is a non-empty irreducible in

t∗Z and let a, b ∈ R such that ab ∈ Q. Then, (Q)0 ⊆ (ab)0 = (a)0 ∪ (b)0 and by hypothesis,

(Q)0 ⊆ (a)0 or (Q)0 ⊆ (b)0. If (Q)0 ⊆ (a)0 then η(a) ⊆ Q and a ∈ Q (otherwise, b ∈ Q). Hence,

Q is a prime ideal of R and X is a spectral space. ¤

Corollary 3.1 For every semiring R there exists a (semiprime) commutative ring A such that

Spec(R) and Spec(A) are homeomorphic spaces.
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Proof. It follows from Theorem 3.1 and Hochster’s Theorem ([14]). ¤

Since every closed subspace of a spectral space is spectral, for every proper ideal I of a

semiring R there exists a commutative ring R(I) such that the subspace (I)0 is homeomorphic

to Spec(R(I)). If R is a ring then, by the correspondence theorem of prime ideals, we can choose

R(I) as the quotient ring R/I. A space (X, τ) is irreducible if every pair of nonempty τ -open

subsets of X have nonempty intersection. The following result is a consequence from Corollary

3.1 and the corresponding result for commutative rings ([4], Chap. 1, Ex. 19).

Corollary 3.2 Let R be a semiring. Then, Spec(R) is an irreducible space if and only if η(0) is

a prime ideal. Further, in such a case, η(0) is the unique minimal prime ideal of R.

We say that (X, τ) is a supercompact space if every τ -open covering of X contains X, this is,

X is a supercompact element of the complete lattice (tZ ,⊆) in the sense of [7]. This notion of

supercompactness for topological spaces is stronger than the usual supercompactness introduced

by de Groot in [11] (see also [21]), for example, consider a semiring with only two prime ideals

which are maximal ideals.

Theorem 3.2 A semiring R is local if and only if Spec(R) is a supercompact space.

Proof. Let X = Spec(R). Suppose R is local with maximal ideal Q and that there exists a

tZ-open covering {U j}j∈S of X such that every U j 6= X. Then, there exist proper ideals Ij

of R such that Q ∈ (Ij)0 = X\U j for every j ∈ S. But then, Q ∈ ⋂
j∈S(Ij)0 = which is a

contradiction. Conversely, suppose X is a supercompact space and that |Max(R)| > 1. Since

X =
⋃

P∈Max(R) D0(P ), there exists P ∈ Max(R) such that (P )0 = which is not possible. ¤

The atoms of the lattice (tZ ,⊆) are of the form D0(a) where a ∈ R such that η(a) covers

η(0) in (Spec(R)∩,⊆), this is, if I ∈ Spec(R)∩ such that η(0) $ I ⊆ η(a) then I = η(a). Also,

the coatoms of the lattice (tZ ,⊆) are the sets D0(Q) where Q is a maximal ideal.

We see a description of the clopen (this is, open and closed) subsets of Spec(R). If R is a

commutative ring then the clopen subsets of Spec(R) are of the form D0(e) where e = e2 ∈ R

(Lemma 2.1 in [16]). We say that a ∈ R is η-complemented if there exists b ∈ R such that

a + b = 1 and ab ∈ η(0), and comp η(R) denotes the set of η-complemented elements of R.

Lemma 3.1 Let R be a semiring and U a subset of Spec(R). Then, U is a tZ-clopen in Spec(R)

if and only if U = D0(a) for some a ∈ comp η(R).
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Proof. It is straightforward. ¤

Corollary 3.3 Let R be a semiring. Then, Spec(R) is a connected space if and only if 0, 1 are

the unique η-complemented elements of R.

Recall that (X, τ) is a nested space if the lattice (τ,⊆) is linearly ordered.

Theorem 3.3 Let R be a semiring. Then, the following conditions are equivalent:

(a) Spec(R) is a nested space.

(b) The complete lattice (Spec(R)∩,⊆) is linearly ordered.

(c) For every a, b ∈ R, there exists n ∈ N such that either a/bn or b/an in R.

(d) For every a, b ∈ R, the ideals η(a) and η(b) are comparable by inclusion.

(e) For every a, b ∈ R, the tZ-open sets D0(a) and D0(b) are comparable by inclusion.

Proof. It is clear that (b) ⇒ (d) ⇔ (c) and (b) ⇒ (a) ⇒ (e). We see (d) ⇒ (b). Suppose (d) and

let I, J ∈ Spec(R)∩ such that I * J and J * I. Then, there exist a ∈ I\J and b ∈ J\I. But

then, by hypothesis, we can suppose η(a) ⊆ η(b) and so, a ∈ η(b) ⊆ J which is a contradiction.

Hence, (b) is holds. Finally, for prove (d) ⇔ (e) note that, if a, b ∈ R then: η(a) ⊆ η(b) if and

only if (b)0 ⊆ (a)0 if and only if D0(a) ⊆ D0(b). ¤

The following are the versions for semirings of two foundamental results in commutative

algebra (see [1] and [20], and Lemma 1.1 in [13], respectively).

Lemma 3.2 Let S be a multiplicatively closed subset of a semiring R and let I be an ideal of R

such that I ∩ S = . Then, there exists an ideal P of R maximal respect to the property P ∩ S =

and I ⊆ P . Further, every such an ideal is prime.

Lemma 3.3 A prime ideal P of a semiring R is minimal prime if and only if for every x ∈ P ,

there exists a ∈ R\P such that ax is nilpotent. Hence, in such a case, P =
⋃

a∈R\P (η(0) : a).

Proof. Suppose P is a minimal prime ideal of R, let S = R\P and x ∈ P . Then, the set

T =
⋃

n∈N Sxn is a multiplicatively closed subset of R which contains S (since x0 = 1). If

T ∩ η(0) = then, by Lemma 3.2, there exists a prime ideal Q of R such that T ∩Q = and thus,

Q ⊆ P and x /∈ Q contradicting the minimality of P . Hence, T ∩ η(0) 6= and there exist a ∈ S
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and n ∈ N such that axn ∈ η(0) and it follows ax ∈ η(0). Conversely, suppose the sufficiency

condition. If P is not minimal prime then there exists a minimal prime ideal Q of R properly

contained in P and there exists x ∈ P\Q. By hypothesis, we will can choose a ∈ R\P such that

ax ⊆ η(0) ⊆ Q which is a contradiction. ¤

A space (X, τ) is an R0-space if for every U ∈ τ and x ∈ U , we have x τ ⊆ U , or equivalently,

if the specialization pre-order on X induced by τ is an equivalence relation ([17]). Also, a subset

Y of X is λ-closed if Y = Y
τ ∩ Ŷ τ ([3]). Also, a point x ∈ X is λ-closed if the singleton {x}

is λ-closed. Every (closed) kerneled subset is λ-closed and a space is a weak R0-space if every

λ-closed point of this is kerneled. It is well known that a space is a T0-space if and only if each of

its points is λ-closed, and a space is a T1-space if and only if it is both T0 and a (weak) R0-space

(Theorem 2.9 in [3]). Further, (X, τ) is an R1-space if for every pair x, y ∈ X with x τ 6= y τ ,

there exist U, V ∈ τ such that x τ ⊆ U , y τ ⊆ V and U ∩ V = ([17]).

Theorem 3.4 Equivalent conditions for a semiring R:

(a) Every prime ideal of R is maximal.

(b) Spec(R) is a T1-space.

(c) Spec(R) is a T2-space.

(d) Spec(R) is an R0-space.

(e) Spec(R) is a weak R0-space.

(f) Spec(R) is an R1-space.

(g) Every point of Spec(R) is kerneled.

Proof. It is clear that (c) ⇒ (b) ⇔ (a), and since Spec(R) is a T0-space and by the identities

T1 = T0 +R0 = T0 + weakR0, we have (b) ⇔ (d) ⇔ (e). Also, since T2 = T1 +R1 and R1 ⇒ R0,

we have (c) ⇔ (f). We see (a) ⇒ (c). Suppose that every prime ideal of R is maximal and we see

that Spec(R) is a T2-space. Let P and Q be distinct points of Spec(R). It is sufficient to verify

that there exist a ∈ R\Q and b ∈ R\P such that ab ∈ η(R), since, in such a case, D0(a) and

D0(b) are disjoint tZ-open neighborhoods of the points Q and P , respectively. By hypothesis,

the ideals P and Q are not comparable by inclusion and thus, there exists a ∈ P\Q. Now, by the

minimality of P and Lemma 3.3, there exists b ∈ R\P such that ab is nilpotent and thus, a and
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b satisfy the required conditions. Finally, since Spec(R) is a T0-space, every point of Spec(R) is

λ-closed and we have (e) ⇔ (g). ¤

The equivalence of (a) − (c) in Theorem 3.4 are well-known for commutative rings and we

present here the version for semirings.

Now, let FP := {I ∈ Spec(R)∩ : I 6= R, I * P} for every prime ideal P of R.

Then, P̂ tZ =
⋂

I∈FP
D0(I) and

if FP 6= then FP is closed under nonempty finite intersections.

The following result is straightforward.

Theorem 3.5 Let R be a semiring. Then, the following conditions are equivalent:

(a) R is a local semiring.

(b) There exists a prime ideal P of R such that FP = .

(c) There exists a prime ideal P of R such that P̂ tZ = Spec(R).

Further, in such a case, P is the unique maximal ideal of R.

In the literature there is other notion of weak R0-space due to Di Maio ([17]), which is

independent of the given in [3]. Thus, we say (X, τ) is an R*
0-space (a weak R0-space in the Di

Maio’s sense) if
⋂

x∈X x τ = , or equivalently, if τ(x) 6= {X} for every x ∈ X. By Theorems 3.2

and 3.5 and Hochter’s Theorem, every spectral space is either supercompact or an R*
0-space. In

general, every space is either supercompact (in our sense) or an R*
0-space.

4 Regularity and normality

We say that a point x of a space (X, τ) is a regular point if for every F ∈ τ∗ with x ∈ X\F , there

exist U, V ∈ τ such that x ∈ U , F ⊆ V and U ∩ V = . Thus, a space is regular if each of its

points is regular. We see a description of the regular points of the space Spec(R).

Let P be a prime ideal of a semiring R. If FP = then P is the unique maximal ideal of

R (Theorem 3.5) and the empty set is the unique tZ-closed subset of Spec(R) which does not

contain P and so, P is a regular point of Spec(R). Hence, in our study about the regularity of

Spec(R) we can suppose the nonlocal case.
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Theorem 4.1 Let R be a semiring and P a prime ideal of R such that FP 6= . Then, the

following conditions are equivalent:

(a) P is a regular point of Spec(R).

(b) For every I ∈ FP , there exist a ∈ R\P and an ideal J of R such that I + J = R and

Ja ⊆ η(0).

(c) For every x ∈ R\P , there exist a ∈ R\P and an ideal J of R such that Rx + J = R and

Ja ⊆ η(0).

Further, in such a case, P is a maximal ideal of R.

Proof. Let X = Spec(R). We see (a) ⇔ (b). Let I ∈ FP . Then, are equivalent:

(1) There exist U ,V ∈ tZ such that P ∈ U , (I)0 ⊆ V and U ∩V = .

(2) There exist a ∈ R and J ≤ R with P ∈ D0(a), (I)0 ⊆ D0(J) and D0(a) ∩D0(J) = .

(3) There exist a ∈ R\P and J ≤ R such that (I)0 ∩ (J)0 = and (a)0 ∪ (J)0 = X.

(4) There exist a ∈ R\P and J ≤ R such that (I + J)0 = and (aJ)0 = X.

(5) There exist a ∈ R\P and J ≤ R such that I + J = R and aJ ⊆ η(0).

It is clear that (c) ⇒ (b). We see (b) ⇒ (c). Suppose (b) and let x ∈ R\P . If x ∈ U(R) then we

set a = x and J = η(0). Suppose that x /∈ U(R). Then, I = η(x) ∈ FP and by hypothesis, there

exist a ∈ R\P and an ideal J of R such that I + J = R and Ja ⊆ η(0). Let i ∈ I and j ∈ J

such that 1 = i + j. Then, there exists n ∈ N such that in ∈ Rx and by the Newton’s formula,

1 = (i+ j)n ∈ Rx+J . The last part is a consequence of (c) and the inclusions J ⊆ (η(0) : a) ⊆ P

for every a ∈ R\P . ¤

For every prime ideal P of a semiring R, we set I(P ) :=
⋂{Q ∈ Spec(R) : Q 6= P} and we

say P is weak η-redundant if I(P ) = η(0).

Corollary 4.1 Let P be a non weak η-redundant maximal ideal of a semiring R. Then, P is a

regular point of Spec(R).

Proof. Since η(0) $ I(P ), we have I(P ) * P and there exists x ∈ I(P )\P . Thus, if a = x and

J = P then a ∈ R\P and Ja ⊆ η(0) and by Theorem 4.1, P is a regular point of Spec(R). ¤
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The converse of Corollary 4.1 need not to be holds (for example, consider a local domain

which is not a field).

Corollary 4.2 Let R be a semiring. Then, the following conditions are equivalent:

(a) Spec(R) is a regular space.

(b) For every prime ideal P of R and every I ∈ FP , there exist a ∈ R\P and an ideal J of R

such that I + J = R and Ja ⊆ η(0).

(c) For every prime ideal P of R and every x ∈ R\P , there exist a ∈ R\P and an ideal J of R

such that Rx + J = R and Ja ⊆ η(0).

(d) Every prime ideal of R is maximal.

Proof. By Theorem 4.1, (a) ⇔ (b) ⇔ (c) and (a) ⇒ (d).

Also, (d) ⇒ (a) by Theorem 3.4 and since every compact T2-space is regular. ¤

Recall that a space (X, τ) is normal if for every pair F,G of disjoint τ -closed subsets of X,

there exist U, V ∈ τ such that F ⊆ U , G ⊆ V and U ∩V = . In such a case, we say that F, G are

normal-separated. Also, we say that two ideals I, J of a semiring R are comaximals if I + J = R.

The following result is straightforward.

Lemma 4.1 Let R be a semiring, X = Spec(R) and I, J comaximal ideals of R. Then, (I)0 and

(J)0 are normal-separated if and only if there exist I ′, J ′ ∈ X∩ such that I + I ′ = J +J ′ = R and

I ′ ∩ J ′ = η(0).

Corollary 4.3 Let R be a semiring. Then, the following conditions are equivalent:

(a) Spec(R) is a normal space.

(b) For every pair I, J of comaximal (semiprime) ideals of R, there exist (semiprime) ideals

I ′, J ′ of R such that I + I ′ = J + J ′ = R and I ′ ∩ J ′ = η(0).

(c) For every pair a, b ∈ R such that a + b = 1, there exist a′, b′ ∈ R such that Ra + Ra′ =

Rb + Rb′ = R and a′b′ ∈ η(0).

Proof. It follows from Lemma 4.1. ¤
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We say that R is a Gelfand semiring (or a pm-semiring) if every prime ideal P of R is contained

in a unique maximal ideal µR(P ) ([19]). Note that this is not equivalent to Golan’s definition

([10]), since any local ring with finite characteristic is a good witness. If Max(R) is the subspace

of Spec(R) formed by the maximal ideals of R then the function µR : Spec(R) → Max(R)

is continuous (and thus, a retraction), closed and send closed disjoint subsets of Spec(R) into

closed disjoint subsets of Max(R). The proof of these properties of µR are similar to the case of

commutative rings ([19]). For every P ∈ Spec(R), we set OP the intersection of the prime ideals

of R contained in P . Thus, OP =
⋃

a∈R\P (η(0) : a) and as for commutative rings ([19], Theorem

2.1) we have the following result.

Theorem 4.2 Equivalent conditions for a semiring R:

(a) R is a Gelfand semiring.

(b) Max(R) is a retract of Spec(R).

(c) For every maximal ideal M of R, M is the unique maximal ideal containing OM .

(d) Spec(R) is a normal space.

Further, in such a case, the function µR is the unique retraction of Spec(R) onto Max(R) and

Max(R) is a T2-subspace of Spec(R).

If Max(R) is a T2-subspace of Spec(R) and J(R) :=
⋂

Max(R) then every prime ideal in

(J(R))0 is contained in a unique maximal ideal of R. Thus, if J(R) = η(0) then Max(R) is a

T2-space if and only if R is a Gelfand semiring. This remark is pointed out in [19].

5 kerneled, isolated and open-regular points

In this section we characterize the kerneled, isolated and open-regular points of the prime spec-

trum of a semiring and we use these results to characterize when it is a T1/4, T1/2 and T3/4-space,

respectively. Recall that a point x of a space (X, τ) is isolated if {x} is τ -open, and a subset A

of (X, τ) is a generalized closed set if A ⊆ U whenever U ∈ τ(A) ([15]). Also, a space is called a

T1/4-space if each of its points is either kerneled or closed, and it is a T1/2-space if every general-

ized closed set is closed ([15]), or equivalently, if each of its points is either isolated or closed ([8]).

Further, a space is a T3/4-space if each of its points is either closed or open-regular, where an

open-regular set is an open set which is the interior of its closure. In general, T3/4 ⇒ T1/2 ⇒ T1/4
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and since every isolated point is kerneled, to describe when the prime spectrum of a semiring is

either a T1/4-space or a T1/2-space we need first to know the kerneled points of this.

Lemma 5.1 Let R be a semiring and P a prime ideal of R. Then, P is a kerneled point of

Spec(R) if and only if P is minimal prime.

Proof. It follows of the identity P̂ tZ = {Q ∈ Spec(R) : Q ⊆ P}. ¤

Corollary 5.1 Let R be a semiring. Then, Spec(R) is a T1/4-space if and only if every prime

ideal of R is either maximal or minimal prime.

Proof. The closed points of Spec(R) are the maximal ideals of R. Now, use Lemma 5.1. ¤

By Corollary 5.1, a semiring have Krull-dimension at most 1 if and only if its prime spectrum

is a T1/4-space. This result is a generalization of Proposition 3.1.3 in [5].

To characterize the isolated points of Spec(R) we need the following notion which generalize

the ideals considered by Picavet ([23]) and Gilmer ([9]). Let F be a nonempty family of ideals

of a semiring R. We say that an ideal I of R is absolutely F-irreducible if for every subset

{Ij} j∈S of F such that
⋂

j∈S Ij ⊆ I, there exists j ∈ S such that Ij ⊆ I. If this condition

holds for F = Spec(R) we say I is absolutely prime-irreducible and if it holds for F = Id(R)

then I is absolutely irreducible. Every absolutely irreducible ideal is completely irreducible, this

is, is not the intersection of a family of overideals ([12]). Also, the absolutely irreducible prime

ideals are the prime ideals satisfying the property (#) studied by Gilmer in [9], as well as the

absolutely prime-irreducible prime ideals are the prime ideals with the property (##). Moreover,

the maximal ideal of a local semiring is absolutely irreducible and the ring of integers contain no

absolutely prime-irreducible proper ideals.

Note that if F is a nonempty family of ideals of a semiring R then an ideal of R is absolutely

F-irreducible if and only if it is absolutely F ∩-irreducible.

In particular, an ideal of R is absolutely prime-irreducible if and only if it is absolutely

Spec(R)∩-irreducible.

Theorem 5.1 Let R be a semiring and P a prime ideal of R. Then, P is an isolated point of

Spec(R) if and only if P is an absolutely prime-irreducible minimal prime ideal.

Proof. Let X = Spec(R). If X = {P} the result is immediate. Suppose X 6= {P} and that P is

an isolated point of X and let I be an ideal of R such that {P} = D0(I). Since every isolated
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point is kerneled, P is minimal prime (Lemma 5.1). Now, let {Qj}j∈S be a subset of X such that
⋂

j∈S Qj ⊆ P . If every Qj * P then I ⊆ Qj for every j ∈ S which is a contradiction. Thus, there

exists j ∈ S such that Qj ⊆ P . Conversely, suppose P is an absolutely prime-irreducible minimal

prime ideal, and let I = I(P ) =
⋂{Q ∈ Spec(R) : Q 6= P}. Then, I * P and P ∈ D0(I). Also,

if Q ∈ D0(I) then Q = P (otherwise, I ⊆ Q). Hence, {P} = D0(I) and P is an isolated point of

X. ¤

Corollary 5.2 Let R be a semiring. Then, Spec(R) is a T1/2-space if and only if every prime

ideal of R is either maximal or absolutely prime-irreducible minimal prime.

Corollary 5.3 Let R be a semiring. Then, Spec(R) is a discrete space if and only if every prime

ideal of R is absolutely prime-irreducible minimal prime.

The conditions “absolutely prime-irreducible” and “minimal prime” are independent for prime

ideals, since the zero ideal is the unique minimal prime ideal of the ring of integers which is not

absolutely prime-irreducible, and the unique maximal ideal of any local domain which is not a

field is absolutely irreducible and it is not minimal prime. On the other hand, by the last part of

the proof of Theorem 5.1 we have the following result.

Lemma 5.2 (Prime dichotomy) Let P be a prime ideal of a semiring R. Then, we have

D0(I(P )) ⊆ {P}. Hence, only one of the following conditions is holds: I(P ) = η(0) or P is an

absolutely prime-irreducible minimal prime ideal.

Corollary 5.4 A minimal prime ideal Q of a semiring R is absolutely prime-irreducible if and

only if I(Q) 6= η(0). Also, a prime ideal P of R is an isolated point of Spec(R) if and only if

I(P ) 6= η(0).

Corollary 5.5 Every prime ideal of a semiring is either weak η-redundant or an isolated point

of its prime spectrum.

We say that a point x of a space (X, τ) is an open-regular point if the singleton {x} is an

open-regular in (X, τ), or equivalently, if x is the unique interior point of x τ . For every semiring

R, we describe the open-regular points of the space X = Spec(R). If |X| = 1 then X is a T3/4-

space. Thus, we suppose |X| ≥ 2. Also, if X = (P )0 then P is the smallest prime ideal of R and

in such a case, P is an open-regular point of X if and only if X = {P}. Hence, in that follows,

we suppose |X| ≥ 2 and X 6= (P )0 for every P ∈ X.
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Lemma 5.3 Let I be an ideal of a semiring R and P a prime ideal of R such that D0(I) is a

nonempty subset of (P )0. Then, P ∈ D0(I) and P is minimal prime.

Proof. Let Q ∈ D0(I). Then, I * Q and P ⊆ Q. Thus, I * P and P ∈ D0(I). Also, let H be

a minimal prime ideal of R such that H ⊆ Q. Then, I * H and H ∈ D0(I) ⊆ (P )0. Hence,

P ⊆ H and P = H. ¤

For every prime ideal P of R, we set SP := R\[U(R)
·∪ P ], S ∗

P := {a ∈ SP : D0(a) ⊆ (P )0}
and I0(P ) :=

⋂{Q ∈ Min(R) : Q 6= P}. Thus, S ∗
P = {a ∈ SP : aP ⊆ η(0)} ⊆ I0(P )\P and

I(P )\P = {a ∈ SP : D0(a) = {P}}. Note that is possible that S ∗
P = (Lemma 5.5 below).

Lemma 5.4 Let P be a prime ideal of a semiring R. Then, (P )0 have nonempty tZ-interior

if and only if there exists a ∈ SP such that 6= D0(a) ⊆ (P )0. Further, in such a case, P is a

minimal prime ideal.

Proof. Suppose I is a semiprime ideal of R such that 6= D0(I) ⊆ (P )0. By Lemma 5.3,

P ∈ D0(I) =
⋃

a∈I D0(a) and there exists a ∈ I such that P ∈ D0(a). But then, a ∈ SP

(since I 6= R and a /∈ P ) and 6= D0(a) ⊆ (P )0. Conversely, suppose that a ∈ SP such that

6= D0(a) ⊆ (P )0. Then, I = η(a) is a semiprime ideal of R such that D0(I) = D0(a). The last

part it follows from Lemma 5.3. ¤

Lemma 5.5 Let R be a semiring and P an isolated point of Spec(R). Then, S ∗
P 6= .

Proof. If a ∈ R such that {P} = D0(a) then a ∈ S ∗
P . ¤

Note that if U ⊆ Spec(R) and P ∈ Spec(R) then U tZ = (
⋂U)0 and I(P ) ⊆ ⋂

D0(P ).

Theorem 5.2 Equivalent conditions for a prime ideal P of a semiring R:

(a) P is an open-regular point of Spec(R).

(b) P is the unique interior point of (P )0.

(c) S ∗
P 6= and D0(a) = {P} for every a ∈ S ∗

P .

(d) Spec(R)\{P} = D0(P )
tZ .

(e) P is an isolated point of Spec(R) such that I(P ) =
⋂

D0(P ).
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Proof. It is clear that (a) ⇔ (b). We see (b) ⇔ (c). Suppose (b). By Lemma 5.5, S ∗
P 6= and if

a ∈ S ∗
P then P ∈ D0(a) and by hypothesis, (c) is holds. Conversely, suppose (c). Then, S ∗

P 6=
and by Lemma 5.3, P is an interior point of (P )0. Now, let Q be an interior point of (P )0 and

a ∈ R such that Q ∈ D0(a) ⊆ (P )0. Then, a ∈ S ∗
P (Lemma 5.3) and by hypothesis, Q = P . We

see (b) ⇔ (d). Let X = Spec(R) and suppose (b). Then X\{P} is a closed in X containing D0(P )

and thus, D0(P )
tZ ⊆ X\{P}. Now, if Q ∈ X\{P} then by hypothesis, every open neighborhood

of Q in X intersects D0(P ) and thus, Q ∈ D0(P )
tZ . Conversely, suppose (d). Then {P} is open

in X and P is an interior point of (P )0. Now, if Q is an interior point of (P )0 and a ∈ R such

that Q ∈ D0(a) ⊆ (P )0 then P = Q, since, otherwise, Q ∈ X\{P} = D0(P )
tZ and there exists

H ∈ D0(P ) such that H ∈ D0(a) ⊆ (P )0 which is a contradiction. Finally, we see (d) ⇔ (e).

Suppose (d). Then, P is an isolated point of X and I(P ) ⊆ ⋂
D0(P ). Now, if a ∈ ⋂

D0(P )

and Q 6= P in X then Q ∈ D0(P )
tZ and if a /∈ Q then D0(a) intersects D0(P ) which is a

contradiction. Conversely, suppose (e). Then, X\{P} is a tZ-closed set containing D0(P ) and

thus, D0(P )
tZ ⊆ X\{P}. Note that, by hypothesis, D0(P )

tZ = (
⋂

D0(P ))0 = (I(P ))0 and

hence, X\{P} ⊆ D0(P )
tZ . ¤

Corollary 5.6 Let R be a semiring and X = Spec(R). Then, are equivalent:

(a) X is a T3/4-space.

(b) Every point P of X is either closed or an isolated point such that D0(a) = {P} for every

a ∈ S∗P .

(c) Every point P of X is either closed or satisfies X\{P} = D0(P )
tZ .

(d) dim(R) ≤ 1 and X\{P} = D0(P )
tZ for every nonmaximal prime ideal P of R.

(e) Every point P of X is either closed or an isolated point such that I(P ) =
⋂

D0(P ).

(f) Every prime ideal P of R is either maximal or an absolutely prime-irreducible ideal such

that I(P ) =
⋂

D0(P ).

Further, in such a case, the set Min(R)\Max(R) is a discrete space.
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