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1 Introduction

Assuming that D = {z € C : |z| < 1} is the unit disk of the finite complex plane C, T is the boundary of
D, T={z¢€C: |z] =1} and H(D) is the space of all functions holomorphic in D we introduce the classes of
functions

NEMD)={fe HD):T(r,f) <Cs(1—7)"% 0<r<1, a>0}
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where T'(r, f) is classical and well known Nevanlinna characteristic defined by

T(r.) = 5= [ 10" If(reldc
where at = max{0,a}, a € R, (see for example [2] - [6]).

It is obvious that if @ = 0 then N§° = N, where N is a classical Nevanlinna class. The following statement

holds by Nevanlinnas classical result on the parametric representation of N (see [2] - [6]).

The N class coincides with the set of functions representable in the form

f(2) = Cx2"B(z, {z1}) exp (/:; liﬂ) , z€D,

ze 0
where C) is a complex number, A is a nonnegative integer, B(z,{zx}) is the classical Blaschke product with
zeros {zx}re; C D enumerated according to their multiplicities and satisfying the Blaschke density condition

Y re (1 —zk]) < 00, and p(P) is any function of bounded variation on [—m, 7], (see [2]).

We denote by B5I(T), 0 < p < oo, 0 < g < o0, a> 0, the classical Besov space on the unit circle T, (see
[1])-

Also, by m2(€) we denote standard normalized Lebesque area measure.

Everywhere below by ns(t) = n(t) we denote the quantity of zeros of an analytic function f in the unit
disk |z| < ¢ < 1 and by Z(X) the zero set of an analytic class X, X C H(D). By let {zx}32; be a sequence
of numbers from D below we mean that {z;};2, is an arbitrary sequence from the unit disk enumerated by its
growth (Jzx| < |zk+1] < ...) according to its multiplicity.

Also, by ny we denote n(1 —27%), ie. ny =n(1 —27%), k=1,2,....

In all our assertions below we assume in advance that our functions are not identically zero or infinity.

Theorem A (see [10]) Let o > 0 and 3 > a—1, then the N3° class coincides with the set of functions representable

in the form

T 60
flz) = C’AZAHB(z, {zr}) exp (/_ %) , 2z €D, (1)

where Cx is a complex number, X is a nonnegative integer, g(z,{zk}) is the Weierstrass - type product

1€l — £
e =1 (- 2o (2222 [ OO o).

which converges absolutely and uniformly inside D, where it present an analytic function with zeros {zx}req,
{zr}rz1 C D is a finite or infinite sequence with condition

n(r) < m:
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where ¢ > 0 is a positive constant and (e*) is a real function of BéfZH(T).

We also give in the theorem below a result which was established in [9] and in a sense similar to Theorem A.

Let S% (D) the class defined by
1
SED)={fe HD): HfH’;p :/ (1=7)*T?(r, f)dr < o0, 0<p<oo, a>—1}.
* 0

Theorem B (see [9]) For p € (0,00), 3 > O‘TH, f € SE(D) if and only if f(z) admits representation f(z) =
0
Cr2Mlg(z, {zx}) exp (fjﬁ %), z € D, where Cx is a compler number, \ is a nonnegative integer,

{zt}321 C D is a sequence for which fol(l — 7)*P[n(1)]PdT < 00 and v € BYP(T), where s = 8 — "TTI.

One can easily see that Theorem A gives parametric representation of the spaces N3°(D) while Theorem B gives
the parametric representation of S%(D) analytic area Nevanlinna type spaces in the unit disk via certain infinite
products in the unit disk. One of the goals of this paper is to obtain such parametric representation of the larger

spaces

NS‘,’;;”(D):{feH(D): owp (1- 1) [ ’ ( I 1n+\f<|z|s>|ds)p<1—|z|>°‘d\z\ <oo},

0<R<1

where 0 < p < oo, > —1and B > 0, and

1 p
N2 D) = {f e HD): [ ( [t i - |z|>“dmz<z>> (1- R)’dR < oo},
Jo |z|<R
where it is assumed that 5> —1, a > —1 and 0 < p < oo.

These analytic area Nevanlinna type classes were introduced recently in [11]. Note that various properties of

N7 spaces are studied in [2] for p =1 and in [9] for all p.

Thus it is natural to consider the problem on extension of these important results to all N;’f’bp classes. The
zero set description problem can be stated in the following simple form: Assuming that X is a fixed subspace of
H(D) find a class Y of sequences such that the zero set of any function f, f € X is a sequence of Y and for any
sequence {zx} € Y there is a function f, f € X such that f(zx) =0, k=1,....

Note that for many classical analytic classes such as the spaces A%, this problem is still open (see [7]). On the

o¢" and Ng° are known (see [2]). One of the intentions

other hand the complete descriptions of the zero sets of A/,
of this paper is to solve this problem for mentioned new Nevanlinna type analytic classes in the unit disc and to
establish the parametric representations of these classes, where the found description is used. We mention that

several new results of this type are presented in [9], [11] for some classical Nevanlinna-Djrbashian analytic classes

in the unit disc. So it is natural to consider this problem for N? ; and N7
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Note that zero sets of the classes N.°3” are described in [9] for 8 = 0. Besides note that the above mentioned
problems on zero sets description and parametric representation have various applications and are important in

function theory, (see [3], [4], [5])-

It is not difficult to verify that all the above mentioned analytic classes are topological vector spaces with

complete invariant metrics.

Some results of this paper concerning zero sets without proofs were given in a paper [11]. In this paper
we add complete proofs to mentioned results announced in [11] and add new results for spaces of analytic and

meromorphic functions.

Throughout the paper C, sometimes with indexes, stands for various positive constants which can be different

even in a chain of inequalities and are independent of the discussed functions or variables.

The notation A < B means that there is a positive constant C, such that g < A < CB. We will write for two

expressions A < B if there is a positive constant C' such that A < CB.

2 Preliminaries

In this separate section we collect various assertions and facts that will be used in sequel and some known propo-

sitions from theory of meromorphic functions that we will need later in proofs or for comparasion with our results.

Proposition A (see [2])Let {z}32; be a sequence in the unit disk, {zx}iey C D, satisfying condition > - (1
|z6)+? < 00, t > —1. Then for such at the infinite product

£

zx

—+1) [ A=) Il = o
z,{z}) = 1:[ (1 - —) exp - /D (122 dmz(§) | ,z €D, (2)

converges absolutely and uniformly inside D where it presents an analytic function with zeros {zp }r=;.

The following known corollary shows that the infinite product we introduced above has a simple form for nonneg-

ative integers.

Corollary 1 (see [2]) Let {zr}321 be a sequence in the unit disk, {zx}7z, C D, satisfying condition > ;2 (1
|26)7T2 < 00, q € Zy. Then the infinite product

o q+11 1*|zk|2 J
R (et D
#{z}) = H ( zkz) eXij ( 1—Zkz) FED

k=1 j=1

converges absolutely and uniformly inside D where it presents an analytic function with zeros {zp}r=.
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It is easy to see that the factors of the infinite product from corollary arise in a simple way from the well-known

Blaschke factors similarly as Weierstrass products (see [4], [6]).

Proposition B (see [2])Let {z1}72, be a sequence in the unit disk, {zx}pey C D, and > 50 (1 — |z])'™ <

00, t > —1, then the following estimate holds for I1;(z,{zr}) product

+ o~ (L [z
In™ [ (z, {z})] < Ctz TN z€D

k=1

where Cy > 0 is a constant depending solely on t.

In the following proposition we introduce another infinite product which will be mentioned by us.

Proposition C (see [3], [4], [6]) Let o > —1. Let {z}32, be a sequence of numbers from D and > 72 (1 —
|zi|)*t" < co. Then the infinite product Bo(z,{zr}) converges absolutely and uniformly inside D if > 7o (1 —

|2e))>T! < o0, where

Ba(z,{z1}) = ;ﬁ (1 - i) exp (—Wal(z, ), and

at+k+1) [ [P (A-2)dz  [(2\" [ N
M((ﬁz) /‘HT*(g) /O (1—2)%" "dx |,z €D.

The Ba(z,{zk}) product presents an analytic function in D with zeros only on {zik}72,.

Remark 1 An interesting generalization of this product can be found in [2].

Now we will add to this section some facts from the theory of meromorphic functions that will be needed for

our exposition (see [3], [4], [6]).

Let f(z) be meromorphic function in D and let f(z) = 352 Cxz*, be it is Loran expansion near z = 0. Let
{ar}72; and {brx}32, be sequences of poles and zeros of f(z). We assume also {ax}7>; and {bi}7> are counted

by their growth according to their multiplicity.

The following formula of Poisson - Jensen is well known (see [3], [4], [6])-

1 [7 i0 (p* —r?)
1H|f(2’)‘ —%/_WIHV(p@ )|(p2—2TpCOS(9_80)+T2)d0

+mln(ﬂ), z €D,
p

p(z —av)

p(z —b,)
p?—ayz b

+X0<)ay|<pIn 02—z

— Bo<|by|<pIn

where m is a multiplicity of zero or pole of fin 2 =0, |z]|=r < p < 1.

Putting z = 0 we get classical Jensen’s formula that will be used in this paper (see, for example [3], [4], [6]
and the references there). Moreover the formula we mentioned can be written in the following symmetric form

1 ™
o 1n+‘f(pe )d9+20<\b ‘<p1n(|b |)

-
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= o [T k9 4 Sociayi<p I (127) + 10| Conl, (see [3], [4], [6]).

We will need the Nevanlinna characteristic of meromorphic f function which can be expressed in the following

form

fm(nf) = %[ Int |f(pe )|d0—|—2|b \<rln(|b |) %/7 Int |f(pei0)d0+N(r),

N(r)=N(r, f)= [, wdt7 where n(r, f) = {card by : |bx| <1}, {bx} is a set of poles of a meromorphic
f function in the unit disk. T,.(r, f) is growing, (see [3], [4], [6]), on (0,1). And we define spaces of meromorphic
functions with bounded characteristic, so that Tm(l, f) < oo, where Tm(l7 f) =lim,—~1-0 Tm(r, f) < oo. They are

coinciding with the class of all meromorphic functions such that

flz)=C= *B(( ‘%ZB exp (i/ﬂ :}*zdw(a)), 2 eD,

-

where A is an integer number, 1 is a measure of bounded variation and {ax}5=; and {bx}3=; are sequences in D
so that >°;7 (1 —|ax|) < oo and Y 72 (1 —|bk|) < oo. In the second part of this paper we will show that such type
results are valid for some larger scales of meromorphic functions in the unit disk D. We mention that for some

classes of mentioned type of meromorphic functions such results are known. We give such result below.

Theorem C (see [2], [3], [4])Let f be meromorphic function in D and fol(l — )T (r, f)dr < oo. Let also

f(z)=Cxz>+..., Cx #0, be it is Loran expansion near z = 0, then
A Ha(z{an)) (a+1) / / o0 (pe™)|pdpdt
_ KQC A ) HSPe JIPepev
T = K G o) . (1= zpe®)os2 )
where Ko = exp ( fo 1-=p)%n - dp) , Cx is a complex number, X is a nonnegative integer, z € D, {ax }1eq

and {bi}r2, are sequences of zeros and poles of f(2), > ey (1 — |ak])*™ < 0o and 352, (1 — [bk])* T < oco.

Remark 2 [Interesting parametric representations for various classes of meromorphic functions can be found in

12

We mention now another result on parametric representations of certain classes of meromorphic functions. In
[3], [4] the following space of all meromorphic in the unit disk functions were introduced. Let f € M (D), « >

—1, 7 € (0,1), then we put ma(r, f) = 55— [" ([ (r —t)*In \f(tei‘P)|alt)Jr de,

T n(0)

I'(a+2)

(n(t) — n(0))dt + Inr,

and let To (7, f) = ma(r, f) + F?(;&—;Q) /0 (

where 7i(t) is a number of poles in D, = {z € C| : |z| < t}. Finally we define MN, := {f € M(D) :

SUPg<re1 La(r, f)dr < co}.
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Theorem D (see [3], [4])The M N, class coincides with the class of all meromorphic functions in D such that

fz) = ckz*% exp (% /:; (W - 1) d¢(9)) . zeD,

where Cx is a complex number, X is a positive integer, {ar}5e, and {bx}r, are arbitrary sequences in D so that

S (1 —ak))*? < 0o and 372, (1 — |bk])* 2 < oo, ¢ is an arbitrary real function of bounded variation.

Later the following result in similar direction was obtained in [9].

Let MSEL(D) ={f € M(D): f01 TP (r, f)(1 —r)%dr < o0}, 0 < p < 00, a > —1. We give another parametric

representation of M S¥ spaces below via infinite product of Weierstrass type we introduced above.

Theorem E (see [9]) (a) Let 0 < p < o0, B > %. Then the following assertions are equivalent:

1° fe MSE;
o g (z,{a ™ e%)do 0o e} .
2° f(z) = CAZA% exp (% o %) ,z € D, where {ar}32, and {bk}72, are arbitrary se-
P
quences in D for which 3 72 | Qk(;j_i’“ua) < o0, where ¢ € BY ,(T), s =0 — %1, Cy is a complex number, X is a

positive integer.

(b) Let 0 < p < 0o, a> 0. Then MSE(D) coinciding with the class of f functions such that

fz) = eia+/\KﬁZm7gZ((z: jtf;:i)) exp (% /:r (7(1 — ej%@z)f“rl - 1) ¢(ew)d<ﬂ) ,2 €D,

X is a positive integer, {ak}re1 and {bx}rzq, (0 < |ak| < |akt1], 0 < |bk| < |brt1], & = 1,2,...), are arbitrary

sequences of points from D, so that
1 L )
/ P (r, f)(1 — T)O‘erdr < oo and / n®(r, ?)(1 _ r)aﬂwdr < oo,
0 0

whereﬂé(aTﬂ,an+2) forp<1andpe [%4—1,0‘7“4—2) for1 < p< oco.

Furthermore, ¥ € Bf ,(T), with s = 3 — ”‘Tfl satisfying ¥(e*®) = lim, 1o ﬁ Jo (r— )P~ n | f(te?)|dt and

_ oo 1
Ko =202 s

3 Main results

Here is the plan of this main section. First we describe zero sets of analytic classes Ng, 3 and Ng% in the unit
disc. Then we using these assertions provide complete parametric representations of corresponding analytic and
meromorphic spaces. Note our results can be considered as complete analoques of results for other analytic and

meromorphic classes in the unit disc that we provided in our previous section.
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Theorem 1 Let 0 < p < oo, > —1 and let 8 > —1. Then

oo

nj,
> SkCptitapts) < X (3)

if and only if {z1} € Z( > If (3) is true, then (2, {2x}) € NZ 5 for

t > max [ + 8/p + max(1,1/p),a + 1].

Theorem 2 Let 0 <p < oo, « >0 and let B > 0. Then

a+B+p+1

n(r)<c(l—7)" 2 | 1€(0,1) (4)

if and only if {zk} € Z (Ngoﬁp) If (4) is true then (2, {2}) € N5 for

atftl
t> P 1.

From these theorems we using standard argument that already were done in [2], [9], [10]. We get immediately

the following parametric representations complete analogues of theorems we provided in previous sections.

Theorem 3 If0 < p < o0, « > —1 and B > —1, then the class Npﬁ coincides with the set of functions

representable for z € D as

1—2
2k

T (1= 2 ) esp “// e dpdip b explh(2)}
i Pt 2k o l—pe ey )tt2 papatp ¢ SXPUE) S

where t > max{a+ % + max(1,1/p), a + 1}, ex€C, A>0,

oo

U
Z SkCpiitapts) < X

and h € H(D) is a function satisfying the condition

/01 [/OR (/:; |h(7'ei*")dg0) (1— T)ad7:|p (1— R)%dR < .

If in particular ¢ = o, q € Z+ then

q+1 2\ J
o=l (- 1-'Zi>exp<z;<a-_'z:'z>>x
j=1

q+1) gIn|f(pe’)|pdpdd
><eXp< / /_7\’ 1-2/)6 10)q+2 ’

where C is a complex number, Cx # 0, X is a nonnegative integer and z € D.

Theorem 4 If0 <p < oo, a >0 and B > 0, then the class Noo’p coincides with the set of functions representable
for z€ D as
1—

> t+1 )|l - e
= [] 1** exp 1_pe omyera— pdede o explh(2)},

k=1
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where

a+B+p+1

TL(T) < C(l - T)i P , TE (07 1)7
cx is a complex number, A > 0 and h € H(D) is a function satisfying the condition

sup /R ( ; |h(7§)d§)p (1 —7)%7r(1 — R)’dR < .

0<R<1Jo

If in particular ¢ = «, q € Z4 then

q+1 2\ J
AH 1— |z Zq 1/1— |z
f(z) = Oaz ( 1—Zkz oxp 5 17751&’ x

Jj=1

(G+1) ln If(pe’g)lpdpd9
X exp ( 3 e i0yirz )

where C is a complex number, Cx # 0, X is a nonnegative integer and z € D.

Proofs of Theorem 1 and Theorem 2 are based on classical arguments, (see [2]), but with more accurate and

delicate attention to estimates in them.

Proof of Theorem 1. Let f € N(’;’B(D). Then, without loss of generality it can be assumed that f(0) = 1,
flzr) =0 (k=1,2,...).

Hence, by Jensen’s inequality (see [2])

1:/01 {/OR(I—T)O‘dT/OT @duru—mﬁm

<0 / [/ log ™" | £(2)[(1 — |z|)adm2(z)] (1— R)%dR.
Jo |z|<R

Further, it is obvious that

/ n(u)duZ/ n(u)duZC’zn(gT_R)R_T,
0o U LBt w 2 2

2

1 R T P
1y, 200 [ | [ w=nn (5 ar| - ryan

for any numbers R < 37, C1 >C,C < R,Ci < R<1,C,Cy >0, a > 0. Besides, one can see that the following

and

implications are true:

_ _ _2(R—p)
5 =p = T= 3 = R-717= 3 .

Hence,

/ RN (#) dr = € /( )R

3C—R)/2
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Suppose C' = (4R —1)/3. Then (3C — R)/2=R— (1 — R)/2 and
1 R 17
Ifllxr > Cz/ / n(p)(R —p)** dp} (1-R)%dR
o = oy [Jrgn

1 _ P
202/ {n(3R2 1” (1— R)ltrtstrgp

Cy

*
1

1 st P
p (a+D)p+B+p 7 "k
> 02/ [n(p)]"(1 - p) dp = Z 2k(p+1)2k(at1)p+ kB
k=1

since
Tk+4+1
/ e / f(r)dr (5)
for any f € L'(0,1) and 7, = 1 — 2% (k=0,1,2,...) and
n(s1) <n(s2) when 0 < 51 < 52 < 1.

For a € (—1,0], a similar argument leads to the estimate

11, > [ [/ - (B dp] "0 - Ryar

1 p
> 02/ |:n (3R2_ 1)} (1-— R)(a+1)p+5+de.

C1

Then, we continue as in the above case a > 0 and come to the desired statement.

For proving the converse statement, fix a number ¢ so that Proposition A and Proposition B are applicable.
We assume such t exists. Further, observe that |log|f|| and log™ |f| both belong to N, 5(D) if just one of them

is of Ng’ﬂ(D). Hence, for z = pe'?, 7 =t + 2 we get

T d
_ t+2 P
[ st cont = S0 i
Hence, for great enough values of ¢
[)t+2

1—|Zk o
/ (I, p)(1 - p) dp<c/ lepm(l—p) dp

_ g)t+2
<c / (1-p)" / S mdn(s)dp = J(R. ).

It is easy to show

1 (1 )t+2 t+1
[} e <6 [ G e

and hence

1 t+1 oo
(1 — 8) ngk 1
-— ds < C =1—-—.

/0 TP O o ey L
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Consequently, for p < 1

R e
(L—p)*dp 1 Nk
J < Ckz_l/o (1 — 7pp)ttt 26(+2) = CZ 2k(+2) (1 — 7, R)(t+ D~ (ot 1)’

and by the inequality [ oo, ar]? <> oo ab (p < 1) we get
' s S ny,
/0 J(f, R)(L = R)"dR < Ckz T tarta)
—1

The proof of p < 1 case is complete. If p > 1, then the following estimates are true:

p
n
/']p (f,BR)1-R BdR<C/ |:E/ 1_7-kpt+12k(ti2>:| (liR)BdR

<c/ !

2k(t+2) (1 _ TkR)t'H (a+1)

} (1— R)"dR.

Or, which is the same,
M = /01 JP(f,R)(1 — R)?dR
< /01(1 - R :/OR(1 —p)° /01 %dn(s)d,}rm
< [a-rr[[Ta-pe [ ST noiom] an

~[a-we | [fa-ar [ Hl_p))i n(s)d(s)dp

1 [ fR o k(t42) (1
2- (1-p)dp|”

< 1-R)® / Tk dR

[a-m°| [ mir—st

r p

<[ 1-R)? gkt L dR, t
S| (1-R) Zn (1— Rrp)t—o > o

v0 Lk=1

Hence,

U

for any function ¢ > 0 such that ||¢|r« =1 for 1/p+ 1/¢ = 1. Using the Hardy and Holder inequalities, one can

be convinced that

_ o [ (1= R)"y(R)
- / /0 (L phye 1P
_ t+1+§+a—t+1 £ Y(R)
S/ /0 (1_R)dep,
L < /o f(j-z_/ n(p)(1 — p)%+°‘+2dpd7'

< (lélwq(T)dT)é : (/01 (/0.14 n(l— t)tﬁ*a”dt)pdT); ,
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and hence

1
I 5/ n(p)p(l _ p)p+5+ap+pdp’
0

B
3

For 8 < 0 above we used (17R)g <(1fp)g,R§p<1forﬁ20, (17R)% <1 —-pR)?, p,R € (0,1), for

t > max { (o + 8/p) + max{1,1/p}, (a +1)}. Besides for 3 > 0 again by Holder and Hardy inequalities we will

have
! ' (1 - R)*/*y(R)dR
= [ - [
2= [ noa - [ R
1 5 1—p
< [ - [ w0 - wdu
0 0
! 1/p 1 1 1-p q71/q
5 {/ n(p)p(l—p)p+6+ap+pdp] {/ (7 Qb(l—u)du) }
0 Jo \1=pJg
<B-ClYllpe, ¢>1.
where
! 2p+ 6+ Y - n? 1
B = {/O n(p)P(l - ,0) P pdp:| = |:Z 2k(p+l)2k(a+1)p+kﬁ:|
k=1

for t > max {(a + 3/p) + max{1,1/p}, (a+1)}.
The estimate of I in case of 8 < 0 needs small modification of mentioned arguments and we omit details.

Now we shall show that for great enough numbers ¢ Proposition A and Proposition B are applicable. To this end,

we prove that if ¢ > max {(a+ 8/p) + max{1,1/p}, (a+ 1)}, then > 7% (1 — |z&|)**? < co. Hence, the condition

oo

P
# < o0
Z 2k(ﬁ+ap+2p+1)
k=1

will imply the convergence of the product II¢(z, {2z }).

Indeed, the obvious inequality

1
/ nP(7)(1 — 1) TP dr < oo
0

implies that

1
/ nP(r)(1 — T)B+&p+2pdT —0 as 7 — 1.

1

Hence, for 8+ ap +2p > —1

n?(7)(1 — T)B+°‘p+2p+1 —0 as T—1,
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and therefore n(1) < C(1 — 1)~ (FFrer+22t1/P () < 7 < 1). Consequently,
oo
S0 <03 T 0l
k=1 k=1 z,€B,
< CZ Z |Zk| t+2—(,3+(lp+2p+1)/1’
k=12z,E€By,

oo
1
= Ckz SR— (A /p—a] < T
=1
The Theorem 1 is proved. g

Proof of Theorem 2. Without loss of generality we assume f(0) =1, f(zx) =0 (k=1,2,...). Then by Jensen’s

inequality used more accurately than in [2]

1= (L] o e e

<C s /R[ [ et 15re)iae] "1 = ryvar - my”

C1<R<1

where C; >0and C* =7 — &

7z o ([ O] () or)em

> s (f S mre- P )1 - R

_ P
> sup ( {n (3R 1):| (1- R)l+p+a+ﬁ)
C1<R<1 2

> Cln(p)) (1 — p) 72,

5. Bstimating the left-hand side of the above inequality from below, we get

hence n(p) < C(1 — p)~@+HAHIFPI/P for any p € (0,1), & > 0 and 3 > 0.
For proving the converse statement, we use the latter inequality for n(p) and Propositions above that gives estimates

for Iy (z, {zr}). We have as in proof of Theorem 1

R o 1 (1 -y )t+1 D
I Dl < o (=7 [T -0 [ =gt do

_otpt+B+1
82 t+1 >

C1<R<1
_ B
a-n_,

<C su
- Cl<1§<1 (1-R)

Now, integrating by parts for ¢ > %’?H —land B=t— %{”1 > —1 we have

Z (1—|z)'™? = /R(l — )" 2dn(s) < C/R(l - s)’gds < Ho00.

|z |<R

Thus, these values of ¢t provide the applicability of Proposition A and Proposition B. The proof is complete.

O
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Remark 3 [t is not difficult to extend the statements and the proofs of Theorems 1 and 2 to more general, slowly

varying weights w(l — 1) from S class (see [2]).

Proof of Theorem 3. Let us first show the first part of theorem. Let f € NS’Q(D). Note, if f, g €
NE (D), Z(f) D Z(g) then 5 € N7 ;(D). Note also for mentioned ¢, II¢(z,{zr}) € N ;(D). Hence 9(z) =

f(z) p : . o
GG € N? 5(D). It remains to use the following two equalities

LT e dp = In(0)

2m J_

L[ ; 1 [" _
o /ﬂ ‘hl Iw(r@m dp = — '/4 In* [y (re’?)|de — In |1(0)],

fra=r(f [o-nr

It remains to put h(z) = In(y(z)), z € D, where we choose the main branch of logarithm. The reverse follows

hence

|y (Re™? |‘ decp) dr < oo.

from Theorem 1 and the fact that

In™ |IIg(z, {br}) - exp h(z)| < In™ Mg (z, {bx})| + In™ lexp h(z)] .

The proof of second part of Theorem 3 follows directly from Corollary 1. Theorem 3 is proved.

The proof of Theorem 4 is based on same arguments and we do not present that proof here.

Remark 4 It is clear that obtain a parametric representations of classes we study in this paper via Bi(z,{zr}) all
we have to do is to show, for ezample, that if f € X, X = NX 5(D) or X = N7/ (D) then f € S3(D) for some
big enough 7 > 0 then apply theorems we just formulated above. To do that partially we formulate the following

propositions.

To obtain parametric representations of N7 ;(D) and N;°)"(D) classes via Ba (2, {21 }) infinite Blaschke type
products we can use some embeddings and known parametric representations for analytic classes or area Nevanlinna
type with quazinorms fol (Jplog™ | £(2)]d€)” (1 — |2])*dma(z) < oo, for certain 0 < p < oo, o > —1, that were

obtained.

First we formulate a result that will be used by us.

Theorem F (see [10]) Let 0 < p < 0o, a > 0. Then MSE(D) coinciding with the class of f functions such that

- B (1 [ (1)) e

-
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{ar}izq and {br}521, (0 < |ag| < lak+1], 0 < |bk| < |bg+1|, k= 1,2,...), are arbitrary sequences of points from

D, so that
! P a+tp ' p 1 a+p
nP(r, f)(1 —r)*"Pdr < co and n?(r, ?)(1 —7r)*Pdr < oo,
0 Jo
where B € (£, 5L 12) € Bi,(T), s = 8 — =, (e) = lim,—1-0 5 Jy (r = )"~ In|f(te")|dt and

oo 1
Ko =BY0l1 wtrepy-

Proposition 1 Let f € H(D).

1) Leta>-1, p<1, v>0, a>~—1. Then

0<r<|z|

/D log* If(z)|(1|2|)“dmz(z)sc( / <1|z|>(““>”“’1( sup T<T,f><1T>V> d|z)p;

2) Let 3> -1, v>0, 0<q<oo. Then

(/ (1= )Pt ([ 1o |f<ff>|dm<f>)qdf)é
<c </01(1 7y (/llg N0 - |z|>7dm2<z>>qdf> g

Similar estimate can be proved for N;7)”(D). We state it as

Proposition 2 Let f € HD), 0<p<oo, a>1, =1 < B<0. Then

/01 (/T log™ 'f(2>|d€)p (1~ |2])dlz|

< Csup </OR T (7, f)(1 — T)ﬁdT> (1—-R)*1.

R<1

The proof of Proposition 2 follows directly from the fact that if f > 0 and f(r1) < f(r2) for 71 > 72 on
(0,00), ¢ > 1, then

=D qupars @) < swpar [ sy,

qq

which can be found in [8]. We omit the prove of last assertion.

Let us show assertions in Proposition 1.

Let T =1— 55, neN, p<1, f(2) =log" |f(2)|- Then we have

(/D fx) - |Z|)adm2(z)) < kz:: o—kp(a+2) (Ml(Tk, f))p

1

>° ~ 2
<32 sup (anip, i1 —p)7) 2
=1 0<p<Tk
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S [ e s (e, 1)) dl

k—q/1-27k"2 0<p<|z|

<C 1(1'2)(‘”1)’3””1< sup T(T,f)(lT)”) d|z|.

0<p<|z|

[ a=nren ([ Fogane) ' ar

< 3o e <M1(Tk7 f))q

Let us show the second estimate

k=1
> / F2)A = |2])dma(z) | 27O
k=1 TR <|2|<Tp41
Sy ) — )P (s e dma(s qT
2/ 0 (/lmf( )1~ =) dm )> y

< / (1- ) ( /‘ } f<z><1—|z|>7dmz<z>) dr.

Remark 5 The analogs of Theorems 1 and 2 on zero sets and parametric representations are true for the area
Nevanlinna type classes in the upper half-plane C4, which are the analogs of the analytic classes we considered

above (see [12]).

A classical result of meromorphic function theory says that every meromorphic function of bounded charac-
teristic f, can be expressed as
fi

f: 57 flan € HOO(D)a

where H* is a set of all bounded analytic functions, (see [6]). In short, a meromorphic function of certain class can
be obtained as a factor of two functions from certain analytic class, a subspace of H(D). We will obtain complete

analogue of this result for meromorphic spaces we study.

First we define meromorphic classes

M? (D) = {f e M(D) : /01 (/ORTm(r, - r)adr)p (1—R)?dR < oo} ,

0<R<1

MZF (D) = {f € M(D) : sup /OR (Tm(n - r)adr)p (1- R < oo} ,
where 0 < p < oo, a>—1,3>—1and 1 > 0.
Our next theorem shows us parametric representations for meromorphic spaces in the unit disk we defined
above can be readily derived from parametric representation of corresponding analytic classes in the unit disk we

obtained already in Theorems 3 and 4. We note again we do not consider in this paper parametric representations

of analytic or meromorphic classes via Besov spaces on the unit circle we formulated in Section 2.
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Theorem 5 Let 0 <p < oo, a>—1 and § > —1.
1) The M, 5(D) class coincides with the space of all meromorphic function, so that f(z) = %, zeD, ge

NE 5(D) and {bx};Z; is a sequence from unit disk,

oo

ny,
> hEptitapts) (6)
k=1

and t > max [a + B/p + max(1,1/p), a + 1].
2) Two sequences of complex numbers from D {ax}ie; and {br}52q, |ak| < |akt1| and |bi| < |bryi], K =1,2,...,

are zeros and poles of a function from Mf;ﬂ(D) if and only if for both of these sequences (6) holds.

Remark 6 Combining results of Theorem 3 and Theorem 5 we immediately can get a parametric representations

of meromorphic spaces we consider in this paper as analogies of Theorems C, D, E formulated above.

Proof of Theorem 5. We start with the first part of the theorem. Let f € ME ;(D) and {bx}zZ, be the

sequence of poles of f. Then

/01 (/ORN(T)(l - r)adr)p (1—R)?dR < oo, (2, {bx}) € N 4(D).

Since
1 R _ P
[ ([ B -nrar) - rpar <o
o \Jo
Hence g = f - II¢(z,{bx}) € N 5(D). Hence we have what we need.

Let us show the reverse implication.

Let g € N 5(D) and condition (6) holds for {by};Z; sequence from D. Further, since for f(z) = %
we have
1
Int|f(2)] <In" |g(2 +ln+‘7 ,
FEI< I o)+ | s
all we have to show that g ;'r5y is also from MY 5(D), (poles of f and m are the same). But it is

true since T(r,IL;(z, {bx})) = Tom(r, M) + In |11, (0, {bx})|, which follows directly from Jensen’s equality
mentioned above (see [6]) and which says

d@+/0rﬁ(i,ﬂdt—ln)f(0)‘+zlﬂ/_iln+ Md“”/or 'ﬁ(t;%)dt’

% In*™ ‘f(rew)

-

fis meromorphic. The proof of the second part follows directly from previous assertions concerning about M. 57 B(D)

and will be omitted. Theorem 5 is proved. U

A very similar assertion of Theorem 5 with similar proof is true for Msoﬁf (D) spaces.
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