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Abstract

In this paper we have synthetized more geometric inequalities at which we can give uncon-
ventional solutions. The applications and some solutions are selected from the bibliography
attached to this paper. We consider that the solutions that we can give to the presented
inequalities are interesting and can be used also in other cases.

The applications are divided into three categories. For the first category will be used
Jensen’ s inequality. For second class, will transform the inequalities in optimization prob-
lems with restrictions. And to the third category, will be used in the proofs, the vectorial
calculation.
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I. Applications of Jensen’ s Inequality

"The geometry everywhere exists". Leibniz

Theorem 1 (the Jensen’ s inequality)

If f : 1 C R — R is a convex (concave) function, then for all xy,... ,xz, € I and for all

qly--- qn € Ry with g1 + ...+ gn = 1 the following inequality take place:

flaz+ ...+ guan) <G f(@) + ..o+ g f(zn)

1. In a convex polygon A1As...A,, there is relationship:
n
2
Z sin® A;, < nsin® il
n
k=1

for all0 < a < 1. ([1])
47
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Proof. We use the function f : (0,7) — R, f(x) = sin®z. From Jensen’ s inequality we

have
n

1 & 2 1
sin® (n Z Ak> = sin® (w — g) > . Z sin® Ay.
k=1

k=1

2. In any triangle ABC, with A, B, C & (O, g), occurring relations ([2]):
3v/3

a)sin A +sin B +sinC < T;

b) cos Acos BcosC <

co| =

¢) cos A+ cos B+ cosC <

)

| W

. A B . C 1
d) sin — sin — sin — < —
2 2 2 8

e) Vcos A+ Vecos B + VeosC < 3\2/3;

f) tgA + tgB + tgC > 3v/3;

2 b2 C2
b > :
9)a+ +C_b—|—c—a+a—|—c—b+a+b—c’

h) rq 41y + 10 > 9.

Proof. We use: a) f(z) = sinz; b) f(z) = Incosz; ¢) f(x) = cosz; f(z) = 1nsing; e)
2

f(l‘)z\/m; f) f(JU) = tgx; g) f(x) = 2pgi 27 B
h) rq = i 7r:§,f(a:)= -
p—a D p=x

3. If a,b,c,d are the sides of an convex polygon, then ([2]):

a b c d
> 2.
b+c+d—a+a+c+d—b+a+b+d—c+a+b+c—d*

xT

Proof. We use f(x) = T
p — 2z

, € (0,p).

4.Let PP ... P, a polygon. If a; = P;P;y1,i=1,n,n> 3, P,y1 = P,
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n
p € [1,00), m:@, then:
n
af ag ab n mP
D p 7t 7 D gttt 5 D T
—aj+as+...+an ay —ag+ ...+ an aj +as+...—an 2s8—mP
. 1 P
Proof. We use the convex function f: (0,s7) = R, f(x) = >
s—x
1
Let aj,az,...,a, € (0,s7). Then:
n P P
a’ m
2 5 >n ;
S s—a s —mpP

which is equivalent with the inequality from the application.

5. Let A1As ... A, a convex polygon with area S and sides a1 = A1As, ... ,a, = ApAy and
M an arbitrary point inside the polygon. If di,ds, ... ,d, are the distances from this point at the

sides A1A2, A2A3, e ,AnAl then
n a+1

1 n
>
Z alrdy — 2ag8a’

=1

for all a € R ; the minimum is reached for the center of weight of the polygon.

Proof. We note Sy,959,...,5, the areas of triangles Ay M Ay, AsMAs,... ,A,MA;. The

inequality becomes
n 1 ncx+1

Z@Z Sa '

=1 "t

1
We consider f: R} — RY, f(z) = —(a strictly convex function) and q1 = g2 = ... = gn.
x

n n
From Jensen’s inequality, we have: f (Z qiSZ) < Z qif(S;), or
=1

=1
netl N1 -
Sa < Z o because ZSi =S.
i=1 "1 i=1

6. ([2]) To show that in any ABC' triangle, with the angles a < b < ¢, we have the double

nequality
1 sina n sinb n sin ¢ <0
2 (a=b(a—c) (b=—c)b—a) (c—a)(c—0D) '
Proof. Relationship required is equivalent to
1 —-b b—
——<(b—a)(c—b) < ¢ sina —sinb + Lsine < 0.
2 c—a c—a
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The function f : [0,7] — [0,1], f(z) = sinz is strictly convex.
b _
Thus,wenote)\:cie(O,l),1—)\: aand)\a—l—(l—)\)c:b.
c—a

Thus, implies: f[Aa+ (1 — A)c] > f(a) + (1 — X)f(b) or

) c—b . b—a .
0> —sinb+ sina + sin c.
c—a -
. . . . . c—b b+c . c—a a+c
Let £ = —sinb+ Asina +sinc — Asinc = 2sin cos —— — 2\ sin cos 5
—-b — b

= (c—0b) {g<c2 >Sing—g<c 2a>sin2} ,

. b B
where g : (0,7) — Ry, g(z) = ST s strictly descending. We have g <C2> > g <C 5 a>,

T

which implies:

-b b —-b . b— b
E > (c—b)g (c ) (sina —sin> = —4sin =" sin acosa+ .

2 2 2 2 4 4
But,sincjb<c;b, sinbia<biaandcosa b<1,s0,
2 4 4
c—b b—a 1
E>—4. 7 T2 ——i(c—b)(c—a).

II. In this section, we will transform the inequalities in optimization prob-

lems with restrictions.

"Every problem contains within itself the seeds of its own solution" Edward Somers

We use in demonstrations, the following theorem:

Theorem 2 (Karush-Kuhn-Tucker [3])

Let the problem

®) ] gi(z) <0, i=T,p

where M is a nonempty subset form R™ space and f, g;, hi, are the domain M fori=1,p, k=1,q

Let S = {z € M|gi(z) <0i=1,p, hg(z) =0, k =1,q} the admissible solutions set for problem
(8).

If 29 € S and the following conditions take place:

(i) 2° € int M;
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(ii) the function f is differentiable in z°;

(111) the functions g1,...,gp, h1,... ,hq are partial differentiable in relation to each variable
0
n x°;

(iv) for each y € R™ {0} which is a solution for the following system:

{<y,vyz( 0) ><0, ieI(a%) = {ilgi(z") = 0}
<y, Vhi(a?) >=0, k=1¢q

there is a number to > 0 and a function v : [0,t9] — R™ derivable in origin, so: v(t) € S for
each t € [0, to];
dy
0) = z2Y; 0)=y.
7(0) =27 —(0) =y
If 2° is a local minimum point of function f relative to S, then there is a point (v°,w") €

]R]_DF X R? for which will be true the condition of Kuhn - Tucker:
a) gi(z°)v) =0, i=1p;

k=1

[4] To show that in any ABC' rectangular triangle with the sides a,b,c the following in-
equality take place:

(a+b+c)(ab+ be+ ca) > kabe, k=5+3V2. (1)

Proof. We consider the following problem of optimization:

, (1 1 1>
min| —+ — + —
Ty T2 I3
z3 > 23 + 23
r1+xe+ax3 =1

1 >0, 29 >0, z3 >0

and let: M = {z = (x1,22,23) €ER3: 21 >0, 13 >0, x3 >0} and f,g,h: M — R,

h(z) = z1 + 22+ 23 — 1.

The inequality (1) is equivalent with the following problem:

min{f(z) : z € M, g(x) <0,h(z) =0}.
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We demonstrate that the problem has at least one solution. Let S be the set of possible

S<457> :{xeS:f(fU)Szg}?é@ <9 (152’142’132>>

is bounded and closed.

solutions.

= f has at least one minimum point relating to S = the problem has at least one solution.

Following we demonstrate that the problem has actually just one solution. Let 20 = (29, 29, xg)

a problem’s solution.

([=(29)? + (29)® + (28)’] = 0
0,0 t
=3 (v, w") € Ry x R so that —(0)2+2vox8+w0:0
T
f
——— + 2%+ w = 0.
L (a8)? ’

00000)

In other words (7, x5, z3,v",w") is a solution of the system

v(—ﬂlc? +a22+23)=0

_(a:2)2 —2vr1+w=0
_(xi)Q — 200 +w =20
—@ —2vrs+w=20
(z1,9,23) €5, v=>0.

Case: v =0

111
(3, 3’ 3> ¢ S = the system has no solution with v = 0.
*(9011)2 + (22)* + (23)* = 0

—7(1‘?2 —2vz1+w=0
—@ — 2U$2 +w = 0
———5 —2vr3+w =0

(23)?
r1+ o +x3=1.

20 = (—1+ 2,1 21— 2).

Case II: v > 0

)
8. [4 ab+bet+ca<hlatb+o?, k=—0+2V2

Proof. a > b, a >c¢, a®>> b+
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b
t= (a +Z o aibica +Z+ c’) = (z,y, z) = admissible solution for the problem.
max(xy + yz + zx)
2 > y? + 22
r+y+z=1

x>0, y>0, z>0.
In the maximum point the function’s value is k.

S — nonempty

S — compact = the problem has at least a solution. We propose to determinate the
f — continuous
solution.
— T3
M =Rj.

f(z) = —(vy +yz + zx),
g(z) = —2% + 9y + 22,
gz)=x+y+z—1.

0 0 0y _
{ X)‘;Eigi -I_-l(i) vo(t) +utv () =0 = (70,90, 20,v",w") is solution for the following
system:

v(—22+y?+2%) =0

y+z+2vr—w=0

z4+y—2vz—w=0

(xvya Z) € S: > 0.

111
v =
Case: v =0 <333>€S

1—+2 3
Case IL v >0 z9g=—-14++v2, yo=20= V2 0 =2, W’ =4v2—5.

142, \[1 v2

= 1t = (20,90,20) = ( 5 ) is the only solution of the problem.

= the maximum for the propose function is (xy + yz + z2)p = k = xy+yz+ zx < k.

max(x1, X2, T3)
(21)* > (22)* + (23)*

9. [4]
1+ w2 +a3=1
x1 >0, z9 >0, x3 > 0.
a b c 1 5\f—
b+ c)® > kab : : h
(a+b+4¢)" > kabe, atbtc atbtc atbte k2
1
< 1—}—[ \f 2\f> is the only solution for the problem.
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ITI. The method of vectorial calculation

"Mathematics don’t posses only the true, but the supreme beauty, as the sculpture does. "

Bertrand Russel

10. [5] Demonstrate the inequality

Vela—e) ++/elb—c¢) < Vab
where a, b, c are the sides for a triangle, and a > ¢, b > c.

Proof. We choose the vectors 77 = (y/¢, Vb — ¢) and 73 = (va — ¢,+/c).
or - w3| < ||| - [[3]] & Ve Va—ct+ Vb —c- Ve
<\ (Ve + (Vb=—02 -/ (Va=c + (vop

which is equivalent with \/c(a — ¢) + \/c(b — ¢) < Vab.

11. [5] Demonstrate that, if a,b,c are the sides of a triangle with perimeter 1, the following

inequalities take place:

2< a2+ (b+e)2+ 2+ (cta)2+VA+(a+b)?<3.
Proof. We choose the vectors
'U—f = (17 1)7 U_Q) = (17 1)7 U3 = (17 1)7

W:(a,b—i—c),uTﬁ:(b,a+c),u_)’g,:(c,a+b). (2)

From relations (2) results:

Vi -wi| < Vo] - lwi]];
12z 1] - [[@3]];




v
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Summarizing member by member, form relations (2) we obtain:

Va+ (b+e)+ b+ (c+a)+ e+ (a+b)

< VBV F BT o + VEVIT (e @ +V3VET (L.

Replacing a + b+ ¢ with 1, we have:

—<\/a2 b+ o2+ B2+ (cta2++/A+ (atb)? (4)

3
But — > 2, so

V2

2< Va2 + (b+ )24 Vb2 + (c+a)? + /2 + (a+b)? (5)

On the other sides, we choose the vectors:

=

:(a b) @:(hc)ax—}?):(cva)

=(0,0), 72 = (0,a), 55 = (0,b) (6)

Summarizing member by member and putting the coordinates from the relations (5), we

obtain:

Vaz+b+e)2+ V2 + (c+a)?+ 2+ (a+b)?

<V +R2+VE+ VR +E+Va?+ V24 a2+ V2 =

Va2 + 2+ Vi + 2+ V2 + a2 +a+b+e (7)

Because a, b, ¢ are positive and at least one of them is strictly bigger than 0, we obtain:

Va2+b2<a+b, VB2+ER<b+e, VZ+a?<c+a

Va2 + 02+ V2 + 2+ V2 +a®<2a+b+c). (8)

From relations (7) and (8) it results:

Va2 + b +c)2+ b+ (ct+a)?+ /2 +(a+b)?<3(at+btc)=3. (9)

From relations (5) and (9) we obtain the double inequality from the problem.
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12. [4] Let a,b,c,d > 0. Show that:

Vatbtctrd+vVbtetd+vVetd+Vd>vVa+tab+9c+ 16d.

Proof. Let the vectors
o1 = (Va, Vb, Ve, Vd), 5 = (0,Vb, Ve, Vd), 5 = (0,0,+/c,Vd), 5i = (0,0,0,Vd).

We have

ot || + [153]] + 193] + V2] = [|o7 + v3 + o3 + vd| (10)

S0,

V@2 + (VB2 + (Vo2 + (VA2 + | (VD2(VeR(Va)? + (VR (VA + 1/ (V)2

> (Va2 + 2VE)? + (3v/0)2 + (4Va)? (1)

relation that is equivalent with the one from the statement.
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